Abstract

Tilted fiber Bragg gratings (TFBGs) have been demonstrated to be accurate refractometers as they couple light from the fiber core to the cladding. Because they require spectral measurements on several tens of nanometers, demodulation techniques reported so far are not suited for quasi-distributed refractive index sensing using TFBGs cascaded along a single optical fiber. We demonstrate here that a commercial Optical Time Domain Reflectometer (OTDR) can be used to multiplex identical TFBGs refractometers written in the same optical fiber. Our solution is simple, relatively fast, cost-effective and is particularly interesting for the monitoring of long structures.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. M. Niemczyk, "Refractive index measurement," in Physical Methods in Modern Chemical Analysis, T. Kuwana, ed. (Academic, 1980).
  2. H. J. Patrick, A. D. Kersey, and F. Bucholtz, "Analysis of the response of long period fiber gratings to external index of refraction," J. Lightwave Technol. 16, 1606-1612 (1998).
    [CrossRef]
  3. G. Laffont and P. Ferdinand, "Tilted short-period fiber-Bragg-grating induced coupling to cladding modes for accurate refractometry," Meas. Sci. Technol. 12, 765-770 (2001).
    [CrossRef]
  4. S. Baek, Y. Jeong, and B. Lee, "Characteristics of short-period fiber Bragg gratings for use as macro-bending sensors," Appl. Opt. 41, 631-636 (2002).
    [CrossRef] [PubMed]
  5. T. Erdogan and J. E. Sipe, "Tilted fiber phase gratings," J. Opt. Soc. Am. A 13, 296-313 (1996).
    [CrossRef]
  6. C. Chan, C. Chen, A. Jafari, A. Laronche, D. J. Thomson, and J. Albert, "Optical fiber refractometer using narrowband cladding-mode resonance shifts," Appl. Opt. 46, 1142-1149 (2007).
    [CrossRef] [PubMed]
  7. C. Caucheteur and P. Mégret, "Demodulation technique for weakly tilted fiber Bragg grating refractometer," Photon. Technol. Lett. 17, 2703-2705 (2005).
    [CrossRef]
  8. L. C. Valente, A. M. Braga, A. Ribeiro, R. D. Regazzi, W. Ecke, C. Chojetzki, and R. Willsch, "Combined time and wavelength multiplexing technique of optical fiber grating sensor arrays using commercial OTDR equipment," IEEE Sens. J. 3, 31-35 (2003).
    [CrossRef]
  9. M. Kezmah and D. Donlagic, "Multimode all-fiber quasi-distributed refractometer sensor array and cross-talk mitigation," Appl. Opt. 46, 4081-4091 (2007).
    [CrossRef] [PubMed]
  10. T. Guo, C. Chen, A. Laronche, and J. Albert, "Power-referenced and temperature-calibrated optical fiber refractometer," Photon. Technol. Lett. 20, 635-637 (2008).
    [CrossRef]

2008 (1)

T. Guo, C. Chen, A. Laronche, and J. Albert, "Power-referenced and temperature-calibrated optical fiber refractometer," Photon. Technol. Lett. 20, 635-637 (2008).
[CrossRef]

2007 (2)

2005 (1)

C. Caucheteur and P. Mégret, "Demodulation technique for weakly tilted fiber Bragg grating refractometer," Photon. Technol. Lett. 17, 2703-2705 (2005).
[CrossRef]

2003 (1)

L. C. Valente, A. M. Braga, A. Ribeiro, R. D. Regazzi, W. Ecke, C. Chojetzki, and R. Willsch, "Combined time and wavelength multiplexing technique of optical fiber grating sensor arrays using commercial OTDR equipment," IEEE Sens. J. 3, 31-35 (2003).
[CrossRef]

2002 (1)

2001 (1)

G. Laffont and P. Ferdinand, "Tilted short-period fiber-Bragg-grating induced coupling to cladding modes for accurate refractometry," Meas. Sci. Technol. 12, 765-770 (2001).
[CrossRef]

1998 (1)

1996 (1)

Albert, J.

T. Guo, C. Chen, A. Laronche, and J. Albert, "Power-referenced and temperature-calibrated optical fiber refractometer," Photon. Technol. Lett. 20, 635-637 (2008).
[CrossRef]

C. Chan, C. Chen, A. Jafari, A. Laronche, D. J. Thomson, and J. Albert, "Optical fiber refractometer using narrowband cladding-mode resonance shifts," Appl. Opt. 46, 1142-1149 (2007).
[CrossRef] [PubMed]

Baek, S.

Braga, A. M.

L. C. Valente, A. M. Braga, A. Ribeiro, R. D. Regazzi, W. Ecke, C. Chojetzki, and R. Willsch, "Combined time and wavelength multiplexing technique of optical fiber grating sensor arrays using commercial OTDR equipment," IEEE Sens. J. 3, 31-35 (2003).
[CrossRef]

Bucholtz, F.

Caucheteur, C.

C. Caucheteur and P. Mégret, "Demodulation technique for weakly tilted fiber Bragg grating refractometer," Photon. Technol. Lett. 17, 2703-2705 (2005).
[CrossRef]

Chan, C.

Chen, C.

T. Guo, C. Chen, A. Laronche, and J. Albert, "Power-referenced and temperature-calibrated optical fiber refractometer," Photon. Technol. Lett. 20, 635-637 (2008).
[CrossRef]

C. Chan, C. Chen, A. Jafari, A. Laronche, D. J. Thomson, and J. Albert, "Optical fiber refractometer using narrowband cladding-mode resonance shifts," Appl. Opt. 46, 1142-1149 (2007).
[CrossRef] [PubMed]

Chojetzki, C.

L. C. Valente, A. M. Braga, A. Ribeiro, R. D. Regazzi, W. Ecke, C. Chojetzki, and R. Willsch, "Combined time and wavelength multiplexing technique of optical fiber grating sensor arrays using commercial OTDR equipment," IEEE Sens. J. 3, 31-35 (2003).
[CrossRef]

Donlagic, D.

Ecke, W.

L. C. Valente, A. M. Braga, A. Ribeiro, R. D. Regazzi, W. Ecke, C. Chojetzki, and R. Willsch, "Combined time and wavelength multiplexing technique of optical fiber grating sensor arrays using commercial OTDR equipment," IEEE Sens. J. 3, 31-35 (2003).
[CrossRef]

Erdogan, T.

Ferdinand, P.

G. Laffont and P. Ferdinand, "Tilted short-period fiber-Bragg-grating induced coupling to cladding modes for accurate refractometry," Meas. Sci. Technol. 12, 765-770 (2001).
[CrossRef]

Guo, T.

T. Guo, C. Chen, A. Laronche, and J. Albert, "Power-referenced and temperature-calibrated optical fiber refractometer," Photon. Technol. Lett. 20, 635-637 (2008).
[CrossRef]

Jafari, A.

Jeong, Y.

Kersey, A. D.

Kezmah, M.

Laffont, G.

G. Laffont and P. Ferdinand, "Tilted short-period fiber-Bragg-grating induced coupling to cladding modes for accurate refractometry," Meas. Sci. Technol. 12, 765-770 (2001).
[CrossRef]

Laronche, A.

T. Guo, C. Chen, A. Laronche, and J. Albert, "Power-referenced and temperature-calibrated optical fiber refractometer," Photon. Technol. Lett. 20, 635-637 (2008).
[CrossRef]

C. Chan, C. Chen, A. Jafari, A. Laronche, D. J. Thomson, and J. Albert, "Optical fiber refractometer using narrowband cladding-mode resonance shifts," Appl. Opt. 46, 1142-1149 (2007).
[CrossRef] [PubMed]

Lee, B.

Mégret, P.

C. Caucheteur and P. Mégret, "Demodulation technique for weakly tilted fiber Bragg grating refractometer," Photon. Technol. Lett. 17, 2703-2705 (2005).
[CrossRef]

Patrick, H. J.

Regazzi, R. D.

L. C. Valente, A. M. Braga, A. Ribeiro, R. D. Regazzi, W. Ecke, C. Chojetzki, and R. Willsch, "Combined time and wavelength multiplexing technique of optical fiber grating sensor arrays using commercial OTDR equipment," IEEE Sens. J. 3, 31-35 (2003).
[CrossRef]

Ribeiro, A.

L. C. Valente, A. M. Braga, A. Ribeiro, R. D. Regazzi, W. Ecke, C. Chojetzki, and R. Willsch, "Combined time and wavelength multiplexing technique of optical fiber grating sensor arrays using commercial OTDR equipment," IEEE Sens. J. 3, 31-35 (2003).
[CrossRef]

Sipe, J. E.

Thomson, D. J.

Valente, L. C.

L. C. Valente, A. M. Braga, A. Ribeiro, R. D. Regazzi, W. Ecke, C. Chojetzki, and R. Willsch, "Combined time and wavelength multiplexing technique of optical fiber grating sensor arrays using commercial OTDR equipment," IEEE Sens. J. 3, 31-35 (2003).
[CrossRef]

Willsch, R.

L. C. Valente, A. M. Braga, A. Ribeiro, R. D. Regazzi, W. Ecke, C. Chojetzki, and R. Willsch, "Combined time and wavelength multiplexing technique of optical fiber grating sensor arrays using commercial OTDR equipment," IEEE Sens. J. 3, 31-35 (2003).
[CrossRef]

Appl. Opt. (3)

IEEE Sens. J. (1)

L. C. Valente, A. M. Braga, A. Ribeiro, R. D. Regazzi, W. Ecke, C. Chojetzki, and R. Willsch, "Combined time and wavelength multiplexing technique of optical fiber grating sensor arrays using commercial OTDR equipment," IEEE Sens. J. 3, 31-35 (2003).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. A (1)

Meas. Sci. Technol. (1)

G. Laffont and P. Ferdinand, "Tilted short-period fiber-Bragg-grating induced coupling to cladding modes for accurate refractometry," Meas. Sci. Technol. 12, 765-770 (2001).
[CrossRef]

Photon. Technol. Lett. (2)

C. Caucheteur and P. Mégret, "Demodulation technique for weakly tilted fiber Bragg grating refractometer," Photon. Technol. Lett. 17, 2703-2705 (2005).
[CrossRef]

T. Guo, C. Chen, A. Laronche, and J. Albert, "Power-referenced and temperature-calibrated optical fiber refractometer," Photon. Technol. Lett. 20, 635-637 (2008).
[CrossRef]

Other (1)

T. M. Niemczyk, "Refractive index measurement," in Physical Methods in Modern Chemical Analysis, T. Kuwana, ed. (Academic, 1980).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

4° TFBG transmitted spectrum evolution as a function of the SRI (vertical axis in dB with offset).

Fig. 2.
Fig. 2.

4° TFBG transmitted spectrum with the cladding mode resonances centred on the OTDR source.

Fig. 3.
Fig. 3.

Typical OTDR trace for a 1 cm long 4° TFBG inserted between two single mode optical fiber coils of approximately 1 km in length.

Fig. 4.
Fig. 4.

Evolution of the OTDR trace for a 4° TFBG when the SRI is modified (pulse duration=100 ns, averaging time=30s).

Fig. 5.
Fig. 5.

Evolution of the insertion loss in the OTDR trace as a function of the SRI - Comparison with the normalized area.

Fig. 6.
Fig. 6.

Influence of the OTDR pulse duration on the quasi-distributed sensing performances.

Fig. 7.
Fig. 7.

OTDR trace with 5 cascaded 4° TFBG (pulse duration=100 ns, averaging time=30s, fiber length between gratings=1 km).

Fig. 8.
Fig. 8.

Temperature influence on the OTDR trace of the 4° TFBG immerged in water (left) and evolution of the insertion loss with respect to temperature (right).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

λ Bragg = 2 n eff , core Λ
λ coupling , i = ( n eff , clad , i + n eff , core ) Λ

Metrics