Abstract

Optical spectrum analysis and polarization analysis are not generally related by conventional wisdom. In this paper, we show that the spectrum of a light beam can be obtained using a polarimeter, with a resolution and a speed that cannot be achieved with traditional spectrum analysis methods. We experimentally demonstrate a novel polarimeter-based optical spectrum analyzer (P-OSA) and show that the high-speed and high-resolution nature of the device enables rapid measurement of the spectrum of swept laser sources at a repetition rate of more than 100 kHz. We show the generation of a unique 3-D plot of the spectral shape of a light source as its center wavelength is swept.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. J. Pernick, D. Yustein, and C. Bartolotta, "An Optical Spectrum Analyzer for Power Spectral Density Measurements," Appl. Opt. 8, 65-73 (1969)
    [CrossRef] [PubMed]
  2. T. K. Gaylord and M. G. Moharam, "Analysis and applications of optical diffraction by gratings," inProceedings of the IEEE,  73, 894-937 (1985)
    [CrossRef]
  3. M. Takeda, H. Ina, and S. Kobayashi, "Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry," J. Opt. Soc. Am. 72, 156-160 (1982)
    [CrossRef]
  4. D. Derickson, Fiber optic test and measurement, (Prentice Hall, 1998.), Chap. 3-6, pp. 12.
  5. D. M. Baney, B. Szafraniec, and A. Motamedi, "Coherent Optical Spectrum Analyzer," IEEE Photon. Technol. Lett. 14, 355-357 (2002).
    [CrossRef]
  6. http://generalphotonics.com/POD-101D.htm
  7. C. R. S. Fludger, T. Duthel, D. van den Borne, C. Schulien, E. Schmidt, T. Wuth, J. Geyer, E. De Man, G. Khoe, and H. de Waardt, "Coherent Equalization and POLMUX-RZ-DQPSK for Robust 100-GE Transmission," J. Lightwave Technol. 26, 64-72 (2008)
    [CrossRef]
  8. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (7th ed.), (Cambridge University Press, 1999).
    [PubMed]
  9. http://www.lambdaquest.com/products.htm
  10. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181(1991).
    [CrossRef] [PubMed]
  11. R. Huber, M. Wojtkowski, and J. G. Fujimoto, "Fourier Domain Mode Locking (FDML): A new laser operating regime and applications for optical coherence tomography," Opt. Express 14, 3225-3237 (2006).
    [CrossRef] [PubMed]
  12. S. Tammela, H. Ludvigsen, T. Kajava, M. Kaivola, "Time-resolved frequency chirp measurement using a silicon-wafer etalon," IEEE Photon. Technol. Lett. 9, 475-477 (1997)
    [CrossRef]

2008 (1)

2006 (1)

2002 (1)

D. M. Baney, B. Szafraniec, and A. Motamedi, "Coherent Optical Spectrum Analyzer," IEEE Photon. Technol. Lett. 14, 355-357 (2002).
[CrossRef]

1997 (1)

S. Tammela, H. Ludvigsen, T. Kajava, M. Kaivola, "Time-resolved frequency chirp measurement using a silicon-wafer etalon," IEEE Photon. Technol. Lett. 9, 475-477 (1997)
[CrossRef]

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181(1991).
[CrossRef] [PubMed]

1985 (1)

T. K. Gaylord and M. G. Moharam, "Analysis and applications of optical diffraction by gratings," inProceedings of the IEEE,  73, 894-937 (1985)
[CrossRef]

1982 (1)

1969 (1)

Baney, D. M.

D. M. Baney, B. Szafraniec, and A. Motamedi, "Coherent Optical Spectrum Analyzer," IEEE Photon. Technol. Lett. 14, 355-357 (2002).
[CrossRef]

Bartolotta, C.

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181(1991).
[CrossRef] [PubMed]

De Man, E.

de Waardt, H.

Duthel, T.

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181(1991).
[CrossRef] [PubMed]

Fludger, C. R. S.

Fujimoto, J. G.

R. Huber, M. Wojtkowski, and J. G. Fujimoto, "Fourier Domain Mode Locking (FDML): A new laser operating regime and applications for optical coherence tomography," Opt. Express 14, 3225-3237 (2006).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181(1991).
[CrossRef] [PubMed]

Gaylord, T. K.

T. K. Gaylord and M. G. Moharam, "Analysis and applications of optical diffraction by gratings," inProceedings of the IEEE,  73, 894-937 (1985)
[CrossRef]

Geyer, J.

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181(1991).
[CrossRef] [PubMed]

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181(1991).
[CrossRef] [PubMed]

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181(1991).
[CrossRef] [PubMed]

Huber, R.

Ina, H.

Kaivola, M.

S. Tammela, H. Ludvigsen, T. Kajava, M. Kaivola, "Time-resolved frequency chirp measurement using a silicon-wafer etalon," IEEE Photon. Technol. Lett. 9, 475-477 (1997)
[CrossRef]

Kajava, T.

S. Tammela, H. Ludvigsen, T. Kajava, M. Kaivola, "Time-resolved frequency chirp measurement using a silicon-wafer etalon," IEEE Photon. Technol. Lett. 9, 475-477 (1997)
[CrossRef]

Khoe, G.

Kobayashi, S.

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181(1991).
[CrossRef] [PubMed]

Ludvigsen, H.

S. Tammela, H. Ludvigsen, T. Kajava, M. Kaivola, "Time-resolved frequency chirp measurement using a silicon-wafer etalon," IEEE Photon. Technol. Lett. 9, 475-477 (1997)
[CrossRef]

Moharam, M. G.

T. K. Gaylord and M. G. Moharam, "Analysis and applications of optical diffraction by gratings," inProceedings of the IEEE,  73, 894-937 (1985)
[CrossRef]

Motamedi, A.

D. M. Baney, B. Szafraniec, and A. Motamedi, "Coherent Optical Spectrum Analyzer," IEEE Photon. Technol. Lett. 14, 355-357 (2002).
[CrossRef]

Pernick, B. J.

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181(1991).
[CrossRef] [PubMed]

Schmidt, E.

Schulien, C.

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181(1991).
[CrossRef] [PubMed]

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181(1991).
[CrossRef] [PubMed]

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181(1991).
[CrossRef] [PubMed]

Szafraniec, B.

D. M. Baney, B. Szafraniec, and A. Motamedi, "Coherent Optical Spectrum Analyzer," IEEE Photon. Technol. Lett. 14, 355-357 (2002).
[CrossRef]

Takeda, M.

Tammela, S.

S. Tammela, H. Ludvigsen, T. Kajava, M. Kaivola, "Time-resolved frequency chirp measurement using a silicon-wafer etalon," IEEE Photon. Technol. Lett. 9, 475-477 (1997)
[CrossRef]

van den Borne, D.

Wojtkowski, M.

Wuth, T.

Yustein, D.

Appl. Opt. (1)

IEEE Photon. Technol. Lett. (2)

D. M. Baney, B. Szafraniec, and A. Motamedi, "Coherent Optical Spectrum Analyzer," IEEE Photon. Technol. Lett. 14, 355-357 (2002).
[CrossRef]

S. Tammela, H. Ludvigsen, T. Kajava, M. Kaivola, "Time-resolved frequency chirp measurement using a silicon-wafer etalon," IEEE Photon. Technol. Lett. 9, 475-477 (1997)
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. (1)

Opt. Express (1)

Proceedings of the IEEE (1)

T. K. Gaylord and M. G. Moharam, "Analysis and applications of optical diffraction by gratings," inProceedings of the IEEE,  73, 894-937 (1985)
[CrossRef]

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181(1991).
[CrossRef] [PubMed]

Other (4)

D. Derickson, Fiber optic test and measurement, (Prentice Hall, 1998.), Chap. 3-6, pp. 12.

http://generalphotonics.com/POD-101D.htm

M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (7th ed.), (Cambridge University Press, 1999).
[PubMed]

http://www.lambdaquest.com/products.htm

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

Concept of the proposed real-time polarimeter-based optical spectrum analyzer used for a swept-wavelength source.

Fig. 2.
Fig. 2.

P-OSA experimental setup for analyzing two types of swept sources. Note that only one source is connected at a time. The SOP of the input light is adjusted to 45 degrees with respect to the birefringent axis of the DGD.

Fig. 3.
Fig. 3.

1-KHz tuning F-P filter (a): SOP (S1) trace. (b): swept wavelength. Note that the starting wavelength is obtained from a commercial spectrum analyzer, although the P-OSA can also determine the absolute starting wavelength directly, as described in the next section.

Fig. 4.
Fig. 4.

10-KHz tuning F-P filter (a). SOP (S1) trace. (b). swept wavelength. Note that the starting wavelength is obtained with a commercial spectrum analyzer, although the P-OSA can also determine the absolute starting wavelength directly, as described in the next section.

Fig. 5.
Fig. 5.

POD-101D oscilloscope mode. SOP evolutions are recorded when the input is swept at a speed of 0.1 sec.

Fig. 6.
Fig. 6.

Instantaneous wavelength and power as the input light source is swept at a speed of 0.1 sec. The starting wavelength is from the setting of the commercial tunable laser. Note that the transient dynamics of the swept laser source can be clearly revealed, as shown in the inset.

Fig. 7.
Fig. 7.

Concept and principle of the proposed real-time polarimeter-based optical spectrum analyzer used for spectral shape analysis. Curve fitting of (A) determines the center frequency while Fourier transform of (B) yields the spectral shape and width. The spectral resolution is inversely proportional to the range of the variable DGD.

Fig. 8.
Fig. 8.

Experimental setup for spectrum analysis of fixed wavelength source.

Fig. 9.
Fig. 9.

(a). Experimental results of DOP values when the DGD is changed from 0 to 1000 ps for both 40-Gb/s NRZ-OOK and RZ-OOK signals. (b). The measured OSA spectra. (c). The derived P-OSA spectra for comparison.

Fig. 10.
Fig. 10.

A 3-D plot using the proposed P-OSA. Swept wavelength is the added dimension compared to the conventional OSAs. Note that the absolute wavelengths are directly obtained with P-OSA via curving fitting.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

E = ( E x e i 2 π f τ e ̂ x + E y e ̂ y ) e i ϕ o
Δ θ = 2 π ( f 1 f 2 ) τ
f 1 f 2 = 1 2 π Δ θ τ
Frequency Resolution : δ f = Δ f 1000 = 10 3 τ
One - Cycle measurement range : Δ f = 1 τ
Total measurement range : Δ f = N × 1 τ
θ = θ o + 2 π f τ
P ( ω ) = S o DOP ( τ ) e i ω τ d τ

Metrics