Abstract

Near Infrared Diffuse Optical Tomography has the potential to be used as a non-invasive imaging tool for biological tissue specifically for the diagnosis and characterization of breast cancer. Most model based reconstruction algorithms rely on calculating and inverting a large Jacobian matrix. Although this method is flexible for a wide range of complex problems, it usually results in large image artifacts from hypersensitivity around the detectors. In this work a Jacobian normalization technique is presented which takes into account the varying magnitude of different optical parameters creating a more uniform update within a spectral image reconstruction model. Using simulated data the Jacobian normalization method is used to reconstructed images of absolute chromophore and scattering parameters which are qualitatively and quantitatively as compared to conventional methods. The hypersensitivity resulting in boundary artifacts are shown to be minimized with only a small additional computational cost.

© 2008 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Singular value decomposition based regularization prior to spectral mixing improves crosstalk in dynamic imaging using spectral diffuse optical tomography

Yuxuan Zhan, Adam T. Eggebrecht, Joseph P. Culver, and Hamid Dehghani
Biomed. Opt. Express 3(9) 2036-2049 (2012)

Model-resolution based regularization improves near infrared diffuse optical tomography

Sree Harsha Katamreddy and Phaneendra K. Yalavarthy
J. Opt. Soc. Am. A 29(5) 649-656 (2012)

Diffuse optical tomography with spectral constraints and wavelength optimization

Alper Corlu, Regine Choe, Turgut Durduran, Kijoon Lee, Martin Schweiger, Simon R. Arridge, Elizabeth M. C. Hillman, and Arjun G. Yodh
Appl. Opt. 44(11) 2082-2093 (2005)

References

  • View by:
  • |
  • |
  • |

  1. A. P. Gibson, J. C. Hebden, and S. R. Arridge, “Recent advances in diffuse optical imaging,” Phys. Med. Biol. 50, R1–R43 (2005).
    [Crossref] [PubMed]
  2. S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Interpreting Hemoglobin and Water Concentration, Oxygen Saturation and Scattering Measured In Vivo by Near-Infrared Breast Tomography,” PNAS 100, 12349–12354 (2003).
    [Crossref] [PubMed]
  3. H. Dehghani, B. W. Pogue, S. P. Poplack, and K. D. Paulsen, “Multiwavelength Three-Dimensional Near-Infrared Tomography of the Breast: Initial Simulation, Phantom, and Clinical Results,” Appl. Opt. 42, 135–145 (2003).
    [Crossref] [PubMed]
  4. R. Choe, A. Corlu, K. Lee, T. Durduran, S. D. Konecky, M. Grosicka-Koptyra, S. R. Arridge, B. J. Czerniecki, D. L. Fraker, A. DeMichele, B. Chance, M. A. Rosen, and A. G. Yodh, “Diffuse optical tomography of breast cancer during neoadjuvant chemotherapy: A case study with comparison to MRI,” Med. Phys. 32, 1128–1139 (2005).
    [Crossref] [PubMed]
  5. G. Boverman, Q. Fang, S. A. Carp, E. L. Miller, D. H. Brooks, J. Selb, R. H. Moore, D. B. Kopans, and D. A. Boas, “Spatio-temporal imaging of the hemoglobin in the compressed breast with diffuse optical tomography,” Phys. Med. Biol. 52, 3619–3641 (2007).
    [Crossref] [PubMed]
  6. J. C. Hebden, A. Gibson, T. Austin, R. Yusof, N. Everdell, D. T. Delpy, S. R. Arridge, J. H. Meek, and J. S. Wyatt, “Imaging changes in blood volume and oxygenation in the newborn infant brain using threedimensional optical tomography,” Phys. Med. Biol. 49, 1117–1130 (2004).
    [Crossref] [PubMed]
  7. D. A. Boas, K. Chen, D. Grebert, and M. A. Franceschini, “Improving the diffuse optical imaging spatial resolution of the cerebral hemodynamic response to brain activation in humans,” Opt. Lett. 29, 1506–1508 (2004).
    [Crossref] [PubMed]
  8. B. W. Zeff, B. R. White, H. Dehghani, B. L. Schlaggar, and J. P. Culver, “Retinotopic mapping of adult human visual cortex with high-density diffuse optical tomography,” PNAS  104, 12169–12174 (2007).
    [Crossref] [PubMed]
  9. M. A. Franceschini, S. Fantini, J. J. Thompson, J. P. Culver, and D. A. Boas, “Hemodynamic evoked response of the sensorimotor cortex measured noninvasively with near-infrared optical imaging,” Psychophysiology 40, 548–560 (2003).
    [Crossref] [PubMed]
  10. H. Dehghani, B. W. Pogue, S. Jiang, B. Brooksby, and K. D. Paulsen, “Three Dimensional Optical Tomography: Resolution in Small Object Imaging,” Appl. Opt. 42, 3117–3128 (2003).
    [Crossref] [PubMed]
  11. H. Xu, R. Springett, H. Dehghani, B. W. Pogue, K. D. Paulsen, and J. F. Dunn, “MRI coupled Broadband Near Infrared Tomography System for Small Animal Brain Studies,” Appl. Opt. 44, 2177–2188 (2005).
    [Crossref] [PubMed]
  12. H. Xu, H. Dehghani, B. W. Pogue, R. Springett, K. D. Paulsen, and J. Dunn, “Near-infrared imaging in the small animal brain: optimization of fiber positions,” J. Biomed. Opt. 8, 102–110 (2003).
    [Crossref] [PubMed]
  13. V. Ntziachristos, “Fluorescence Molecular Imaging,” Rev. Biomed. Eng. 8, 1–33 (2006).
    [Crossref]
  14. G. Zacharakis, H. Kambara, H. Shih, J. Ripoll, J. Grimm, Y. Saeki, R. Weissleder, and V. Ntziachristos, “Volumetric tomography of fluorescent proteins through small animals in vivo,” PNAS 102, 18252–18257 (2005).
    [Crossref] [PubMed]
  15. S. R. Arridge, “Optical tomography in medical imaging,” Inverse Prob. 15, R41–R93 (1999).
    [Crossref]
  16. X. Wang, B. W. Pogue, S. Jiang, H. Dehghani, X. Song, S. Srinivasan, B. A. Brooksby, K. D. Paulsen, C. Kogel, S. P. Poplack, and W. A. Wells, “Image reconstruction of effective Mie scattering parameters of breast tissue in vivo with near-infrared tomography,” J. Biomed. Opt. 11, 041106 (2006).
    [Crossref] [PubMed]
  17. S. Srinivasan, B. W. Pogue, B. Brooksby, S. Jiang, H. Dehghani, C. Kogel, S. P. Poplack, and K. D. Paulsen, “Near-Infrared Characterization of Breast Tumors In Vivo using Spectrally-Constrained Reconstruction,” Technol. Cancer Res. Treat. 5, 513–526 (2005).
  18. A. Corlu, R. Choe, T. Durduran, K. Lee, M. Schweiger, S. R. Arridge, E. M. C. Hillman, and A. G. Yodh, “Diffuse optical tomography with spectral constraints and wavelength optimization,” Appl. Opt. 44, 2082–2093 (2005).
    [Crossref] [PubMed]
  19. A. Li, Q. Zhang, J. P. Culver, E. L. Miller, and D. A. Boas, “Reconstructing chromosphere concentration images directly by continuous-wave diffuse optical tomography,” Opt. Lett. 29, 256–258 (2004).
    [Crossref] [PubMed]
  20. A. Torricelli, A. Pifferi, A. Taroni, E. Giambattistelli, and R. Cubeddu, “In vivo optical characterization of human tissues from 610 to 1010 nm by time-resolved reflectance spectroscopy,” Phys. Med. Biol.  46, 2227–2237 (2001).
    [Crossref] [PubMed]
  21. N. Shah, A. Cerussi, C. Eker, J. Espinoza, J. Butler, J. Fishkin, R. Hornung, and B. Tromberg, “Non-invasive functional optical spectroscopy of human breast tissue,” PNAS 98, 4420–4425 (2001).
    [Crossref] [PubMed]
  22. B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, and J. Butler, “Noninvasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia (New York)  2, 26–40 (2000).
    [Crossref] [PubMed]
  23. M. A. Franceschini, S. Fantini, L. A. Paunescu, J. S. Maier, and E. Gratton, “Influence of a superficial layer in the quantitative spectroscopic study of strongly scattering media,” Appl. Opt. 37, 7447–7458 (1998).
    [Crossref]
  24. S. R. Arridge and W. R. B. Lionheart, “Nonuniqueness in diffusion-based optical tomography,” Opt. Lett. 23, 882–884 (1998).
    [Crossref]
  25. J. C. Hebden, S. R. Arridge, and D. T. Delpy, “Optical imaging in medicine: I. Experimental techniques,” Phys. Med. Biol. 42, 825–840 (1997).
    [Crossref] [PubMed]
  26. V. Ntziachristos, X. H. Ma, B. Chance, and Chance, “Time-correlated single photon counting imager for simultaneous magnetic resonance and near-infrared mammography,” Rev. Sci. Instrum. 69, 4221–4233 (1998).
    [Crossref]
  27. M. S. Patterson, C. B., and B. C. Wilson, “Time resolved reflectance and transmittance for the non-invasive measurement of tissue optical properties,” Appl. Opt.  28, 2331–2336 (1989).
    [Crossref] [PubMed]
  28. T. O. McBride, B. W. Pogue, S. Jiang, U. L. Osterberg, and K. D. Paulsen, “Development and Calibration of a Parallel Modulated Near-Infrared Tomography System for Hemoglobin Imaging In Vivo,” Rev. Sci. Instrum. 72, 1817–1824 (2001).
    [Crossref]
  29. M. E. Eames, J. Wang, B. W. Pogue, and H. Dehghani, “Wavelength Band Optimisation in Spectral Near-Infrared Optical Tomography Improves Accuracy While Reducing Data Acquisition and Computational Burdon,” J. Biomed. Opt. In Press (2008).
    [Crossref]
  30. J. Wang, S. C. Davis, S. Srinivasan, S. Jiang, B. W. Pogue, and K. D. Paulsen, “Spectral tomography with diffuse near-infrared light: inclusion of broadband frequency domain spectral data,” J. Biomed. Opt.13 (2008).
    [Crossref] [PubMed]
  31. B. Brooksby, S. Srinivasan, S. Jiang, H. Dehghani, B. W. Pogue, K. D. Paulsen, J. Weaver, C. Kogel, and S. P. Poplack, “Spectral-prior information improves Near-Infrared diffuse tomography more than spatial-prior,” Opt. Lett. 30, 1968–1970 (2005).
    [Crossref] [PubMed]
  32. H. Dehghani, M. E. Eames, P. K. Yalavarthy, S. C. Davis, S. Srinivasan, C. M. Carpenter, B. W. Pogue, and K. D. Paulsen, “Near Infrared Optical Tomography using NIRFAST: Algorithms for Numerical Model and Image Reconstruction Algorithms,” Communications in Numerical Methods in Engineering In Press (2008).
  33. A. H. Hielscher and S. Bartel, “Use of penalty terms in gradient-based iterative reconstruction schemes for optical tomography,” J. Biomed. Opt. 6, 183–192 (2001).
    [Crossref] [PubMed]
  34. M. J. Eppstein, D. J. Hawrysz, A. Godavarty, and E. M. Sevick-Muraca, “Three-dimensional, Baysian image reconstruction from sparse and noisy data sets: Near-infrared fluorescence tomography,” PNAS 99, 9619–9624 (2002).
    [Crossref] [PubMed]
  35. H. B. Jiang, K. D. Paulsen, U. L. Osterberg, and M. S. Patterson, “Frequency-domain optical image reconstruction in turbid media: An experimental study of single-target detectability,” Appl. Opt. 36, 52–63 (1997).
    [Crossref] [PubMed]
  36. W. Zhu, Y. Wang, Y. Yao, J. Chang, H. L. Graber, and R. L. Barbour, “Iterative total least-squares image reconstruction algorithm for optical tomography by the conjugate gradient method,” J. Opt. Soc. Am. A 14, 799–807 (1997).
    [Crossref]
  37. S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, and K. D. Paulsen, “Spectrally Constrained Chromophore and Scattering NIR Tomography Provides Quantitative and Robust Reconstruction,” Appl. Opt. 44, 1858–1869 (2005).
    [Crossref] [PubMed]
  38. J. R. Mourant, T. Fuselier, J. Boyer, T. M. Johnson, and I. J. Bigio, “Predictions and measurements of scattering and absorption over broad wavelength ranges in tissue phantoms,” Appl. Opt. 36, 949–957 (1997).
    [Crossref] [PubMed]
  39. S. R. Arridge and M. Schweiger, “Photon-measurement density functions. Part2: Finite-element-method calculations,” Appl. Opt. 34, 8026–8037 (1995).
    [Crossref] [PubMed]
  40. P. K. Yalavarthy, H. Dehghani, B. W. Pogue, and K. D. Paulsen, “Critical computational aspects of near infrared circular tomographic imaging: Analysis of measurement number, mesh resolution and reconstruction basis,” Opt. Express 14, 6113–6127 (2006).
    [Crossref] [PubMed]
  41. M. E. Eames, B. W. Pogue, P. K. Yalavarthy, and H. Dehghani, “An efficient Jacobian reduction method for diffuse optical image reconstruction,” Opt. Express 15, 15908–15919 (2007).
    [Crossref] [PubMed]
  42. S. Prahl, http://omlc.ogi.edu/spectra.
  43. S. C. Davis, H. Dehghani, J. Wang, S. Jiang, B. W. Pogue, and K. D. Paulsen, “Image-guided diffuse optical fluorescence tomography implemented with Laplacian-type regularization,” Opt. Express 15, 4066–4082 (2007).
    [Crossref] [PubMed]
  44. T. O. McBride, B. W. Pogue, U. L. Osterberg, and K. D. Paulsen, “Strategies for absolute calibration of near infrared tomographic tissue imaging,” Oxygen Transport to Tissue XXIV, 85–99 (2003).
    [Crossref]

2007 (4)

G. Boverman, Q. Fang, S. A. Carp, E. L. Miller, D. H. Brooks, J. Selb, R. H. Moore, D. B. Kopans, and D. A. Boas, “Spatio-temporal imaging of the hemoglobin in the compressed breast with diffuse optical tomography,” Phys. Med. Biol. 52, 3619–3641 (2007).
[Crossref] [PubMed]

B. W. Zeff, B. R. White, H. Dehghani, B. L. Schlaggar, and J. P. Culver, “Retinotopic mapping of adult human visual cortex with high-density diffuse optical tomography,” PNAS  104, 12169–12174 (2007).
[Crossref] [PubMed]

M. E. Eames, B. W. Pogue, P. K. Yalavarthy, and H. Dehghani, “An efficient Jacobian reduction method for diffuse optical image reconstruction,” Opt. Express 15, 15908–15919 (2007).
[Crossref] [PubMed]

S. C. Davis, H. Dehghani, J. Wang, S. Jiang, B. W. Pogue, and K. D. Paulsen, “Image-guided diffuse optical fluorescence tomography implemented with Laplacian-type regularization,” Opt. Express 15, 4066–4082 (2007).
[Crossref] [PubMed]

2006 (3)

P. K. Yalavarthy, H. Dehghani, B. W. Pogue, and K. D. Paulsen, “Critical computational aspects of near infrared circular tomographic imaging: Analysis of measurement number, mesh resolution and reconstruction basis,” Opt. Express 14, 6113–6127 (2006).
[Crossref] [PubMed]

V. Ntziachristos, “Fluorescence Molecular Imaging,” Rev. Biomed. Eng. 8, 1–33 (2006).
[Crossref]

X. Wang, B. W. Pogue, S. Jiang, H. Dehghani, X. Song, S. Srinivasan, B. A. Brooksby, K. D. Paulsen, C. Kogel, S. P. Poplack, and W. A. Wells, “Image reconstruction of effective Mie scattering parameters of breast tissue in vivo with near-infrared tomography,” J. Biomed. Opt. 11, 041106 (2006).
[Crossref] [PubMed]

2005 (8)

S. Srinivasan, B. W. Pogue, B. Brooksby, S. Jiang, H. Dehghani, C. Kogel, S. P. Poplack, and K. D. Paulsen, “Near-Infrared Characterization of Breast Tumors In Vivo using Spectrally-Constrained Reconstruction,” Technol. Cancer Res. Treat. 5, 513–526 (2005).

A. Corlu, R. Choe, T. Durduran, K. Lee, M. Schweiger, S. R. Arridge, E. M. C. Hillman, and A. G. Yodh, “Diffuse optical tomography with spectral constraints and wavelength optimization,” Appl. Opt. 44, 2082–2093 (2005).
[Crossref] [PubMed]

H. Xu, R. Springett, H. Dehghani, B. W. Pogue, K. D. Paulsen, and J. F. Dunn, “MRI coupled Broadband Near Infrared Tomography System for Small Animal Brain Studies,” Appl. Opt. 44, 2177–2188 (2005).
[Crossref] [PubMed]

A. P. Gibson, J. C. Hebden, and S. R. Arridge, “Recent advances in diffuse optical imaging,” Phys. Med. Biol. 50, R1–R43 (2005).
[Crossref] [PubMed]

G. Zacharakis, H. Kambara, H. Shih, J. Ripoll, J. Grimm, Y. Saeki, R. Weissleder, and V. Ntziachristos, “Volumetric tomography of fluorescent proteins through small animals in vivo,” PNAS 102, 18252–18257 (2005).
[Crossref] [PubMed]

R. Choe, A. Corlu, K. Lee, T. Durduran, S. D. Konecky, M. Grosicka-Koptyra, S. R. Arridge, B. J. Czerniecki, D. L. Fraker, A. DeMichele, B. Chance, M. A. Rosen, and A. G. Yodh, “Diffuse optical tomography of breast cancer during neoadjuvant chemotherapy: A case study with comparison to MRI,” Med. Phys. 32, 1128–1139 (2005).
[Crossref] [PubMed]

B. Brooksby, S. Srinivasan, S. Jiang, H. Dehghani, B. W. Pogue, K. D. Paulsen, J. Weaver, C. Kogel, and S. P. Poplack, “Spectral-prior information improves Near-Infrared diffuse tomography more than spatial-prior,” Opt. Lett. 30, 1968–1970 (2005).
[Crossref] [PubMed]

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, and K. D. Paulsen, “Spectrally Constrained Chromophore and Scattering NIR Tomography Provides Quantitative and Robust Reconstruction,” Appl. Opt. 44, 1858–1869 (2005).
[Crossref] [PubMed]

2004 (3)

2003 (6)

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Interpreting Hemoglobin and Water Concentration, Oxygen Saturation and Scattering Measured In Vivo by Near-Infrared Breast Tomography,” PNAS 100, 12349–12354 (2003).
[Crossref] [PubMed]

H. Dehghani, B. W. Pogue, S. P. Poplack, and K. D. Paulsen, “Multiwavelength Three-Dimensional Near-Infrared Tomography of the Breast: Initial Simulation, Phantom, and Clinical Results,” Appl. Opt. 42, 135–145 (2003).
[Crossref] [PubMed]

H. Xu, H. Dehghani, B. W. Pogue, R. Springett, K. D. Paulsen, and J. Dunn, “Near-infrared imaging in the small animal brain: optimization of fiber positions,” J. Biomed. Opt. 8, 102–110 (2003).
[Crossref] [PubMed]

M. A. Franceschini, S. Fantini, J. J. Thompson, J. P. Culver, and D. A. Boas, “Hemodynamic evoked response of the sensorimotor cortex measured noninvasively with near-infrared optical imaging,” Psychophysiology 40, 548–560 (2003).
[Crossref] [PubMed]

H. Dehghani, B. W. Pogue, S. Jiang, B. Brooksby, and K. D. Paulsen, “Three Dimensional Optical Tomography: Resolution in Small Object Imaging,” Appl. Opt. 42, 3117–3128 (2003).
[Crossref] [PubMed]

T. O. McBride, B. W. Pogue, U. L. Osterberg, and K. D. Paulsen, “Strategies for absolute calibration of near infrared tomographic tissue imaging,” Oxygen Transport to Tissue XXIV, 85–99 (2003).
[Crossref]

2002 (1)

M. J. Eppstein, D. J. Hawrysz, A. Godavarty, and E. M. Sevick-Muraca, “Three-dimensional, Baysian image reconstruction from sparse and noisy data sets: Near-infrared fluorescence tomography,” PNAS 99, 9619–9624 (2002).
[Crossref] [PubMed]

2001 (4)

A. H. Hielscher and S. Bartel, “Use of penalty terms in gradient-based iterative reconstruction schemes for optical tomography,” J. Biomed. Opt. 6, 183–192 (2001).
[Crossref] [PubMed]

T. O. McBride, B. W. Pogue, S. Jiang, U. L. Osterberg, and K. D. Paulsen, “Development and Calibration of a Parallel Modulated Near-Infrared Tomography System for Hemoglobin Imaging In Vivo,” Rev. Sci. Instrum. 72, 1817–1824 (2001).
[Crossref]

A. Torricelli, A. Pifferi, A. Taroni, E. Giambattistelli, and R. Cubeddu, “In vivo optical characterization of human tissues from 610 to 1010 nm by time-resolved reflectance spectroscopy,” Phys. Med. Biol.  46, 2227–2237 (2001).
[Crossref] [PubMed]

N. Shah, A. Cerussi, C. Eker, J. Espinoza, J. Butler, J. Fishkin, R. Hornung, and B. Tromberg, “Non-invasive functional optical spectroscopy of human breast tissue,” PNAS 98, 4420–4425 (2001).
[Crossref] [PubMed]

2000 (1)

B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, and J. Butler, “Noninvasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia (New York)  2, 26–40 (2000).
[Crossref] [PubMed]

1999 (1)

S. R. Arridge, “Optical tomography in medical imaging,” Inverse Prob. 15, R41–R93 (1999).
[Crossref]

1998 (3)

1997 (4)

1995 (1)

1989 (1)

Arridge, S. R.

A. P. Gibson, J. C. Hebden, and S. R. Arridge, “Recent advances in diffuse optical imaging,” Phys. Med. Biol. 50, R1–R43 (2005).
[Crossref] [PubMed]

R. Choe, A. Corlu, K. Lee, T. Durduran, S. D. Konecky, M. Grosicka-Koptyra, S. R. Arridge, B. J. Czerniecki, D. L. Fraker, A. DeMichele, B. Chance, M. A. Rosen, and A. G. Yodh, “Diffuse optical tomography of breast cancer during neoadjuvant chemotherapy: A case study with comparison to MRI,” Med. Phys. 32, 1128–1139 (2005).
[Crossref] [PubMed]

A. Corlu, R. Choe, T. Durduran, K. Lee, M. Schweiger, S. R. Arridge, E. M. C. Hillman, and A. G. Yodh, “Diffuse optical tomography with spectral constraints and wavelength optimization,” Appl. Opt. 44, 2082–2093 (2005).
[Crossref] [PubMed]

J. C. Hebden, A. Gibson, T. Austin, R. Yusof, N. Everdell, D. T. Delpy, S. R. Arridge, J. H. Meek, and J. S. Wyatt, “Imaging changes in blood volume and oxygenation in the newborn infant brain using threedimensional optical tomography,” Phys. Med. Biol. 49, 1117–1130 (2004).
[Crossref] [PubMed]

S. R. Arridge, “Optical tomography in medical imaging,” Inverse Prob. 15, R41–R93 (1999).
[Crossref]

S. R. Arridge and W. R. B. Lionheart, “Nonuniqueness in diffusion-based optical tomography,” Opt. Lett. 23, 882–884 (1998).
[Crossref]

J. C. Hebden, S. R. Arridge, and D. T. Delpy, “Optical imaging in medicine: I. Experimental techniques,” Phys. Med. Biol. 42, 825–840 (1997).
[Crossref] [PubMed]

S. R. Arridge and M. Schweiger, “Photon-measurement density functions. Part2: Finite-element-method calculations,” Appl. Opt. 34, 8026–8037 (1995).
[Crossref] [PubMed]

Austin, T.

J. C. Hebden, A. Gibson, T. Austin, R. Yusof, N. Everdell, D. T. Delpy, S. R. Arridge, J. H. Meek, and J. S. Wyatt, “Imaging changes in blood volume and oxygenation in the newborn infant brain using threedimensional optical tomography,” Phys. Med. Biol. 49, 1117–1130 (2004).
[Crossref] [PubMed]

Barbour, R. L.

Bartel, S.

A. H. Hielscher and S. Bartel, “Use of penalty terms in gradient-based iterative reconstruction schemes for optical tomography,” J. Biomed. Opt. 6, 183–192 (2001).
[Crossref] [PubMed]

Bigio, I. J.

Boas, D. A.

G. Boverman, Q. Fang, S. A. Carp, E. L. Miller, D. H. Brooks, J. Selb, R. H. Moore, D. B. Kopans, and D. A. Boas, “Spatio-temporal imaging of the hemoglobin in the compressed breast with diffuse optical tomography,” Phys. Med. Biol. 52, 3619–3641 (2007).
[Crossref] [PubMed]

D. A. Boas, K. Chen, D. Grebert, and M. A. Franceschini, “Improving the diffuse optical imaging spatial resolution of the cerebral hemodynamic response to brain activation in humans,” Opt. Lett. 29, 1506–1508 (2004).
[Crossref] [PubMed]

A. Li, Q. Zhang, J. P. Culver, E. L. Miller, and D. A. Boas, “Reconstructing chromosphere concentration images directly by continuous-wave diffuse optical tomography,” Opt. Lett. 29, 256–258 (2004).
[Crossref] [PubMed]

M. A. Franceschini, S. Fantini, J. J. Thompson, J. P. Culver, and D. A. Boas, “Hemodynamic evoked response of the sensorimotor cortex measured noninvasively with near-infrared optical imaging,” Psychophysiology 40, 548–560 (2003).
[Crossref] [PubMed]

Boverman, G.

G. Boverman, Q. Fang, S. A. Carp, E. L. Miller, D. H. Brooks, J. Selb, R. H. Moore, D. B. Kopans, and D. A. Boas, “Spatio-temporal imaging of the hemoglobin in the compressed breast with diffuse optical tomography,” Phys. Med. Biol. 52, 3619–3641 (2007).
[Crossref] [PubMed]

Boyer, J.

Brooks, D. H.

G. Boverman, Q. Fang, S. A. Carp, E. L. Miller, D. H. Brooks, J. Selb, R. H. Moore, D. B. Kopans, and D. A. Boas, “Spatio-temporal imaging of the hemoglobin in the compressed breast with diffuse optical tomography,” Phys. Med. Biol. 52, 3619–3641 (2007).
[Crossref] [PubMed]

Brooksby, B.

Brooksby, B. A.

X. Wang, B. W. Pogue, S. Jiang, H. Dehghani, X. Song, S. Srinivasan, B. A. Brooksby, K. D. Paulsen, C. Kogel, S. P. Poplack, and W. A. Wells, “Image reconstruction of effective Mie scattering parameters of breast tissue in vivo with near-infrared tomography,” J. Biomed. Opt. 11, 041106 (2006).
[Crossref] [PubMed]

Butler, J.

N. Shah, A. Cerussi, C. Eker, J. Espinoza, J. Butler, J. Fishkin, R. Hornung, and B. Tromberg, “Non-invasive functional optical spectroscopy of human breast tissue,” PNAS 98, 4420–4425 (2001).
[Crossref] [PubMed]

B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, and J. Butler, “Noninvasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia (New York)  2, 26–40 (2000).
[Crossref] [PubMed]

C. B.,

Carp, S. A.

G. Boverman, Q. Fang, S. A. Carp, E. L. Miller, D. H. Brooks, J. Selb, R. H. Moore, D. B. Kopans, and D. A. Boas, “Spatio-temporal imaging of the hemoglobin in the compressed breast with diffuse optical tomography,” Phys. Med. Biol. 52, 3619–3641 (2007).
[Crossref] [PubMed]

Carpenter, C. M.

H. Dehghani, M. E. Eames, P. K. Yalavarthy, S. C. Davis, S. Srinivasan, C. M. Carpenter, B. W. Pogue, and K. D. Paulsen, “Near Infrared Optical Tomography using NIRFAST: Algorithms for Numerical Model and Image Reconstruction Algorithms,” Communications in Numerical Methods in Engineering In Press (2008).

Cerussi, A.

N. Shah, A. Cerussi, C. Eker, J. Espinoza, J. Butler, J. Fishkin, R. Hornung, and B. Tromberg, “Non-invasive functional optical spectroscopy of human breast tissue,” PNAS 98, 4420–4425 (2001).
[Crossref] [PubMed]

B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, and J. Butler, “Noninvasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia (New York)  2, 26–40 (2000).
[Crossref] [PubMed]

Chance,

V. Ntziachristos, X. H. Ma, B. Chance, and Chance, “Time-correlated single photon counting imager for simultaneous magnetic resonance and near-infrared mammography,” Rev. Sci. Instrum. 69, 4221–4233 (1998).
[Crossref]

Chance, B.

R. Choe, A. Corlu, K. Lee, T. Durduran, S. D. Konecky, M. Grosicka-Koptyra, S. R. Arridge, B. J. Czerniecki, D. L. Fraker, A. DeMichele, B. Chance, M. A. Rosen, and A. G. Yodh, “Diffuse optical tomography of breast cancer during neoadjuvant chemotherapy: A case study with comparison to MRI,” Med. Phys. 32, 1128–1139 (2005).
[Crossref] [PubMed]

V. Ntziachristos, X. H. Ma, B. Chance, and Chance, “Time-correlated single photon counting imager for simultaneous magnetic resonance and near-infrared mammography,” Rev. Sci. Instrum. 69, 4221–4233 (1998).
[Crossref]

Chang, J.

Chen, K.

Choe, R.

R. Choe, A. Corlu, K. Lee, T. Durduran, S. D. Konecky, M. Grosicka-Koptyra, S. R. Arridge, B. J. Czerniecki, D. L. Fraker, A. DeMichele, B. Chance, M. A. Rosen, and A. G. Yodh, “Diffuse optical tomography of breast cancer during neoadjuvant chemotherapy: A case study with comparison to MRI,” Med. Phys. 32, 1128–1139 (2005).
[Crossref] [PubMed]

A. Corlu, R. Choe, T. Durduran, K. Lee, M. Schweiger, S. R. Arridge, E. M. C. Hillman, and A. G. Yodh, “Diffuse optical tomography with spectral constraints and wavelength optimization,” Appl. Opt. 44, 2082–2093 (2005).
[Crossref] [PubMed]

Corlu, A.

A. Corlu, R. Choe, T. Durduran, K. Lee, M. Schweiger, S. R. Arridge, E. M. C. Hillman, and A. G. Yodh, “Diffuse optical tomography with spectral constraints and wavelength optimization,” Appl. Opt. 44, 2082–2093 (2005).
[Crossref] [PubMed]

R. Choe, A. Corlu, K. Lee, T. Durduran, S. D. Konecky, M. Grosicka-Koptyra, S. R. Arridge, B. J. Czerniecki, D. L. Fraker, A. DeMichele, B. Chance, M. A. Rosen, and A. G. Yodh, “Diffuse optical tomography of breast cancer during neoadjuvant chemotherapy: A case study with comparison to MRI,” Med. Phys. 32, 1128–1139 (2005).
[Crossref] [PubMed]

Cubeddu, R.

A. Torricelli, A. Pifferi, A. Taroni, E. Giambattistelli, and R. Cubeddu, “In vivo optical characterization of human tissues from 610 to 1010 nm by time-resolved reflectance spectroscopy,” Phys. Med. Biol.  46, 2227–2237 (2001).
[Crossref] [PubMed]

Culver, J. P.

B. W. Zeff, B. R. White, H. Dehghani, B. L. Schlaggar, and J. P. Culver, “Retinotopic mapping of adult human visual cortex with high-density diffuse optical tomography,” PNAS  104, 12169–12174 (2007).
[Crossref] [PubMed]

A. Li, Q. Zhang, J. P. Culver, E. L. Miller, and D. A. Boas, “Reconstructing chromosphere concentration images directly by continuous-wave diffuse optical tomography,” Opt. Lett. 29, 256–258 (2004).
[Crossref] [PubMed]

M. A. Franceschini, S. Fantini, J. J. Thompson, J. P. Culver, and D. A. Boas, “Hemodynamic evoked response of the sensorimotor cortex measured noninvasively with near-infrared optical imaging,” Psychophysiology 40, 548–560 (2003).
[Crossref] [PubMed]

Czerniecki, B. J.

R. Choe, A. Corlu, K. Lee, T. Durduran, S. D. Konecky, M. Grosicka-Koptyra, S. R. Arridge, B. J. Czerniecki, D. L. Fraker, A. DeMichele, B. Chance, M. A. Rosen, and A. G. Yodh, “Diffuse optical tomography of breast cancer during neoadjuvant chemotherapy: A case study with comparison to MRI,” Med. Phys. 32, 1128–1139 (2005).
[Crossref] [PubMed]

Davis, S. C.

S. C. Davis, H. Dehghani, J. Wang, S. Jiang, B. W. Pogue, and K. D. Paulsen, “Image-guided diffuse optical fluorescence tomography implemented with Laplacian-type regularization,” Opt. Express 15, 4066–4082 (2007).
[Crossref] [PubMed]

H. Dehghani, M. E. Eames, P. K. Yalavarthy, S. C. Davis, S. Srinivasan, C. M. Carpenter, B. W. Pogue, and K. D. Paulsen, “Near Infrared Optical Tomography using NIRFAST: Algorithms for Numerical Model and Image Reconstruction Algorithms,” Communications in Numerical Methods in Engineering In Press (2008).

J. Wang, S. C. Davis, S. Srinivasan, S. Jiang, B. W. Pogue, and K. D. Paulsen, “Spectral tomography with diffuse near-infrared light: inclusion of broadband frequency domain spectral data,” J. Biomed. Opt.13 (2008).
[Crossref] [PubMed]

Dehghani, H.

S. C. Davis, H. Dehghani, J. Wang, S. Jiang, B. W. Pogue, and K. D. Paulsen, “Image-guided diffuse optical fluorescence tomography implemented with Laplacian-type regularization,” Opt. Express 15, 4066–4082 (2007).
[Crossref] [PubMed]

M. E. Eames, B. W. Pogue, P. K. Yalavarthy, and H. Dehghani, “An efficient Jacobian reduction method for diffuse optical image reconstruction,” Opt. Express 15, 15908–15919 (2007).
[Crossref] [PubMed]

B. W. Zeff, B. R. White, H. Dehghani, B. L. Schlaggar, and J. P. Culver, “Retinotopic mapping of adult human visual cortex with high-density diffuse optical tomography,” PNAS  104, 12169–12174 (2007).
[Crossref] [PubMed]

X. Wang, B. W. Pogue, S. Jiang, H. Dehghani, X. Song, S. Srinivasan, B. A. Brooksby, K. D. Paulsen, C. Kogel, S. P. Poplack, and W. A. Wells, “Image reconstruction of effective Mie scattering parameters of breast tissue in vivo with near-infrared tomography,” J. Biomed. Opt. 11, 041106 (2006).
[Crossref] [PubMed]

P. K. Yalavarthy, H. Dehghani, B. W. Pogue, and K. D. Paulsen, “Critical computational aspects of near infrared circular tomographic imaging: Analysis of measurement number, mesh resolution and reconstruction basis,” Opt. Express 14, 6113–6127 (2006).
[Crossref] [PubMed]

B. Brooksby, S. Srinivasan, S. Jiang, H. Dehghani, B. W. Pogue, K. D. Paulsen, J. Weaver, C. Kogel, and S. P. Poplack, “Spectral-prior information improves Near-Infrared diffuse tomography more than spatial-prior,” Opt. Lett. 30, 1968–1970 (2005).
[Crossref] [PubMed]

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, and K. D. Paulsen, “Spectrally Constrained Chromophore and Scattering NIR Tomography Provides Quantitative and Robust Reconstruction,” Appl. Opt. 44, 1858–1869 (2005).
[Crossref] [PubMed]

S. Srinivasan, B. W. Pogue, B. Brooksby, S. Jiang, H. Dehghani, C. Kogel, S. P. Poplack, and K. D. Paulsen, “Near-Infrared Characterization of Breast Tumors In Vivo using Spectrally-Constrained Reconstruction,” Technol. Cancer Res. Treat. 5, 513–526 (2005).

H. Xu, R. Springett, H. Dehghani, B. W. Pogue, K. D. Paulsen, and J. F. Dunn, “MRI coupled Broadband Near Infrared Tomography System for Small Animal Brain Studies,” Appl. Opt. 44, 2177–2188 (2005).
[Crossref] [PubMed]

H. Dehghani, B. W. Pogue, S. Jiang, B. Brooksby, and K. D. Paulsen, “Three Dimensional Optical Tomography: Resolution in Small Object Imaging,” Appl. Opt. 42, 3117–3128 (2003).
[Crossref] [PubMed]

H. Dehghani, B. W. Pogue, S. P. Poplack, and K. D. Paulsen, “Multiwavelength Three-Dimensional Near-Infrared Tomography of the Breast: Initial Simulation, Phantom, and Clinical Results,” Appl. Opt. 42, 135–145 (2003).
[Crossref] [PubMed]

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Interpreting Hemoglobin and Water Concentration, Oxygen Saturation and Scattering Measured In Vivo by Near-Infrared Breast Tomography,” PNAS 100, 12349–12354 (2003).
[Crossref] [PubMed]

H. Xu, H. Dehghani, B. W. Pogue, R. Springett, K. D. Paulsen, and J. Dunn, “Near-infrared imaging in the small animal brain: optimization of fiber positions,” J. Biomed. Opt. 8, 102–110 (2003).
[Crossref] [PubMed]

H. Dehghani, M. E. Eames, P. K. Yalavarthy, S. C. Davis, S. Srinivasan, C. M. Carpenter, B. W. Pogue, and K. D. Paulsen, “Near Infrared Optical Tomography using NIRFAST: Algorithms for Numerical Model and Image Reconstruction Algorithms,” Communications in Numerical Methods in Engineering In Press (2008).

M. E. Eames, J. Wang, B. W. Pogue, and H. Dehghani, “Wavelength Band Optimisation in Spectral Near-Infrared Optical Tomography Improves Accuracy While Reducing Data Acquisition and Computational Burdon,” J. Biomed. Opt. In Press (2008).
[Crossref]

Delpy, D. T.

J. C. Hebden, A. Gibson, T. Austin, R. Yusof, N. Everdell, D. T. Delpy, S. R. Arridge, J. H. Meek, and J. S. Wyatt, “Imaging changes in blood volume and oxygenation in the newborn infant brain using threedimensional optical tomography,” Phys. Med. Biol. 49, 1117–1130 (2004).
[Crossref] [PubMed]

J. C. Hebden, S. R. Arridge, and D. T. Delpy, “Optical imaging in medicine: I. Experimental techniques,” Phys. Med. Biol. 42, 825–840 (1997).
[Crossref] [PubMed]

DeMichele, A.

R. Choe, A. Corlu, K. Lee, T. Durduran, S. D. Konecky, M. Grosicka-Koptyra, S. R. Arridge, B. J. Czerniecki, D. L. Fraker, A. DeMichele, B. Chance, M. A. Rosen, and A. G. Yodh, “Diffuse optical tomography of breast cancer during neoadjuvant chemotherapy: A case study with comparison to MRI,” Med. Phys. 32, 1128–1139 (2005).
[Crossref] [PubMed]

Dunn, J.

H. Xu, H. Dehghani, B. W. Pogue, R. Springett, K. D. Paulsen, and J. Dunn, “Near-infrared imaging in the small animal brain: optimization of fiber positions,” J. Biomed. Opt. 8, 102–110 (2003).
[Crossref] [PubMed]

Dunn, J. F.

Durduran, T.

R. Choe, A. Corlu, K. Lee, T. Durduran, S. D. Konecky, M. Grosicka-Koptyra, S. R. Arridge, B. J. Czerniecki, D. L. Fraker, A. DeMichele, B. Chance, M. A. Rosen, and A. G. Yodh, “Diffuse optical tomography of breast cancer during neoadjuvant chemotherapy: A case study with comparison to MRI,” Med. Phys. 32, 1128–1139 (2005).
[Crossref] [PubMed]

A. Corlu, R. Choe, T. Durduran, K. Lee, M. Schweiger, S. R. Arridge, E. M. C. Hillman, and A. G. Yodh, “Diffuse optical tomography with spectral constraints and wavelength optimization,” Appl. Opt. 44, 2082–2093 (2005).
[Crossref] [PubMed]

Eames, M. E.

M. E. Eames, B. W. Pogue, P. K. Yalavarthy, and H. Dehghani, “An efficient Jacobian reduction method for diffuse optical image reconstruction,” Opt. Express 15, 15908–15919 (2007).
[Crossref] [PubMed]

M. E. Eames, J. Wang, B. W. Pogue, and H. Dehghani, “Wavelength Band Optimisation in Spectral Near-Infrared Optical Tomography Improves Accuracy While Reducing Data Acquisition and Computational Burdon,” J. Biomed. Opt. In Press (2008).
[Crossref]

H. Dehghani, M. E. Eames, P. K. Yalavarthy, S. C. Davis, S. Srinivasan, C. M. Carpenter, B. W. Pogue, and K. D. Paulsen, “Near Infrared Optical Tomography using NIRFAST: Algorithms for Numerical Model and Image Reconstruction Algorithms,” Communications in Numerical Methods in Engineering In Press (2008).

Eker, C.

N. Shah, A. Cerussi, C. Eker, J. Espinoza, J. Butler, J. Fishkin, R. Hornung, and B. Tromberg, “Non-invasive functional optical spectroscopy of human breast tissue,” PNAS 98, 4420–4425 (2001).
[Crossref] [PubMed]

Eppstein, M. J.

M. J. Eppstein, D. J. Hawrysz, A. Godavarty, and E. M. Sevick-Muraca, “Three-dimensional, Baysian image reconstruction from sparse and noisy data sets: Near-infrared fluorescence tomography,” PNAS 99, 9619–9624 (2002).
[Crossref] [PubMed]

Espinoza, J.

N. Shah, A. Cerussi, C. Eker, J. Espinoza, J. Butler, J. Fishkin, R. Hornung, and B. Tromberg, “Non-invasive functional optical spectroscopy of human breast tissue,” PNAS 98, 4420–4425 (2001).
[Crossref] [PubMed]

B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, and J. Butler, “Noninvasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia (New York)  2, 26–40 (2000).
[Crossref] [PubMed]

Everdell, N.

J. C. Hebden, A. Gibson, T. Austin, R. Yusof, N. Everdell, D. T. Delpy, S. R. Arridge, J. H. Meek, and J. S. Wyatt, “Imaging changes in blood volume and oxygenation in the newborn infant brain using threedimensional optical tomography,” Phys. Med. Biol. 49, 1117–1130 (2004).
[Crossref] [PubMed]

Fang, Q.

G. Boverman, Q. Fang, S. A. Carp, E. L. Miller, D. H. Brooks, J. Selb, R. H. Moore, D. B. Kopans, and D. A. Boas, “Spatio-temporal imaging of the hemoglobin in the compressed breast with diffuse optical tomography,” Phys. Med. Biol. 52, 3619–3641 (2007).
[Crossref] [PubMed]

Fantini, S.

M. A. Franceschini, S. Fantini, J. J. Thompson, J. P. Culver, and D. A. Boas, “Hemodynamic evoked response of the sensorimotor cortex measured noninvasively with near-infrared optical imaging,” Psychophysiology 40, 548–560 (2003).
[Crossref] [PubMed]

M. A. Franceschini, S. Fantini, L. A. Paunescu, J. S. Maier, and E. Gratton, “Influence of a superficial layer in the quantitative spectroscopic study of strongly scattering media,” Appl. Opt. 37, 7447–7458 (1998).
[Crossref]

Fishkin, J.

N. Shah, A. Cerussi, C. Eker, J. Espinoza, J. Butler, J. Fishkin, R. Hornung, and B. Tromberg, “Non-invasive functional optical spectroscopy of human breast tissue,” PNAS 98, 4420–4425 (2001).
[Crossref] [PubMed]

Fraker, D. L.

R. Choe, A. Corlu, K. Lee, T. Durduran, S. D. Konecky, M. Grosicka-Koptyra, S. R. Arridge, B. J. Czerniecki, D. L. Fraker, A. DeMichele, B. Chance, M. A. Rosen, and A. G. Yodh, “Diffuse optical tomography of breast cancer during neoadjuvant chemotherapy: A case study with comparison to MRI,” Med. Phys. 32, 1128–1139 (2005).
[Crossref] [PubMed]

Franceschini, M. A.

Fuselier, T.

Giambattistelli, E.

A. Torricelli, A. Pifferi, A. Taroni, E. Giambattistelli, and R. Cubeddu, “In vivo optical characterization of human tissues from 610 to 1010 nm by time-resolved reflectance spectroscopy,” Phys. Med. Biol.  46, 2227–2237 (2001).
[Crossref] [PubMed]

Gibson, A.

J. C. Hebden, A. Gibson, T. Austin, R. Yusof, N. Everdell, D. T. Delpy, S. R. Arridge, J. H. Meek, and J. S. Wyatt, “Imaging changes in blood volume and oxygenation in the newborn infant brain using threedimensional optical tomography,” Phys. Med. Biol. 49, 1117–1130 (2004).
[Crossref] [PubMed]

Gibson, A. P.

A. P. Gibson, J. C. Hebden, and S. R. Arridge, “Recent advances in diffuse optical imaging,” Phys. Med. Biol. 50, R1–R43 (2005).
[Crossref] [PubMed]

Gibson, J. J.

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Interpreting Hemoglobin and Water Concentration, Oxygen Saturation and Scattering Measured In Vivo by Near-Infrared Breast Tomography,” PNAS 100, 12349–12354 (2003).
[Crossref] [PubMed]

Godavarty, A.

M. J. Eppstein, D. J. Hawrysz, A. Godavarty, and E. M. Sevick-Muraca, “Three-dimensional, Baysian image reconstruction from sparse and noisy data sets: Near-infrared fluorescence tomography,” PNAS 99, 9619–9624 (2002).
[Crossref] [PubMed]

Graber, H. L.

Gratton, E.

Grebert, D.

Grimm, J.

G. Zacharakis, H. Kambara, H. Shih, J. Ripoll, J. Grimm, Y. Saeki, R. Weissleder, and V. Ntziachristos, “Volumetric tomography of fluorescent proteins through small animals in vivo,” PNAS 102, 18252–18257 (2005).
[Crossref] [PubMed]

Grosicka-Koptyra, M.

R. Choe, A. Corlu, K. Lee, T. Durduran, S. D. Konecky, M. Grosicka-Koptyra, S. R. Arridge, B. J. Czerniecki, D. L. Fraker, A. DeMichele, B. Chance, M. A. Rosen, and A. G. Yodh, “Diffuse optical tomography of breast cancer during neoadjuvant chemotherapy: A case study with comparison to MRI,” Med. Phys. 32, 1128–1139 (2005).
[Crossref] [PubMed]

Hawrysz, D. J.

M. J. Eppstein, D. J. Hawrysz, A. Godavarty, and E. M. Sevick-Muraca, “Three-dimensional, Baysian image reconstruction from sparse and noisy data sets: Near-infrared fluorescence tomography,” PNAS 99, 9619–9624 (2002).
[Crossref] [PubMed]

Hebden, J. C.

A. P. Gibson, J. C. Hebden, and S. R. Arridge, “Recent advances in diffuse optical imaging,” Phys. Med. Biol. 50, R1–R43 (2005).
[Crossref] [PubMed]

J. C. Hebden, A. Gibson, T. Austin, R. Yusof, N. Everdell, D. T. Delpy, S. R. Arridge, J. H. Meek, and J. S. Wyatt, “Imaging changes in blood volume and oxygenation in the newborn infant brain using threedimensional optical tomography,” Phys. Med. Biol. 49, 1117–1130 (2004).
[Crossref] [PubMed]

J. C. Hebden, S. R. Arridge, and D. T. Delpy, “Optical imaging in medicine: I. Experimental techniques,” Phys. Med. Biol. 42, 825–840 (1997).
[Crossref] [PubMed]

Hielscher, A. H.

A. H. Hielscher and S. Bartel, “Use of penalty terms in gradient-based iterative reconstruction schemes for optical tomography,” J. Biomed. Opt. 6, 183–192 (2001).
[Crossref] [PubMed]

Hillman, E. M. C.

Hornung, R.

N. Shah, A. Cerussi, C. Eker, J. Espinoza, J. Butler, J. Fishkin, R. Hornung, and B. Tromberg, “Non-invasive functional optical spectroscopy of human breast tissue,” PNAS 98, 4420–4425 (2001).
[Crossref] [PubMed]

Jiang, H. B.

Jiang, S.

S. C. Davis, H. Dehghani, J. Wang, S. Jiang, B. W. Pogue, and K. D. Paulsen, “Image-guided diffuse optical fluorescence tomography implemented with Laplacian-type regularization,” Opt. Express 15, 4066–4082 (2007).
[Crossref] [PubMed]

X. Wang, B. W. Pogue, S. Jiang, H. Dehghani, X. Song, S. Srinivasan, B. A. Brooksby, K. D. Paulsen, C. Kogel, S. P. Poplack, and W. A. Wells, “Image reconstruction of effective Mie scattering parameters of breast tissue in vivo with near-infrared tomography,” J. Biomed. Opt. 11, 041106 (2006).
[Crossref] [PubMed]

S. Srinivasan, B. W. Pogue, B. Brooksby, S. Jiang, H. Dehghani, C. Kogel, S. P. Poplack, and K. D. Paulsen, “Near-Infrared Characterization of Breast Tumors In Vivo using Spectrally-Constrained Reconstruction,” Technol. Cancer Res. Treat. 5, 513–526 (2005).

B. Brooksby, S. Srinivasan, S. Jiang, H. Dehghani, B. W. Pogue, K. D. Paulsen, J. Weaver, C. Kogel, and S. P. Poplack, “Spectral-prior information improves Near-Infrared diffuse tomography more than spatial-prior,” Opt. Lett. 30, 1968–1970 (2005).
[Crossref] [PubMed]

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, and K. D. Paulsen, “Spectrally Constrained Chromophore and Scattering NIR Tomography Provides Quantitative and Robust Reconstruction,” Appl. Opt. 44, 1858–1869 (2005).
[Crossref] [PubMed]

H. Dehghani, B. W. Pogue, S. Jiang, B. Brooksby, and K. D. Paulsen, “Three Dimensional Optical Tomography: Resolution in Small Object Imaging,” Appl. Opt. 42, 3117–3128 (2003).
[Crossref] [PubMed]

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Interpreting Hemoglobin and Water Concentration, Oxygen Saturation and Scattering Measured In Vivo by Near-Infrared Breast Tomography,” PNAS 100, 12349–12354 (2003).
[Crossref] [PubMed]

T. O. McBride, B. W. Pogue, S. Jiang, U. L. Osterberg, and K. D. Paulsen, “Development and Calibration of a Parallel Modulated Near-Infrared Tomography System for Hemoglobin Imaging In Vivo,” Rev. Sci. Instrum. 72, 1817–1824 (2001).
[Crossref]

J. Wang, S. C. Davis, S. Srinivasan, S. Jiang, B. W. Pogue, and K. D. Paulsen, “Spectral tomography with diffuse near-infrared light: inclusion of broadband frequency domain spectral data,” J. Biomed. Opt.13 (2008).
[Crossref] [PubMed]

Johnson, T. M.

Kambara, H.

G. Zacharakis, H. Kambara, H. Shih, J. Ripoll, J. Grimm, Y. Saeki, R. Weissleder, and V. Ntziachristos, “Volumetric tomography of fluorescent proteins through small animals in vivo,” PNAS 102, 18252–18257 (2005).
[Crossref] [PubMed]

Kogel, C.

X. Wang, B. W. Pogue, S. Jiang, H. Dehghani, X. Song, S. Srinivasan, B. A. Brooksby, K. D. Paulsen, C. Kogel, S. P. Poplack, and W. A. Wells, “Image reconstruction of effective Mie scattering parameters of breast tissue in vivo with near-infrared tomography,” J. Biomed. Opt. 11, 041106 (2006).
[Crossref] [PubMed]

S. Srinivasan, B. W. Pogue, B. Brooksby, S. Jiang, H. Dehghani, C. Kogel, S. P. Poplack, and K. D. Paulsen, “Near-Infrared Characterization of Breast Tumors In Vivo using Spectrally-Constrained Reconstruction,” Technol. Cancer Res. Treat. 5, 513–526 (2005).

B. Brooksby, S. Srinivasan, S. Jiang, H. Dehghani, B. W. Pogue, K. D. Paulsen, J. Weaver, C. Kogel, and S. P. Poplack, “Spectral-prior information improves Near-Infrared diffuse tomography more than spatial-prior,” Opt. Lett. 30, 1968–1970 (2005).
[Crossref] [PubMed]

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Interpreting Hemoglobin and Water Concentration, Oxygen Saturation and Scattering Measured In Vivo by Near-Infrared Breast Tomography,” PNAS 100, 12349–12354 (2003).
[Crossref] [PubMed]

Konecky, S. D.

R. Choe, A. Corlu, K. Lee, T. Durduran, S. D. Konecky, M. Grosicka-Koptyra, S. R. Arridge, B. J. Czerniecki, D. L. Fraker, A. DeMichele, B. Chance, M. A. Rosen, and A. G. Yodh, “Diffuse optical tomography of breast cancer during neoadjuvant chemotherapy: A case study with comparison to MRI,” Med. Phys. 32, 1128–1139 (2005).
[Crossref] [PubMed]

Kopans, D. B.

G. Boverman, Q. Fang, S. A. Carp, E. L. Miller, D. H. Brooks, J. Selb, R. H. Moore, D. B. Kopans, and D. A. Boas, “Spatio-temporal imaging of the hemoglobin in the compressed breast with diffuse optical tomography,” Phys. Med. Biol. 52, 3619–3641 (2007).
[Crossref] [PubMed]

Lanning, R.

B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, and J. Butler, “Noninvasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia (New York)  2, 26–40 (2000).
[Crossref] [PubMed]

Lee, K.

A. Corlu, R. Choe, T. Durduran, K. Lee, M. Schweiger, S. R. Arridge, E. M. C. Hillman, and A. G. Yodh, “Diffuse optical tomography with spectral constraints and wavelength optimization,” Appl. Opt. 44, 2082–2093 (2005).
[Crossref] [PubMed]

R. Choe, A. Corlu, K. Lee, T. Durduran, S. D. Konecky, M. Grosicka-Koptyra, S. R. Arridge, B. J. Czerniecki, D. L. Fraker, A. DeMichele, B. Chance, M. A. Rosen, and A. G. Yodh, “Diffuse optical tomography of breast cancer during neoadjuvant chemotherapy: A case study with comparison to MRI,” Med. Phys. 32, 1128–1139 (2005).
[Crossref] [PubMed]

Li, A.

Lionheart, W. R. B.

Ma, X. H.

V. Ntziachristos, X. H. Ma, B. Chance, and Chance, “Time-correlated single photon counting imager for simultaneous magnetic resonance and near-infrared mammography,” Rev. Sci. Instrum. 69, 4221–4233 (1998).
[Crossref]

Maier, J. S.

McBride, T. O.

T. O. McBride, B. W. Pogue, U. L. Osterberg, and K. D. Paulsen, “Strategies for absolute calibration of near infrared tomographic tissue imaging,” Oxygen Transport to Tissue XXIV, 85–99 (2003).
[Crossref]

T. O. McBride, B. W. Pogue, S. Jiang, U. L. Osterberg, and K. D. Paulsen, “Development and Calibration of a Parallel Modulated Near-Infrared Tomography System for Hemoglobin Imaging In Vivo,” Rev. Sci. Instrum. 72, 1817–1824 (2001).
[Crossref]

Meek, J. H.

J. C. Hebden, A. Gibson, T. Austin, R. Yusof, N. Everdell, D. T. Delpy, S. R. Arridge, J. H. Meek, and J. S. Wyatt, “Imaging changes in blood volume and oxygenation in the newborn infant brain using threedimensional optical tomography,” Phys. Med. Biol. 49, 1117–1130 (2004).
[Crossref] [PubMed]

Miller, E. L.

G. Boverman, Q. Fang, S. A. Carp, E. L. Miller, D. H. Brooks, J. Selb, R. H. Moore, D. B. Kopans, and D. A. Boas, “Spatio-temporal imaging of the hemoglobin in the compressed breast with diffuse optical tomography,” Phys. Med. Biol. 52, 3619–3641 (2007).
[Crossref] [PubMed]

A. Li, Q. Zhang, J. P. Culver, E. L. Miller, and D. A. Boas, “Reconstructing chromosphere concentration images directly by continuous-wave diffuse optical tomography,” Opt. Lett. 29, 256–258 (2004).
[Crossref] [PubMed]

Moore, R. H.

G. Boverman, Q. Fang, S. A. Carp, E. L. Miller, D. H. Brooks, J. Selb, R. H. Moore, D. B. Kopans, and D. A. Boas, “Spatio-temporal imaging of the hemoglobin in the compressed breast with diffuse optical tomography,” Phys. Med. Biol. 52, 3619–3641 (2007).
[Crossref] [PubMed]

Mourant, J. R.

Ntziachristos, V.

V. Ntziachristos, “Fluorescence Molecular Imaging,” Rev. Biomed. Eng. 8, 1–33 (2006).
[Crossref]

G. Zacharakis, H. Kambara, H. Shih, J. Ripoll, J. Grimm, Y. Saeki, R. Weissleder, and V. Ntziachristos, “Volumetric tomography of fluorescent proteins through small animals in vivo,” PNAS 102, 18252–18257 (2005).
[Crossref] [PubMed]

V. Ntziachristos, X. H. Ma, B. Chance, and Chance, “Time-correlated single photon counting imager for simultaneous magnetic resonance and near-infrared mammography,” Rev. Sci. Instrum. 69, 4221–4233 (1998).
[Crossref]

Osterberg, U. L.

T. O. McBride, B. W. Pogue, U. L. Osterberg, and K. D. Paulsen, “Strategies for absolute calibration of near infrared tomographic tissue imaging,” Oxygen Transport to Tissue XXIV, 85–99 (2003).
[Crossref]

T. O. McBride, B. W. Pogue, S. Jiang, U. L. Osterberg, and K. D. Paulsen, “Development and Calibration of a Parallel Modulated Near-Infrared Tomography System for Hemoglobin Imaging In Vivo,” Rev. Sci. Instrum. 72, 1817–1824 (2001).
[Crossref]

H. B. Jiang, K. D. Paulsen, U. L. Osterberg, and M. S. Patterson, “Frequency-domain optical image reconstruction in turbid media: An experimental study of single-target detectability,” Appl. Opt. 36, 52–63 (1997).
[Crossref] [PubMed]

Patterson, M. S.

Paulsen, K. D.

S. C. Davis, H. Dehghani, J. Wang, S. Jiang, B. W. Pogue, and K. D. Paulsen, “Image-guided diffuse optical fluorescence tomography implemented with Laplacian-type regularization,” Opt. Express 15, 4066–4082 (2007).
[Crossref] [PubMed]

P. K. Yalavarthy, H. Dehghani, B. W. Pogue, and K. D. Paulsen, “Critical computational aspects of near infrared circular tomographic imaging: Analysis of measurement number, mesh resolution and reconstruction basis,” Opt. Express 14, 6113–6127 (2006).
[Crossref] [PubMed]

X. Wang, B. W. Pogue, S. Jiang, H. Dehghani, X. Song, S. Srinivasan, B. A. Brooksby, K. D. Paulsen, C. Kogel, S. P. Poplack, and W. A. Wells, “Image reconstruction of effective Mie scattering parameters of breast tissue in vivo with near-infrared tomography,” J. Biomed. Opt. 11, 041106 (2006).
[Crossref] [PubMed]

H. Xu, R. Springett, H. Dehghani, B. W. Pogue, K. D. Paulsen, and J. F. Dunn, “MRI coupled Broadband Near Infrared Tomography System for Small Animal Brain Studies,” Appl. Opt. 44, 2177–2188 (2005).
[Crossref] [PubMed]

S. Srinivasan, B. W. Pogue, B. Brooksby, S. Jiang, H. Dehghani, C. Kogel, S. P. Poplack, and K. D. Paulsen, “Near-Infrared Characterization of Breast Tumors In Vivo using Spectrally-Constrained Reconstruction,” Technol. Cancer Res. Treat. 5, 513–526 (2005).

B. Brooksby, S. Srinivasan, S. Jiang, H. Dehghani, B. W. Pogue, K. D. Paulsen, J. Weaver, C. Kogel, and S. P. Poplack, “Spectral-prior information improves Near-Infrared diffuse tomography more than spatial-prior,” Opt. Lett. 30, 1968–1970 (2005).
[Crossref] [PubMed]

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, and K. D. Paulsen, “Spectrally Constrained Chromophore and Scattering NIR Tomography Provides Quantitative and Robust Reconstruction,” Appl. Opt. 44, 1858–1869 (2005).
[Crossref] [PubMed]

T. O. McBride, B. W. Pogue, U. L. Osterberg, and K. D. Paulsen, “Strategies for absolute calibration of near infrared tomographic tissue imaging,” Oxygen Transport to Tissue XXIV, 85–99 (2003).
[Crossref]

H. Xu, H. Dehghani, B. W. Pogue, R. Springett, K. D. Paulsen, and J. Dunn, “Near-infrared imaging in the small animal brain: optimization of fiber positions,” J. Biomed. Opt. 8, 102–110 (2003).
[Crossref] [PubMed]

H. Dehghani, B. W. Pogue, S. P. Poplack, and K. D. Paulsen, “Multiwavelength Three-Dimensional Near-Infrared Tomography of the Breast: Initial Simulation, Phantom, and Clinical Results,” Appl. Opt. 42, 135–145 (2003).
[Crossref] [PubMed]

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Interpreting Hemoglobin and Water Concentration, Oxygen Saturation and Scattering Measured In Vivo by Near-Infrared Breast Tomography,” PNAS 100, 12349–12354 (2003).
[Crossref] [PubMed]

H. Dehghani, B. W. Pogue, S. Jiang, B. Brooksby, and K. D. Paulsen, “Three Dimensional Optical Tomography: Resolution in Small Object Imaging,” Appl. Opt. 42, 3117–3128 (2003).
[Crossref] [PubMed]

T. O. McBride, B. W. Pogue, S. Jiang, U. L. Osterberg, and K. D. Paulsen, “Development and Calibration of a Parallel Modulated Near-Infrared Tomography System for Hemoglobin Imaging In Vivo,” Rev. Sci. Instrum. 72, 1817–1824 (2001).
[Crossref]

H. B. Jiang, K. D. Paulsen, U. L. Osterberg, and M. S. Patterson, “Frequency-domain optical image reconstruction in turbid media: An experimental study of single-target detectability,” Appl. Opt. 36, 52–63 (1997).
[Crossref] [PubMed]

H. Dehghani, M. E. Eames, P. K. Yalavarthy, S. C. Davis, S. Srinivasan, C. M. Carpenter, B. W. Pogue, and K. D. Paulsen, “Near Infrared Optical Tomography using NIRFAST: Algorithms for Numerical Model and Image Reconstruction Algorithms,” Communications in Numerical Methods in Engineering In Press (2008).

J. Wang, S. C. Davis, S. Srinivasan, S. Jiang, B. W. Pogue, and K. D. Paulsen, “Spectral tomography with diffuse near-infrared light: inclusion of broadband frequency domain spectral data,” J. Biomed. Opt.13 (2008).
[Crossref] [PubMed]

Paunescu, L. A.

Pham, T.

B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, and J. Butler, “Noninvasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia (New York)  2, 26–40 (2000).
[Crossref] [PubMed]

Pifferi, A.

A. Torricelli, A. Pifferi, A. Taroni, E. Giambattistelli, and R. Cubeddu, “In vivo optical characterization of human tissues from 610 to 1010 nm by time-resolved reflectance spectroscopy,” Phys. Med. Biol.  46, 2227–2237 (2001).
[Crossref] [PubMed]

Pogue, B. W.

S. C. Davis, H. Dehghani, J. Wang, S. Jiang, B. W. Pogue, and K. D. Paulsen, “Image-guided diffuse optical fluorescence tomography implemented with Laplacian-type regularization,” Opt. Express 15, 4066–4082 (2007).
[Crossref] [PubMed]

M. E. Eames, B. W. Pogue, P. K. Yalavarthy, and H. Dehghani, “An efficient Jacobian reduction method for diffuse optical image reconstruction,” Opt. Express 15, 15908–15919 (2007).
[Crossref] [PubMed]

P. K. Yalavarthy, H. Dehghani, B. W. Pogue, and K. D. Paulsen, “Critical computational aspects of near infrared circular tomographic imaging: Analysis of measurement number, mesh resolution and reconstruction basis,” Opt. Express 14, 6113–6127 (2006).
[Crossref] [PubMed]

X. Wang, B. W. Pogue, S. Jiang, H. Dehghani, X. Song, S. Srinivasan, B. A. Brooksby, K. D. Paulsen, C. Kogel, S. P. Poplack, and W. A. Wells, “Image reconstruction of effective Mie scattering parameters of breast tissue in vivo with near-infrared tomography,” J. Biomed. Opt. 11, 041106 (2006).
[Crossref] [PubMed]

S. Srinivasan, B. W. Pogue, B. Brooksby, S. Jiang, H. Dehghani, C. Kogel, S. P. Poplack, and K. D. Paulsen, “Near-Infrared Characterization of Breast Tumors In Vivo using Spectrally-Constrained Reconstruction,” Technol. Cancer Res. Treat. 5, 513–526 (2005).

H. Xu, R. Springett, H. Dehghani, B. W. Pogue, K. D. Paulsen, and J. F. Dunn, “MRI coupled Broadband Near Infrared Tomography System for Small Animal Brain Studies,” Appl. Opt. 44, 2177–2188 (2005).
[Crossref] [PubMed]

B. Brooksby, S. Srinivasan, S. Jiang, H. Dehghani, B. W. Pogue, K. D. Paulsen, J. Weaver, C. Kogel, and S. P. Poplack, “Spectral-prior information improves Near-Infrared diffuse tomography more than spatial-prior,” Opt. Lett. 30, 1968–1970 (2005).
[Crossref] [PubMed]

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, and K. D. Paulsen, “Spectrally Constrained Chromophore and Scattering NIR Tomography Provides Quantitative and Robust Reconstruction,” Appl. Opt. 44, 1858–1869 (2005).
[Crossref] [PubMed]

T. O. McBride, B. W. Pogue, U. L. Osterberg, and K. D. Paulsen, “Strategies for absolute calibration of near infrared tomographic tissue imaging,” Oxygen Transport to Tissue XXIV, 85–99 (2003).
[Crossref]

H. Dehghani, B. W. Pogue, S. Jiang, B. Brooksby, and K. D. Paulsen, “Three Dimensional Optical Tomography: Resolution in Small Object Imaging,” Appl. Opt. 42, 3117–3128 (2003).
[Crossref] [PubMed]

H. Dehghani, B. W. Pogue, S. P. Poplack, and K. D. Paulsen, “Multiwavelength Three-Dimensional Near-Infrared Tomography of the Breast: Initial Simulation, Phantom, and Clinical Results,” Appl. Opt. 42, 135–145 (2003).
[Crossref] [PubMed]

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Interpreting Hemoglobin and Water Concentration, Oxygen Saturation and Scattering Measured In Vivo by Near-Infrared Breast Tomography,” PNAS 100, 12349–12354 (2003).
[Crossref] [PubMed]

H. Xu, H. Dehghani, B. W. Pogue, R. Springett, K. D. Paulsen, and J. Dunn, “Near-infrared imaging in the small animal brain: optimization of fiber positions,” J. Biomed. Opt. 8, 102–110 (2003).
[Crossref] [PubMed]

T. O. McBride, B. W. Pogue, S. Jiang, U. L. Osterberg, and K. D. Paulsen, “Development and Calibration of a Parallel Modulated Near-Infrared Tomography System for Hemoglobin Imaging In Vivo,” Rev. Sci. Instrum. 72, 1817–1824 (2001).
[Crossref]

M. E. Eames, J. Wang, B. W. Pogue, and H. Dehghani, “Wavelength Band Optimisation in Spectral Near-Infrared Optical Tomography Improves Accuracy While Reducing Data Acquisition and Computational Burdon,” J. Biomed. Opt. In Press (2008).
[Crossref]

J. Wang, S. C. Davis, S. Srinivasan, S. Jiang, B. W. Pogue, and K. D. Paulsen, “Spectral tomography with diffuse near-infrared light: inclusion of broadband frequency domain spectral data,” J. Biomed. Opt.13 (2008).
[Crossref] [PubMed]

H. Dehghani, M. E. Eames, P. K. Yalavarthy, S. C. Davis, S. Srinivasan, C. M. Carpenter, B. W. Pogue, and K. D. Paulsen, “Near Infrared Optical Tomography using NIRFAST: Algorithms for Numerical Model and Image Reconstruction Algorithms,” Communications in Numerical Methods in Engineering In Press (2008).

Poplack, S. P.

X. Wang, B. W. Pogue, S. Jiang, H. Dehghani, X. Song, S. Srinivasan, B. A. Brooksby, K. D. Paulsen, C. Kogel, S. P. Poplack, and W. A. Wells, “Image reconstruction of effective Mie scattering parameters of breast tissue in vivo with near-infrared tomography,” J. Biomed. Opt. 11, 041106 (2006).
[Crossref] [PubMed]

S. Srinivasan, B. W. Pogue, B. Brooksby, S. Jiang, H. Dehghani, C. Kogel, S. P. Poplack, and K. D. Paulsen, “Near-Infrared Characterization of Breast Tumors In Vivo using Spectrally-Constrained Reconstruction,” Technol. Cancer Res. Treat. 5, 513–526 (2005).

B. Brooksby, S. Srinivasan, S. Jiang, H. Dehghani, B. W. Pogue, K. D. Paulsen, J. Weaver, C. Kogel, and S. P. Poplack, “Spectral-prior information improves Near-Infrared diffuse tomography more than spatial-prior,” Opt. Lett. 30, 1968–1970 (2005).
[Crossref] [PubMed]

H. Dehghani, B. W. Pogue, S. P. Poplack, and K. D. Paulsen, “Multiwavelength Three-Dimensional Near-Infrared Tomography of the Breast: Initial Simulation, Phantom, and Clinical Results,” Appl. Opt. 42, 135–145 (2003).
[Crossref] [PubMed]

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Interpreting Hemoglobin and Water Concentration, Oxygen Saturation and Scattering Measured In Vivo by Near-Infrared Breast Tomography,” PNAS 100, 12349–12354 (2003).
[Crossref] [PubMed]

Prahl, S.

S. Prahl, http://omlc.ogi.edu/spectra.

Ripoll, J.

G. Zacharakis, H. Kambara, H. Shih, J. Ripoll, J. Grimm, Y. Saeki, R. Weissleder, and V. Ntziachristos, “Volumetric tomography of fluorescent proteins through small animals in vivo,” PNAS 102, 18252–18257 (2005).
[Crossref] [PubMed]

Rosen, M. A.

R. Choe, A. Corlu, K. Lee, T. Durduran, S. D. Konecky, M. Grosicka-Koptyra, S. R. Arridge, B. J. Czerniecki, D. L. Fraker, A. DeMichele, B. Chance, M. A. Rosen, and A. G. Yodh, “Diffuse optical tomography of breast cancer during neoadjuvant chemotherapy: A case study with comparison to MRI,” Med. Phys. 32, 1128–1139 (2005).
[Crossref] [PubMed]

Saeki, Y.

G. Zacharakis, H. Kambara, H. Shih, J. Ripoll, J. Grimm, Y. Saeki, R. Weissleder, and V. Ntziachristos, “Volumetric tomography of fluorescent proteins through small animals in vivo,” PNAS 102, 18252–18257 (2005).
[Crossref] [PubMed]

Schlaggar, B. L.

B. W. Zeff, B. R. White, H. Dehghani, B. L. Schlaggar, and J. P. Culver, “Retinotopic mapping of adult human visual cortex with high-density diffuse optical tomography,” PNAS  104, 12169–12174 (2007).
[Crossref] [PubMed]

Schweiger, M.

Selb, J.

G. Boverman, Q. Fang, S. A. Carp, E. L. Miller, D. H. Brooks, J. Selb, R. H. Moore, D. B. Kopans, and D. A. Boas, “Spatio-temporal imaging of the hemoglobin in the compressed breast with diffuse optical tomography,” Phys. Med. Biol. 52, 3619–3641 (2007).
[Crossref] [PubMed]

Sevick-Muraca, E. M.

M. J. Eppstein, D. J. Hawrysz, A. Godavarty, and E. M. Sevick-Muraca, “Three-dimensional, Baysian image reconstruction from sparse and noisy data sets: Near-infrared fluorescence tomography,” PNAS 99, 9619–9624 (2002).
[Crossref] [PubMed]

Shah, N.

N. Shah, A. Cerussi, C. Eker, J. Espinoza, J. Butler, J. Fishkin, R. Hornung, and B. Tromberg, “Non-invasive functional optical spectroscopy of human breast tissue,” PNAS 98, 4420–4425 (2001).
[Crossref] [PubMed]

B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, and J. Butler, “Noninvasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia (New York)  2, 26–40 (2000).
[Crossref] [PubMed]

Shih, H.

G. Zacharakis, H. Kambara, H. Shih, J. Ripoll, J. Grimm, Y. Saeki, R. Weissleder, and V. Ntziachristos, “Volumetric tomography of fluorescent proteins through small animals in vivo,” PNAS 102, 18252–18257 (2005).
[Crossref] [PubMed]

Soho, S.

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Interpreting Hemoglobin and Water Concentration, Oxygen Saturation and Scattering Measured In Vivo by Near-Infrared Breast Tomography,” PNAS 100, 12349–12354 (2003).
[Crossref] [PubMed]

Song, X.

X. Wang, B. W. Pogue, S. Jiang, H. Dehghani, X. Song, S. Srinivasan, B. A. Brooksby, K. D. Paulsen, C. Kogel, S. P. Poplack, and W. A. Wells, “Image reconstruction of effective Mie scattering parameters of breast tissue in vivo with near-infrared tomography,” J. Biomed. Opt. 11, 041106 (2006).
[Crossref] [PubMed]

Springett, R.

H. Xu, R. Springett, H. Dehghani, B. W. Pogue, K. D. Paulsen, and J. F. Dunn, “MRI coupled Broadband Near Infrared Tomography System for Small Animal Brain Studies,” Appl. Opt. 44, 2177–2188 (2005).
[Crossref] [PubMed]

H. Xu, H. Dehghani, B. W. Pogue, R. Springett, K. D. Paulsen, and J. Dunn, “Near-infrared imaging in the small animal brain: optimization of fiber positions,” J. Biomed. Opt. 8, 102–110 (2003).
[Crossref] [PubMed]

Srinivasan, S.

X. Wang, B. W. Pogue, S. Jiang, H. Dehghani, X. Song, S. Srinivasan, B. A. Brooksby, K. D. Paulsen, C. Kogel, S. P. Poplack, and W. A. Wells, “Image reconstruction of effective Mie scattering parameters of breast tissue in vivo with near-infrared tomography,” J. Biomed. Opt. 11, 041106 (2006).
[Crossref] [PubMed]

S. Srinivasan, B. W. Pogue, B. Brooksby, S. Jiang, H. Dehghani, C. Kogel, S. P. Poplack, and K. D. Paulsen, “Near-Infrared Characterization of Breast Tumors In Vivo using Spectrally-Constrained Reconstruction,” Technol. Cancer Res. Treat. 5, 513–526 (2005).

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, and K. D. Paulsen, “Spectrally Constrained Chromophore and Scattering NIR Tomography Provides Quantitative and Robust Reconstruction,” Appl. Opt. 44, 1858–1869 (2005).
[Crossref] [PubMed]

B. Brooksby, S. Srinivasan, S. Jiang, H. Dehghani, B. W. Pogue, K. D. Paulsen, J. Weaver, C. Kogel, and S. P. Poplack, “Spectral-prior information improves Near-Infrared diffuse tomography more than spatial-prior,” Opt. Lett. 30, 1968–1970 (2005).
[Crossref] [PubMed]

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Interpreting Hemoglobin and Water Concentration, Oxygen Saturation and Scattering Measured In Vivo by Near-Infrared Breast Tomography,” PNAS 100, 12349–12354 (2003).
[Crossref] [PubMed]

J. Wang, S. C. Davis, S. Srinivasan, S. Jiang, B. W. Pogue, and K. D. Paulsen, “Spectral tomography with diffuse near-infrared light: inclusion of broadband frequency domain spectral data,” J. Biomed. Opt.13 (2008).
[Crossref] [PubMed]

H. Dehghani, M. E. Eames, P. K. Yalavarthy, S. C. Davis, S. Srinivasan, C. M. Carpenter, B. W. Pogue, and K. D. Paulsen, “Near Infrared Optical Tomography using NIRFAST: Algorithms for Numerical Model and Image Reconstruction Algorithms,” Communications in Numerical Methods in Engineering In Press (2008).

Svaasand, L.

B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, and J. Butler, “Noninvasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia (New York)  2, 26–40 (2000).
[Crossref] [PubMed]

Taroni, A.

A. Torricelli, A. Pifferi, A. Taroni, E. Giambattistelli, and R. Cubeddu, “In vivo optical characterization of human tissues from 610 to 1010 nm by time-resolved reflectance spectroscopy,” Phys. Med. Biol.  46, 2227–2237 (2001).
[Crossref] [PubMed]

Thompson, J. J.

M. A. Franceschini, S. Fantini, J. J. Thompson, J. P. Culver, and D. A. Boas, “Hemodynamic evoked response of the sensorimotor cortex measured noninvasively with near-infrared optical imaging,” Psychophysiology 40, 548–560 (2003).
[Crossref] [PubMed]

Torricelli, A.

A. Torricelli, A. Pifferi, A. Taroni, E. Giambattistelli, and R. Cubeddu, “In vivo optical characterization of human tissues from 610 to 1010 nm by time-resolved reflectance spectroscopy,” Phys. Med. Biol.  46, 2227–2237 (2001).
[Crossref] [PubMed]

Tosteson, T. D.

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Interpreting Hemoglobin and Water Concentration, Oxygen Saturation and Scattering Measured In Vivo by Near-Infrared Breast Tomography,” PNAS 100, 12349–12354 (2003).
[Crossref] [PubMed]

Tromberg, B.

N. Shah, A. Cerussi, C. Eker, J. Espinoza, J. Butler, J. Fishkin, R. Hornung, and B. Tromberg, “Non-invasive functional optical spectroscopy of human breast tissue,” PNAS 98, 4420–4425 (2001).
[Crossref] [PubMed]

Tromberg, B. J.

B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, and J. Butler, “Noninvasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia (New York)  2, 26–40 (2000).
[Crossref] [PubMed]

Wang, J.

S. C. Davis, H. Dehghani, J. Wang, S. Jiang, B. W. Pogue, and K. D. Paulsen, “Image-guided diffuse optical fluorescence tomography implemented with Laplacian-type regularization,” Opt. Express 15, 4066–4082 (2007).
[Crossref] [PubMed]

M. E. Eames, J. Wang, B. W. Pogue, and H. Dehghani, “Wavelength Band Optimisation in Spectral Near-Infrared Optical Tomography Improves Accuracy While Reducing Data Acquisition and Computational Burdon,” J. Biomed. Opt. In Press (2008).
[Crossref]

J. Wang, S. C. Davis, S. Srinivasan, S. Jiang, B. W. Pogue, and K. D. Paulsen, “Spectral tomography with diffuse near-infrared light: inclusion of broadband frequency domain spectral data,” J. Biomed. Opt.13 (2008).
[Crossref] [PubMed]

Wang, X.

X. Wang, B. W. Pogue, S. Jiang, H. Dehghani, X. Song, S. Srinivasan, B. A. Brooksby, K. D. Paulsen, C. Kogel, S. P. Poplack, and W. A. Wells, “Image reconstruction of effective Mie scattering parameters of breast tissue in vivo with near-infrared tomography,” J. Biomed. Opt. 11, 041106 (2006).
[Crossref] [PubMed]

Wang, Y.

Weaver, J.

Weissleder, R.

G. Zacharakis, H. Kambara, H. Shih, J. Ripoll, J. Grimm, Y. Saeki, R. Weissleder, and V. Ntziachristos, “Volumetric tomography of fluorescent proteins through small animals in vivo,” PNAS 102, 18252–18257 (2005).
[Crossref] [PubMed]

Wells, W. A.

X. Wang, B. W. Pogue, S. Jiang, H. Dehghani, X. Song, S. Srinivasan, B. A. Brooksby, K. D. Paulsen, C. Kogel, S. P. Poplack, and W. A. Wells, “Image reconstruction of effective Mie scattering parameters of breast tissue in vivo with near-infrared tomography,” J. Biomed. Opt. 11, 041106 (2006).
[Crossref] [PubMed]

White, B. R.

B. W. Zeff, B. R. White, H. Dehghani, B. L. Schlaggar, and J. P. Culver, “Retinotopic mapping of adult human visual cortex with high-density diffuse optical tomography,” PNAS  104, 12169–12174 (2007).
[Crossref] [PubMed]

Wilson, B. C.

Wyatt, J. S.

J. C. Hebden, A. Gibson, T. Austin, R. Yusof, N. Everdell, D. T. Delpy, S. R. Arridge, J. H. Meek, and J. S. Wyatt, “Imaging changes in blood volume and oxygenation in the newborn infant brain using threedimensional optical tomography,” Phys. Med. Biol. 49, 1117–1130 (2004).
[Crossref] [PubMed]

Xu, H.

H. Xu, R. Springett, H. Dehghani, B. W. Pogue, K. D. Paulsen, and J. F. Dunn, “MRI coupled Broadband Near Infrared Tomography System for Small Animal Brain Studies,” Appl. Opt. 44, 2177–2188 (2005).
[Crossref] [PubMed]

H. Xu, H. Dehghani, B. W. Pogue, R. Springett, K. D. Paulsen, and J. Dunn, “Near-infrared imaging in the small animal brain: optimization of fiber positions,” J. Biomed. Opt. 8, 102–110 (2003).
[Crossref] [PubMed]

Yalavarthy, P. K.

Yao, Y.

Yodh, A. G.

R. Choe, A. Corlu, K. Lee, T. Durduran, S. D. Konecky, M. Grosicka-Koptyra, S. R. Arridge, B. J. Czerniecki, D. L. Fraker, A. DeMichele, B. Chance, M. A. Rosen, and A. G. Yodh, “Diffuse optical tomography of breast cancer during neoadjuvant chemotherapy: A case study with comparison to MRI,” Med. Phys. 32, 1128–1139 (2005).
[Crossref] [PubMed]

A. Corlu, R. Choe, T. Durduran, K. Lee, M. Schweiger, S. R. Arridge, E. M. C. Hillman, and A. G. Yodh, “Diffuse optical tomography with spectral constraints and wavelength optimization,” Appl. Opt. 44, 2082–2093 (2005).
[Crossref] [PubMed]

Yusof, R.

J. C. Hebden, A. Gibson, T. Austin, R. Yusof, N. Everdell, D. T. Delpy, S. R. Arridge, J. H. Meek, and J. S. Wyatt, “Imaging changes in blood volume and oxygenation in the newborn infant brain using threedimensional optical tomography,” Phys. Med. Biol. 49, 1117–1130 (2004).
[Crossref] [PubMed]

Zacharakis, G.

G. Zacharakis, H. Kambara, H. Shih, J. Ripoll, J. Grimm, Y. Saeki, R. Weissleder, and V. Ntziachristos, “Volumetric tomography of fluorescent proteins through small animals in vivo,” PNAS 102, 18252–18257 (2005).
[Crossref] [PubMed]

Zeff, B. W.

B. W. Zeff, B. R. White, H. Dehghani, B. L. Schlaggar, and J. P. Culver, “Retinotopic mapping of adult human visual cortex with high-density diffuse optical tomography,” PNAS  104, 12169–12174 (2007).
[Crossref] [PubMed]

Zhang, Q.

Zhu, W.

Appl. Opt. (10)

H. Dehghani, B. W. Pogue, S. P. Poplack, and K. D. Paulsen, “Multiwavelength Three-Dimensional Near-Infrared Tomography of the Breast: Initial Simulation, Phantom, and Clinical Results,” Appl. Opt. 42, 135–145 (2003).
[Crossref] [PubMed]

H. Dehghani, B. W. Pogue, S. Jiang, B. Brooksby, and K. D. Paulsen, “Three Dimensional Optical Tomography: Resolution in Small Object Imaging,” Appl. Opt. 42, 3117–3128 (2003).
[Crossref] [PubMed]

H. Xu, R. Springett, H. Dehghani, B. W. Pogue, K. D. Paulsen, and J. F. Dunn, “MRI coupled Broadband Near Infrared Tomography System for Small Animal Brain Studies,” Appl. Opt. 44, 2177–2188 (2005).
[Crossref] [PubMed]

A. Corlu, R. Choe, T. Durduran, K. Lee, M. Schweiger, S. R. Arridge, E. M. C. Hillman, and A. G. Yodh, “Diffuse optical tomography with spectral constraints and wavelength optimization,” Appl. Opt. 44, 2082–2093 (2005).
[Crossref] [PubMed]

M. A. Franceschini, S. Fantini, L. A. Paunescu, J. S. Maier, and E. Gratton, “Influence of a superficial layer in the quantitative spectroscopic study of strongly scattering media,” Appl. Opt. 37, 7447–7458 (1998).
[Crossref]

M. S. Patterson, C. B., and B. C. Wilson, “Time resolved reflectance and transmittance for the non-invasive measurement of tissue optical properties,” Appl. Opt.  28, 2331–2336 (1989).
[Crossref] [PubMed]

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, and K. D. Paulsen, “Spectrally Constrained Chromophore and Scattering NIR Tomography Provides Quantitative and Robust Reconstruction,” Appl. Opt. 44, 1858–1869 (2005).
[Crossref] [PubMed]

J. R. Mourant, T. Fuselier, J. Boyer, T. M. Johnson, and I. J. Bigio, “Predictions and measurements of scattering and absorption over broad wavelength ranges in tissue phantoms,” Appl. Opt. 36, 949–957 (1997).
[Crossref] [PubMed]

S. R. Arridge and M. Schweiger, “Photon-measurement density functions. Part2: Finite-element-method calculations,” Appl. Opt. 34, 8026–8037 (1995).
[Crossref] [PubMed]

H. B. Jiang, K. D. Paulsen, U. L. Osterberg, and M. S. Patterson, “Frequency-domain optical image reconstruction in turbid media: An experimental study of single-target detectability,” Appl. Opt. 36, 52–63 (1997).
[Crossref] [PubMed]

Inverse Prob. (1)

S. R. Arridge, “Optical tomography in medical imaging,” Inverse Prob. 15, R41–R93 (1999).
[Crossref]

J. Biomed. Opt. (3)

X. Wang, B. W. Pogue, S. Jiang, H. Dehghani, X. Song, S. Srinivasan, B. A. Brooksby, K. D. Paulsen, C. Kogel, S. P. Poplack, and W. A. Wells, “Image reconstruction of effective Mie scattering parameters of breast tissue in vivo with near-infrared tomography,” J. Biomed. Opt. 11, 041106 (2006).
[Crossref] [PubMed]

A. H. Hielscher and S. Bartel, “Use of penalty terms in gradient-based iterative reconstruction schemes for optical tomography,” J. Biomed. Opt. 6, 183–192 (2001).
[Crossref] [PubMed]

H. Xu, H. Dehghani, B. W. Pogue, R. Springett, K. D. Paulsen, and J. Dunn, “Near-infrared imaging in the small animal brain: optimization of fiber positions,” J. Biomed. Opt. 8, 102–110 (2003).
[Crossref] [PubMed]

J. Opt. Soc. Am. A (1)

Med. Phys. (1)

R. Choe, A. Corlu, K. Lee, T. Durduran, S. D. Konecky, M. Grosicka-Koptyra, S. R. Arridge, B. J. Czerniecki, D. L. Fraker, A. DeMichele, B. Chance, M. A. Rosen, and A. G. Yodh, “Diffuse optical tomography of breast cancer during neoadjuvant chemotherapy: A case study with comparison to MRI,” Med. Phys. 32, 1128–1139 (2005).
[Crossref] [PubMed]

Neoplasia (1)

B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, and J. Butler, “Noninvasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia (New York)  2, 26–40 (2000).
[Crossref] [PubMed]

Opt. Express (3)

Opt. Lett. (4)

Oxygen Transport to Tissue XXIV (1)

T. O. McBride, B. W. Pogue, U. L. Osterberg, and K. D. Paulsen, “Strategies for absolute calibration of near infrared tomographic tissue imaging,” Oxygen Transport to Tissue XXIV, 85–99 (2003).
[Crossref]

Phys. Med. Biol. (5)

A. Torricelli, A. Pifferi, A. Taroni, E. Giambattistelli, and R. Cubeddu, “In vivo optical characterization of human tissues from 610 to 1010 nm by time-resolved reflectance spectroscopy,” Phys. Med. Biol.  46, 2227–2237 (2001).
[Crossref] [PubMed]

A. P. Gibson, J. C. Hebden, and S. R. Arridge, “Recent advances in diffuse optical imaging,” Phys. Med. Biol. 50, R1–R43 (2005).
[Crossref] [PubMed]

G. Boverman, Q. Fang, S. A. Carp, E. L. Miller, D. H. Brooks, J. Selb, R. H. Moore, D. B. Kopans, and D. A. Boas, “Spatio-temporal imaging of the hemoglobin in the compressed breast with diffuse optical tomography,” Phys. Med. Biol. 52, 3619–3641 (2007).
[Crossref] [PubMed]

J. C. Hebden, A. Gibson, T. Austin, R. Yusof, N. Everdell, D. T. Delpy, S. R. Arridge, J. H. Meek, and J. S. Wyatt, “Imaging changes in blood volume and oxygenation in the newborn infant brain using threedimensional optical tomography,” Phys. Med. Biol. 49, 1117–1130 (2004).
[Crossref] [PubMed]

J. C. Hebden, S. R. Arridge, and D. T. Delpy, “Optical imaging in medicine: I. Experimental techniques,” Phys. Med. Biol. 42, 825–840 (1997).
[Crossref] [PubMed]

PNAS (5)

G. Zacharakis, H. Kambara, H. Shih, J. Ripoll, J. Grimm, Y. Saeki, R. Weissleder, and V. Ntziachristos, “Volumetric tomography of fluorescent proteins through small animals in vivo,” PNAS 102, 18252–18257 (2005).
[Crossref] [PubMed]

M. J. Eppstein, D. J. Hawrysz, A. Godavarty, and E. M. Sevick-Muraca, “Three-dimensional, Baysian image reconstruction from sparse and noisy data sets: Near-infrared fluorescence tomography,” PNAS 99, 9619–9624 (2002).
[Crossref] [PubMed]

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Interpreting Hemoglobin and Water Concentration, Oxygen Saturation and Scattering Measured In Vivo by Near-Infrared Breast Tomography,” PNAS 100, 12349–12354 (2003).
[Crossref] [PubMed]

B. W. Zeff, B. R. White, H. Dehghani, B. L. Schlaggar, and J. P. Culver, “Retinotopic mapping of adult human visual cortex with high-density diffuse optical tomography,” PNAS  104, 12169–12174 (2007).
[Crossref] [PubMed]

N. Shah, A. Cerussi, C. Eker, J. Espinoza, J. Butler, J. Fishkin, R. Hornung, and B. Tromberg, “Non-invasive functional optical spectroscopy of human breast tissue,” PNAS 98, 4420–4425 (2001).
[Crossref] [PubMed]

Psychophysiology (1)

M. A. Franceschini, S. Fantini, J. J. Thompson, J. P. Culver, and D. A. Boas, “Hemodynamic evoked response of the sensorimotor cortex measured noninvasively with near-infrared optical imaging,” Psychophysiology 40, 548–560 (2003).
[Crossref] [PubMed]

Rev. Biomed. Eng. (1)

V. Ntziachristos, “Fluorescence Molecular Imaging,” Rev. Biomed. Eng. 8, 1–33 (2006).
[Crossref]

Rev. Sci. Instrum. (2)

T. O. McBride, B. W. Pogue, S. Jiang, U. L. Osterberg, and K. D. Paulsen, “Development and Calibration of a Parallel Modulated Near-Infrared Tomography System for Hemoglobin Imaging In Vivo,” Rev. Sci. Instrum. 72, 1817–1824 (2001).
[Crossref]

V. Ntziachristos, X. H. Ma, B. Chance, and Chance, “Time-correlated single photon counting imager for simultaneous magnetic resonance and near-infrared mammography,” Rev. Sci. Instrum. 69, 4221–4233 (1998).
[Crossref]

Technol. Cancer Res. Treat. (1)

S. Srinivasan, B. W. Pogue, B. Brooksby, S. Jiang, H. Dehghani, C. Kogel, S. P. Poplack, and K. D. Paulsen, “Near-Infrared Characterization of Breast Tumors In Vivo using Spectrally-Constrained Reconstruction,” Technol. Cancer Res. Treat. 5, 513–526 (2005).

Other (4)

M. E. Eames, J. Wang, B. W. Pogue, and H. Dehghani, “Wavelength Band Optimisation in Spectral Near-Infrared Optical Tomography Improves Accuracy While Reducing Data Acquisition and Computational Burdon,” J. Biomed. Opt. In Press (2008).
[Crossref]

J. Wang, S. C. Davis, S. Srinivasan, S. Jiang, B. W. Pogue, and K. D. Paulsen, “Spectral tomography with diffuse near-infrared light: inclusion of broadband frequency domain spectral data,” J. Biomed. Opt.13 (2008).
[Crossref] [PubMed]

H. Dehghani, M. E. Eames, P. K. Yalavarthy, S. C. Davis, S. Srinivasan, C. M. Carpenter, B. W. Pogue, and K. D. Paulsen, “Near Infrared Optical Tomography using NIRFAST: Algorithms for Numerical Model and Image Reconstruction Algorithms,” Communications in Numerical Methods in Engineering In Press (2008).

S. Prahl, http://omlc.ogi.edu/spectra.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Total normalised sensitivity for a set of CW data at different wavelengths. Each image represents the self normalised total sensitivity.

Fig. 2.
Fig. 2.

Magnitude of the total sensitivity for CW data using all wavelengths between 695 nm and 845 nm with a 5nm separation (31 wavelengths).

Fig. 3.
Fig. 3.

(a) Absorption spectra for 0.01 mM HbO2, 0.01 mM Hb and 40 % H2O. (b) Empirical model fit of scattering spectra with scattering amplitude and scattering power equal to 1.

Fig. 4.
Fig. 4.

Magnitude of the normalized total sensitivity for CW data using all wavelengths between 695 nm and 845 nm with a 5nm separation (31 wavelengths). Similar distributions of sensitivity are also seen with phase measurements (not shown).

Fig. 5.
Fig. 5.

Reconstructions using all wavelengths in the range 695 nm to 845 nm with separation of 5nm.

Fig. 6.
Fig. 6.

Reconstructions using all wavelengths in the range 695 nm to 845 nm with a 5 nm separation and 1% added noise.

Tables (1)

Tables Icon

Table 1. Computational details of the two reconstruction methods.

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

· κ ( r ) Φ ( r , ω ) + μ a ( r ) + i ω c m ( r ) Φ ( r , ω ) = q 0 ( r , ω ) ,
κ = 1 3 ( μ a + μ s )
Ω = μ min { i = 1 nm ( Φ i M Φ i C ) 2 } ,
( J T J + α I ) 1 J T δ Φ = δ μ ,
μ a ( λ i ) = n = 1 N ε n ( λ i ) c n ,
μ s ( λ ) = A λ b ,
J = J c , λ J A , λ J b , λ λ = 1 : i ,
J c , λ = Φ c = Φ μ a μ a c ,
J A , λ = Φ A = Φ μ s μ s A ,
J b , λ = Φ b = Φ μ s μ s b .
J = [ δ Φ 1 δ μ 1 δ Φ 1 δ μ 2 δ Φ 1 δ μ nn δ Φ 2 δ μ 1 δ Φ 2 δ μ 2 δ Φ 2 δ μ nn δ Φ 3 δ μ 1 δ Φ 3 δ μ 2 δ Φ 3 δ μ nn δ Φ nm δ μ 1 δ Φ nm δ μ 2 δ Φ nm δ μ nn ] ,
J CN = EJ ,
E j , j = 1 max ( J i = 1 : nm , j )
J ˜ = J CN F ,
F i , i = 1 max ( J CN i , j = 1 : nn ) ,
F ( J ˜ T J ˜ + α I ) 1 J ˜ T E δ Φ = δ μ .

Metrics