Abstract

In [Opt. Express 15, 10061 (2007)] we proposed a new regime of multichannel all-optical regeneration that required anomalous average dispersion. This regime is superior to the previously studied normal-dispersion regime when signal distortions are deterministic in their temporal shape. However, there was a concern that the regenerator with anomalous average dispersion may be prone to noise amplification via modulational instability. Here, we show that this, in general, is not the case. Moreover, in the range of input powers that is of interest for multichannel regeneration, the device with anomalous average dispersion may even provide less noise amplification than the one with normal dispersion. These results are obtained with an improved version of the parallelized modification of the Multicanonical Monte Carlo method proposed in [IEEE J. Sel. Topics Quantum Electron. 14, 599 (2008)].

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. V. Mamyshev, "All-optical regeneration based on self-phase modulation effect," in Proceedings of the 24th European Conference on Optical Communications (ECOC, Madrid, Spain, 1998), Vol. 1, pp. 475-476.
  2. L. Provost, C. Finot, P. Petropoulos, K. Mukasa, and D. J. Richardson, "Design scaling rules for 2R-optical self-phase modulation-based regenerators," Opt. Express 15, 5100-5113 (2007).
    [CrossRef] [PubMed]
  3. M. Vasilyev and T. I. Lakoba, "All-optical multichannel 2R regeneration in a fiber-based device," Opt. Lett. 30, 1458-1460 (2005).
    [CrossRef] [PubMed]
  4. T. I. Lakoba and M. Vasilyev, "A new robust regime for a dispersion-managed multichannel 2R regenerator," Opt Express 15, 10061-10074 (2007).
    [CrossRef] [PubMed]
  5. P. G. Patki, V. Stelmakh, M. Annamalai, T. I. Lakoba, and M. Vasilyev, "Recirculating-loop study of dispersionmanaged 2R regeneration," in Proceedings of the Conference on Lasers and Electro-Optics (CLEO, Baltimore, MD, 2007), paper CMZ3.
  6. M. Vasilyev, T. I. Lakoba, and P. Patki, "Multiwavelength all-optical regeneration," in Proccedings of the Optical Fiber Communications Conference (OFC, San Diego, CA, 2008), paper OWK3.
  7. M. Vasilyev, P. G. Patki, and T. I. Lakoba, "All-optical regeneration of multi-wavelength signals," in Proceedings of the IEEE LEOS European Winter Topical on Nonlinear Processing in Optical Fibres (Innsbruck, Austria, 2009).
  8. C. Kouloumentas, L. Provost, F. Parmigiani, S. Tsolakidis, P. Petropoulos, I. Tomkos, and D. J. Richardson, "Four-channel all-fiber dispersion-managed 2R regenerator," IEEE Photon. Technol. Lett. 20, 1169-1171 (2008).
    [CrossRef]
  9. N. J. Smith and N. J. Doran, "Modulational instabilities in fibers with periodic dispersion management," Opt. Lett. 21, 570-572 (1996).
    [CrossRef] [PubMed]
  10. T. I. Lakoba, "BER degradation by a signal-reshaping processor with non-instantaneous response," J. Lightwave Technol. (submitted).
  11. F. Ohman, S. Bischoff, B. Tromborg, and J. Mørk, "Noise and regeneration in semiconductor waveguides with saturable gain and absorption," IEEE J. Quantum Electron. 40, 245-255 (2004).
    [CrossRef]
  12. T. I. Lakoba, "Multicanonical Monte Carlo study of the BER of an all-optically 2R regenerated signal," IEEE J. Sel. Top. Quantum Electron. 14, 599-609 (2008).
    [CrossRef]
  13. B. A. Berg, "Algorithmic aspects of multicanonical simulations," Nucl. Phys. B (Proc. Suppl.) 63A-C, 982-984 (1998); also at http://www.arxiv.org, paper hep-lat/9708003.
    [CrossRef]
  14. D. Yevick, "Multicanonical communication system modeling — Application to PMD statistics," IEEE Photon. Technol. Lett. 14, 1512-1514 (2002).
    [CrossRef]
  15. R. Holzlohner and C. R. Menyuk, "Use of multicanonical Monte Carlo simulations to obtain accurate bit error rates in optical communication systems," Opt. Lett. 28, 1894-1896 (2003).
    [CrossRef] [PubMed]
  16. It may be noted that the MMC was used in [I. Nasieva, A. Kaliazin, and S.K. Turitsyn, "Multicanonical Monte Carlo modeling of BER penalty in transmission systems with optical regeneration," Opt. Commun. 262, 246-249 (2006)] to study signal transmission through a chain of regenerators. However, there regenerators were modeled by their static transfer functions, which required much less computing time than did solving a partial differential equation for pulse propagation, as we did in [12] and here.
    [CrossRef]
  17. B. Charbonnier, N. El Dahdah, and M. Joindot, "OSNR margin brought about by nonlinear regenerators in optical communication links," IEEE Photon. Technol. Lett. 18, 475-477 (2006).
    [CrossRef]
  18. T. N. Nguyen, M. Gay, L. Bramerie, T. Chartier, and J.-C. Simon, "Noise reduction in 2R-regeneration technique utilizing self-phase modulation and filtering," Opt. Express 14, 1737-1747 (2006).
    [CrossRef] [PubMed]
  19. M. Rochette, J. N. Kutz, J. L. Blows, D. Moss, T. J. Mok, and B. J. Eggleton, "Bit-error-ratio improvement with 2R optical regenerators," IEEE Photon. Technol. Lett. 17, 908-910 (2005).
    [CrossRef]
  20. A. O. Lima, I. T. Lima, and C. R. Menyuk, "Error estimation in Multicanonical Monte Carlo simulations with applications to polarization-mode-dispersion emulators," J. Lightwave Technol. 23, 3781-3789 (2005).
    [CrossRef]
  21. T.-H. Her, G. Raybon, and C. Headley, "Optimization of pulse regeneration at 40 Gb/s based on spectral filtering of self-phase modulation in fiber," IEEE Photon. Technol. Lett. 16, 200-202 (2004).
    [CrossRef]
  22. C. Finot, T. N. Nguyen, J. Fatome, T. Chartier, S. Pitois, L. Bramerie, M. Gay, and J.-C. Simon, "Numerical study of an optical regenerator exploiting self-phase modulation and spectral offset filtering at 40 Gbit/s," Opt. Commun. 281, 2252-2264 (2008).
    [CrossRef]
  23. T. Lu and D. Yevick, "Biased multicanonical sampling," IEEE Photon. Technol. Lett. 17, 1420-1422 (2005).
    [CrossRef]
  24. D. Yevick and T. Lu, "Improved multicanonical algorithms," J. Opt. Soc.Am. A 23, 2912-2918 (2006).
    [CrossRef]
  25. T. Lu and D. Yevick, "Efficient multicanonical algorithms," IEEE Photon. Technol. Lett. 17, 861-863 (2005).
    [CrossRef]

2008 (3)

C. Kouloumentas, L. Provost, F. Parmigiani, S. Tsolakidis, P. Petropoulos, I. Tomkos, and D. J. Richardson, "Four-channel all-fiber dispersion-managed 2R regenerator," IEEE Photon. Technol. Lett. 20, 1169-1171 (2008).
[CrossRef]

T. I. Lakoba, "Multicanonical Monte Carlo study of the BER of an all-optically 2R regenerated signal," IEEE J. Sel. Top. Quantum Electron. 14, 599-609 (2008).
[CrossRef]

C. Finot, T. N. Nguyen, J. Fatome, T. Chartier, S. Pitois, L. Bramerie, M. Gay, and J.-C. Simon, "Numerical study of an optical regenerator exploiting self-phase modulation and spectral offset filtering at 40 Gbit/s," Opt. Commun. 281, 2252-2264 (2008).
[CrossRef]

2007 (2)

2006 (3)

T. N. Nguyen, M. Gay, L. Bramerie, T. Chartier, and J.-C. Simon, "Noise reduction in 2R-regeneration technique utilizing self-phase modulation and filtering," Opt. Express 14, 1737-1747 (2006).
[CrossRef] [PubMed]

D. Yevick and T. Lu, "Improved multicanonical algorithms," J. Opt. Soc.Am. A 23, 2912-2918 (2006).
[CrossRef]

B. Charbonnier, N. El Dahdah, and M. Joindot, "OSNR margin brought about by nonlinear regenerators in optical communication links," IEEE Photon. Technol. Lett. 18, 475-477 (2006).
[CrossRef]

2005 (5)

M. Rochette, J. N. Kutz, J. L. Blows, D. Moss, T. J. Mok, and B. J. Eggleton, "Bit-error-ratio improvement with 2R optical regenerators," IEEE Photon. Technol. Lett. 17, 908-910 (2005).
[CrossRef]

T. Lu and D. Yevick, "Biased multicanonical sampling," IEEE Photon. Technol. Lett. 17, 1420-1422 (2005).
[CrossRef]

T. Lu and D. Yevick, "Efficient multicanonical algorithms," IEEE Photon. Technol. Lett. 17, 861-863 (2005).
[CrossRef]

M. Vasilyev and T. I. Lakoba, "All-optical multichannel 2R regeneration in a fiber-based device," Opt. Lett. 30, 1458-1460 (2005).
[CrossRef] [PubMed]

A. O. Lima, I. T. Lima, and C. R. Menyuk, "Error estimation in Multicanonical Monte Carlo simulations with applications to polarization-mode-dispersion emulators," J. Lightwave Technol. 23, 3781-3789 (2005).
[CrossRef]

2004 (2)

T.-H. Her, G. Raybon, and C. Headley, "Optimization of pulse regeneration at 40 Gb/s based on spectral filtering of self-phase modulation in fiber," IEEE Photon. Technol. Lett. 16, 200-202 (2004).
[CrossRef]

F. Ohman, S. Bischoff, B. Tromborg, and J. Mørk, "Noise and regeneration in semiconductor waveguides with saturable gain and absorption," IEEE J. Quantum Electron. 40, 245-255 (2004).
[CrossRef]

2003 (1)

2002 (1)

D. Yevick, "Multicanonical communication system modeling — Application to PMD statistics," IEEE Photon. Technol. Lett. 14, 1512-1514 (2002).
[CrossRef]

1996 (1)

Blows, J. L.

M. Rochette, J. N. Kutz, J. L. Blows, D. Moss, T. J. Mok, and B. J. Eggleton, "Bit-error-ratio improvement with 2R optical regenerators," IEEE Photon. Technol. Lett. 17, 908-910 (2005).
[CrossRef]

Bramerie, L.

C. Finot, T. N. Nguyen, J. Fatome, T. Chartier, S. Pitois, L. Bramerie, M. Gay, and J.-C. Simon, "Numerical study of an optical regenerator exploiting self-phase modulation and spectral offset filtering at 40 Gbit/s," Opt. Commun. 281, 2252-2264 (2008).
[CrossRef]

T. N. Nguyen, M. Gay, L. Bramerie, T. Chartier, and J.-C. Simon, "Noise reduction in 2R-regeneration technique utilizing self-phase modulation and filtering," Opt. Express 14, 1737-1747 (2006).
[CrossRef] [PubMed]

Charbonnier, B.

B. Charbonnier, N. El Dahdah, and M. Joindot, "OSNR margin brought about by nonlinear regenerators in optical communication links," IEEE Photon. Technol. Lett. 18, 475-477 (2006).
[CrossRef]

Chartier, T.

C. Finot, T. N. Nguyen, J. Fatome, T. Chartier, S. Pitois, L. Bramerie, M. Gay, and J.-C. Simon, "Numerical study of an optical regenerator exploiting self-phase modulation and spectral offset filtering at 40 Gbit/s," Opt. Commun. 281, 2252-2264 (2008).
[CrossRef]

T. N. Nguyen, M. Gay, L. Bramerie, T. Chartier, and J.-C. Simon, "Noise reduction in 2R-regeneration technique utilizing self-phase modulation and filtering," Opt. Express 14, 1737-1747 (2006).
[CrossRef] [PubMed]

Doran, N. J.

Eggleton, B. J.

M. Rochette, J. N. Kutz, J. L. Blows, D. Moss, T. J. Mok, and B. J. Eggleton, "Bit-error-ratio improvement with 2R optical regenerators," IEEE Photon. Technol. Lett. 17, 908-910 (2005).
[CrossRef]

El Dahdah, N.

B. Charbonnier, N. El Dahdah, and M. Joindot, "OSNR margin brought about by nonlinear regenerators in optical communication links," IEEE Photon. Technol. Lett. 18, 475-477 (2006).
[CrossRef]

Fatome, J.

C. Finot, T. N. Nguyen, J. Fatome, T. Chartier, S. Pitois, L. Bramerie, M. Gay, and J.-C. Simon, "Numerical study of an optical regenerator exploiting self-phase modulation and spectral offset filtering at 40 Gbit/s," Opt. Commun. 281, 2252-2264 (2008).
[CrossRef]

Finot, C.

C. Finot, T. N. Nguyen, J. Fatome, T. Chartier, S. Pitois, L. Bramerie, M. Gay, and J.-C. Simon, "Numerical study of an optical regenerator exploiting self-phase modulation and spectral offset filtering at 40 Gbit/s," Opt. Commun. 281, 2252-2264 (2008).
[CrossRef]

L. Provost, C. Finot, P. Petropoulos, K. Mukasa, and D. J. Richardson, "Design scaling rules for 2R-optical self-phase modulation-based regenerators," Opt. Express 15, 5100-5113 (2007).
[CrossRef] [PubMed]

Gay, M.

C. Finot, T. N. Nguyen, J. Fatome, T. Chartier, S. Pitois, L. Bramerie, M. Gay, and J.-C. Simon, "Numerical study of an optical regenerator exploiting self-phase modulation and spectral offset filtering at 40 Gbit/s," Opt. Commun. 281, 2252-2264 (2008).
[CrossRef]

T. N. Nguyen, M. Gay, L. Bramerie, T. Chartier, and J.-C. Simon, "Noise reduction in 2R-regeneration technique utilizing self-phase modulation and filtering," Opt. Express 14, 1737-1747 (2006).
[CrossRef] [PubMed]

Headley, C.

T.-H. Her, G. Raybon, and C. Headley, "Optimization of pulse regeneration at 40 Gb/s based on spectral filtering of self-phase modulation in fiber," IEEE Photon. Technol. Lett. 16, 200-202 (2004).
[CrossRef]

Her, T.-H.

T.-H. Her, G. Raybon, and C. Headley, "Optimization of pulse regeneration at 40 Gb/s based on spectral filtering of self-phase modulation in fiber," IEEE Photon. Technol. Lett. 16, 200-202 (2004).
[CrossRef]

Holzlohner, R.

Joindot, M.

B. Charbonnier, N. El Dahdah, and M. Joindot, "OSNR margin brought about by nonlinear regenerators in optical communication links," IEEE Photon. Technol. Lett. 18, 475-477 (2006).
[CrossRef]

Kouloumentas, C.

C. Kouloumentas, L. Provost, F. Parmigiani, S. Tsolakidis, P. Petropoulos, I. Tomkos, and D. J. Richardson, "Four-channel all-fiber dispersion-managed 2R regenerator," IEEE Photon. Technol. Lett. 20, 1169-1171 (2008).
[CrossRef]

Kutz, J. N.

M. Rochette, J. N. Kutz, J. L. Blows, D. Moss, T. J. Mok, and B. J. Eggleton, "Bit-error-ratio improvement with 2R optical regenerators," IEEE Photon. Technol. Lett. 17, 908-910 (2005).
[CrossRef]

Lakoba, T. I.

T. I. Lakoba, "Multicanonical Monte Carlo study of the BER of an all-optically 2R regenerated signal," IEEE J. Sel. Top. Quantum Electron. 14, 599-609 (2008).
[CrossRef]

T. I. Lakoba and M. Vasilyev, "A new robust regime for a dispersion-managed multichannel 2R regenerator," Opt Express 15, 10061-10074 (2007).
[CrossRef] [PubMed]

M. Vasilyev and T. I. Lakoba, "All-optical multichannel 2R regeneration in a fiber-based device," Opt. Lett. 30, 1458-1460 (2005).
[CrossRef] [PubMed]

T. I. Lakoba, "BER degradation by a signal-reshaping processor with non-instantaneous response," J. Lightwave Technol. (submitted).

Lima, A. O.

Lima, I. T.

Lu, T.

D. Yevick and T. Lu, "Improved multicanonical algorithms," J. Opt. Soc.Am. A 23, 2912-2918 (2006).
[CrossRef]

T. Lu and D. Yevick, "Efficient multicanonical algorithms," IEEE Photon. Technol. Lett. 17, 861-863 (2005).
[CrossRef]

T. Lu and D. Yevick, "Biased multicanonical sampling," IEEE Photon. Technol. Lett. 17, 1420-1422 (2005).
[CrossRef]

Menyuk, C. R.

Mok, T. J.

M. Rochette, J. N. Kutz, J. L. Blows, D. Moss, T. J. Mok, and B. J. Eggleton, "Bit-error-ratio improvement with 2R optical regenerators," IEEE Photon. Technol. Lett. 17, 908-910 (2005).
[CrossRef]

Moss, D.

M. Rochette, J. N. Kutz, J. L. Blows, D. Moss, T. J. Mok, and B. J. Eggleton, "Bit-error-ratio improvement with 2R optical regenerators," IEEE Photon. Technol. Lett. 17, 908-910 (2005).
[CrossRef]

Mukasa, K.

Nguyen, T. N.

C. Finot, T. N. Nguyen, J. Fatome, T. Chartier, S. Pitois, L. Bramerie, M. Gay, and J.-C. Simon, "Numerical study of an optical regenerator exploiting self-phase modulation and spectral offset filtering at 40 Gbit/s," Opt. Commun. 281, 2252-2264 (2008).
[CrossRef]

T. N. Nguyen, M. Gay, L. Bramerie, T. Chartier, and J.-C. Simon, "Noise reduction in 2R-regeneration technique utilizing self-phase modulation and filtering," Opt. Express 14, 1737-1747 (2006).
[CrossRef] [PubMed]

Parmigiani, F.

C. Kouloumentas, L. Provost, F. Parmigiani, S. Tsolakidis, P. Petropoulos, I. Tomkos, and D. J. Richardson, "Four-channel all-fiber dispersion-managed 2R regenerator," IEEE Photon. Technol. Lett. 20, 1169-1171 (2008).
[CrossRef]

Petropoulos, P.

C. Kouloumentas, L. Provost, F. Parmigiani, S. Tsolakidis, P. Petropoulos, I. Tomkos, and D. J. Richardson, "Four-channel all-fiber dispersion-managed 2R regenerator," IEEE Photon. Technol. Lett. 20, 1169-1171 (2008).
[CrossRef]

L. Provost, C. Finot, P. Petropoulos, K. Mukasa, and D. J. Richardson, "Design scaling rules for 2R-optical self-phase modulation-based regenerators," Opt. Express 15, 5100-5113 (2007).
[CrossRef] [PubMed]

Pitois, S.

C. Finot, T. N. Nguyen, J. Fatome, T. Chartier, S. Pitois, L. Bramerie, M. Gay, and J.-C. Simon, "Numerical study of an optical regenerator exploiting self-phase modulation and spectral offset filtering at 40 Gbit/s," Opt. Commun. 281, 2252-2264 (2008).
[CrossRef]

Provost, L.

C. Kouloumentas, L. Provost, F. Parmigiani, S. Tsolakidis, P. Petropoulos, I. Tomkos, and D. J. Richardson, "Four-channel all-fiber dispersion-managed 2R regenerator," IEEE Photon. Technol. Lett. 20, 1169-1171 (2008).
[CrossRef]

L. Provost, C. Finot, P. Petropoulos, K. Mukasa, and D. J. Richardson, "Design scaling rules for 2R-optical self-phase modulation-based regenerators," Opt. Express 15, 5100-5113 (2007).
[CrossRef] [PubMed]

Raybon, G.

T.-H. Her, G. Raybon, and C. Headley, "Optimization of pulse regeneration at 40 Gb/s based on spectral filtering of self-phase modulation in fiber," IEEE Photon. Technol. Lett. 16, 200-202 (2004).
[CrossRef]

Richardson, D. J.

C. Kouloumentas, L. Provost, F. Parmigiani, S. Tsolakidis, P. Petropoulos, I. Tomkos, and D. J. Richardson, "Four-channel all-fiber dispersion-managed 2R regenerator," IEEE Photon. Technol. Lett. 20, 1169-1171 (2008).
[CrossRef]

L. Provost, C. Finot, P. Petropoulos, K. Mukasa, and D. J. Richardson, "Design scaling rules for 2R-optical self-phase modulation-based regenerators," Opt. Express 15, 5100-5113 (2007).
[CrossRef] [PubMed]

Rochette, M.

M. Rochette, J. N. Kutz, J. L. Blows, D. Moss, T. J. Mok, and B. J. Eggleton, "Bit-error-ratio improvement with 2R optical regenerators," IEEE Photon. Technol. Lett. 17, 908-910 (2005).
[CrossRef]

Simon, J.-C.

C. Finot, T. N. Nguyen, J. Fatome, T. Chartier, S. Pitois, L. Bramerie, M. Gay, and J.-C. Simon, "Numerical study of an optical regenerator exploiting self-phase modulation and spectral offset filtering at 40 Gbit/s," Opt. Commun. 281, 2252-2264 (2008).
[CrossRef]

T. N. Nguyen, M. Gay, L. Bramerie, T. Chartier, and J.-C. Simon, "Noise reduction in 2R-regeneration technique utilizing self-phase modulation and filtering," Opt. Express 14, 1737-1747 (2006).
[CrossRef] [PubMed]

Smith, N. J.

Tomkos, I.

C. Kouloumentas, L. Provost, F. Parmigiani, S. Tsolakidis, P. Petropoulos, I. Tomkos, and D. J. Richardson, "Four-channel all-fiber dispersion-managed 2R regenerator," IEEE Photon. Technol. Lett. 20, 1169-1171 (2008).
[CrossRef]

Tsolakidis, S.

C. Kouloumentas, L. Provost, F. Parmigiani, S. Tsolakidis, P. Petropoulos, I. Tomkos, and D. J. Richardson, "Four-channel all-fiber dispersion-managed 2R regenerator," IEEE Photon. Technol. Lett. 20, 1169-1171 (2008).
[CrossRef]

Vasilyev, M.

T. I. Lakoba and M. Vasilyev, "A new robust regime for a dispersion-managed multichannel 2R regenerator," Opt Express 15, 10061-10074 (2007).
[CrossRef] [PubMed]

M. Vasilyev and T. I. Lakoba, "All-optical multichannel 2R regeneration in a fiber-based device," Opt. Lett. 30, 1458-1460 (2005).
[CrossRef] [PubMed]

Yevick, D.

D. Yevick and T. Lu, "Improved multicanonical algorithms," J. Opt. Soc.Am. A 23, 2912-2918 (2006).
[CrossRef]

T. Lu and D. Yevick, "Biased multicanonical sampling," IEEE Photon. Technol. Lett. 17, 1420-1422 (2005).
[CrossRef]

T. Lu and D. Yevick, "Efficient multicanonical algorithms," IEEE Photon. Technol. Lett. 17, 861-863 (2005).
[CrossRef]

D. Yevick, "Multicanonical communication system modeling — Application to PMD statistics," IEEE Photon. Technol. Lett. 14, 1512-1514 (2002).
[CrossRef]

IEEE J. Quantum Electron. (1)

F. Ohman, S. Bischoff, B. Tromborg, and J. Mørk, "Noise and regeneration in semiconductor waveguides with saturable gain and absorption," IEEE J. Quantum Electron. 40, 245-255 (2004).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

T. I. Lakoba, "Multicanonical Monte Carlo study of the BER of an all-optically 2R regenerated signal," IEEE J. Sel. Top. Quantum Electron. 14, 599-609 (2008).
[CrossRef]

IEEE Photon. Technol. Lett. (7)

C. Kouloumentas, L. Provost, F. Parmigiani, S. Tsolakidis, P. Petropoulos, I. Tomkos, and D. J. Richardson, "Four-channel all-fiber dispersion-managed 2R regenerator," IEEE Photon. Technol. Lett. 20, 1169-1171 (2008).
[CrossRef]

D. Yevick, "Multicanonical communication system modeling — Application to PMD statistics," IEEE Photon. Technol. Lett. 14, 1512-1514 (2002).
[CrossRef]

B. Charbonnier, N. El Dahdah, and M. Joindot, "OSNR margin brought about by nonlinear regenerators in optical communication links," IEEE Photon. Technol. Lett. 18, 475-477 (2006).
[CrossRef]

T.-H. Her, G. Raybon, and C. Headley, "Optimization of pulse regeneration at 40 Gb/s based on spectral filtering of self-phase modulation in fiber," IEEE Photon. Technol. Lett. 16, 200-202 (2004).
[CrossRef]

T. Lu and D. Yevick, "Efficient multicanonical algorithms," IEEE Photon. Technol. Lett. 17, 861-863 (2005).
[CrossRef]

M. Rochette, J. N. Kutz, J. L. Blows, D. Moss, T. J. Mok, and B. J. Eggleton, "Bit-error-ratio improvement with 2R optical regenerators," IEEE Photon. Technol. Lett. 17, 908-910 (2005).
[CrossRef]

T. Lu and D. Yevick, "Biased multicanonical sampling," IEEE Photon. Technol. Lett. 17, 1420-1422 (2005).
[CrossRef]

J. Lightwave Technol. (2)

J. Opt. Soc.Am. A (1)

D. Yevick and T. Lu, "Improved multicanonical algorithms," J. Opt. Soc.Am. A 23, 2912-2918 (2006).
[CrossRef]

Opt Express (1)

T. I. Lakoba and M. Vasilyev, "A new robust regime for a dispersion-managed multichannel 2R regenerator," Opt Express 15, 10061-10074 (2007).
[CrossRef] [PubMed]

Opt. Commun. (1)

C. Finot, T. N. Nguyen, J. Fatome, T. Chartier, S. Pitois, L. Bramerie, M. Gay, and J.-C. Simon, "Numerical study of an optical regenerator exploiting self-phase modulation and spectral offset filtering at 40 Gbit/s," Opt. Commun. 281, 2252-2264 (2008).
[CrossRef]

Opt. Express (2)

Opt. Lett. (3)

Other (6)

P. V. Mamyshev, "All-optical regeneration based on self-phase modulation effect," in Proceedings of the 24th European Conference on Optical Communications (ECOC, Madrid, Spain, 1998), Vol. 1, pp. 475-476.

It may be noted that the MMC was used in [I. Nasieva, A. Kaliazin, and S.K. Turitsyn, "Multicanonical Monte Carlo modeling of BER penalty in transmission systems with optical regeneration," Opt. Commun. 262, 246-249 (2006)] to study signal transmission through a chain of regenerators. However, there regenerators were modeled by their static transfer functions, which required much less computing time than did solving a partial differential equation for pulse propagation, as we did in [12] and here.
[CrossRef]

P. G. Patki, V. Stelmakh, M. Annamalai, T. I. Lakoba, and M. Vasilyev, "Recirculating-loop study of dispersionmanaged 2R regeneration," in Proceedings of the Conference on Lasers and Electro-Optics (CLEO, Baltimore, MD, 2007), paper CMZ3.

M. Vasilyev, T. I. Lakoba, and P. Patki, "Multiwavelength all-optical regeneration," in Proccedings of the Optical Fiber Communications Conference (OFC, San Diego, CA, 2008), paper OWK3.

M. Vasilyev, P. G. Patki, and T. I. Lakoba, "All-optical regeneration of multi-wavelength signals," in Proceedings of the IEEE LEOS European Winter Topical on Nonlinear Processing in Optical Fibres (Innsbruck, Austria, 2009).

B. A. Berg, "Algorithmic aspects of multicanonical simulations," Nucl. Phys. B (Proc. Suppl.) 63A-C, 982-984 (1998); also at http://www.arxiv.org, paper hep-lat/9708003.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Static power transfer curves for the four regenerators described in the text. As usual, a static trasnfer curve is obtained by propagating through the regenerator pulses with the same shape (determined by the shape of the pulse before the front-end OBPF and this OBPF’s bandwidth) and variable amplitude. The front-end OBPF’s bandwidth is referenced at full-width at half-maximum (FWHM).

Fig. 2.
Fig. 2.

BER of the regenerated signal plotted versus the front-end OBPF’s bandwidth (a) and the input power (b). Other parameters are described in the text above, and the values of the average dispersion (in ps/nm/km), distinguishing the regenerators, are briefly stated in the legends. In (a), the dotted line shows the BER of the signal when the regenerator is absent. Since for the fixed OSNR, this value of BER does not change with the input power, the corresponding curve (i.e., a horizontal line at ≈10-15) is not shown in panel (b).

Fig. 3.
Fig. 3.

Q-factor of the regenerated signal plotted versus the front-end OBPF’s bandwidth (a,b) and the input power (c,d). Panels (a,c) and (b,d) are obtained with PDFs computed by the MMC and inferred from static transfer curves (see Fig. 1), respectively. Other relevant parameters are described in the text, and the values of the average dispersion (in ps/nm/km), distinguishing the regenerators, are briefly stated in the legends. In (a), the dotted line shows the Q-factor of the signal when the regenerator is absent. In (b), this input Q-factor curve is not shown since it is the same as in (a). Moreover, since for the fixed OSNR, the Q-factor does not change with the input power, the corresponding horizontal line at 9.2 dB is not shown in panels (c,d).

Fig. 4.
Fig. 4.

Transfer bands of the regenerators with D av=-5 ps/nm/km (a) and +12 ps/nm/km (b). The FWHM of the front-end OBPF is 23 GHz, and a ONE with no noise has the input peak power of 400 mW. Static transfer curves are shown by thick blue lines.

Fig. 5.
Fig. 5.

BER computed without (circles) and with (triangles) acceleration of the sample collection via biasing, as described in the text. Large filled symbols show the mean values and the lines with small filled symbols at their ends show the corresponding standard deviations about these means.

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

Q = V ( 1 ) V ( 0 ) σ ( 1 ) + σ ( 0 ) ,
z ̂ new = z ̂ old + Δ z ̂ ,
min ( pdf n ( k ) pdf n ( m ) , 1 ) ,
pdf ˜ n + 1 ( 1 ) = 1 , pdf ˜ n + 1 ( k + 1 ) pdf ˜ n + 1 ( k ) = pdf n ( k + 1 ) pdf n ( k ) · ( H n + 1 ( k + 1 ) H n + 1 ( k ) ) g n + 1 , 0 g n + 1
pdf n + 1 ( k ) = pdf ˜ n + 1 ( k ) m = 1 K pdf ˜ n + 1 ( m ) .
pdf n ( x k + 1 ) pdf n ( x k ) = e ( S n ( x k + 1 ) S n ( x k ) ) e b n ( x k ) Δ ,
pdf n + 1 , 0 ( x k ) = c n pdf n ( x k ) H n + 1 ( x k ) F n ( x k ) ,
b n + 1 , 0 ( x k ) = b n ( x k ) 1 Δ ln F n ( x k + 1 ) F n ( x k ) 1 Δ ln H n + 1 ( x k + 1 ) H n + 1 ( x k ) .
σ 2 [ b n + 1 , 0 ( x k ) ] = χ Δ 2 ( 1 H n + 1 ( x k ) + 1 H n + 1 ( x k + 1 ) ) .
b n + 1 = α b n + 1 , 0 + ( 1 α ) b n .
σ 2 [ b n + 1 ] = α 2 σ 2 [ b n + 1 , 0 ] + ( 1 α ) 2 σ 2 [ b n ] .
α min = σ 2 [ b n ] σ 2 [ b n + 1 , 0 ] + σ 2 [ b n ] ;
σ 2 [ b n + 1 ] = def min ( σ 2 [ b n + 1 ] ) = σ 2 [ b n + 1 , 0 ] σ 2 [ b n ] σ 2 [ b n + 1 , 0 ] + σ 2 [ b n ] .
g n + 1 = g n + g n + 1 , 0 .
b n + 1 = g n + 1 , 0 g n + g n + 1 , 0 b n + 1 , 0 + g n g n + g n + 1 , 0 b n .
pdf n + 1 ( x k + 1 ) pdf n + 1 ( x k ) = pdf n ( x k + 1 ) pdf n ( x k ) · ( F n ( x k + 1 ) F n ( x k ) H n + 1 ( x k + 1 ) H n + 1 ( x k ) ) g n + 1 , 0 g n + 1 .

Metrics