Abstract

In this paper, the polarization response of a GaAs based two-photon absorption microcavity photodetector has been studied. The deviation in the dependence of the detector response from that of bulk GaAs is shown to be due to the birefringence of the cavity. A theoretical model based on the convolution of the cavity birefringence and the polarization dependence of two-photon absorption in GaAs is described and shown to match the measured polarization dependence of the microcavity detector very well.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. K. Ranka, A. L. Gaeta, A. Baltuska, M. S. Pshenichnikov, and D. A. Wiersma, “Autocorrelation measurement of 6-fs pulses based on the two-photon-induced photocurrent in a GaAsP photodiode,” Opt. Lett. 22, 1344–1346 (1997).
    [Crossref]
  2. S. Wielandy, M. Fishteyn, and B. Zhu, “Optical performance monitoring using nonlinear detection,” J. Lightwave Technol. 22, 784–793 (2004)
    [Crossref]
  3. P. J. Maguire, L. P. Barry, T. Krug, M. Lynch, A. L. Bradley, J. F. Donegan, and H. Folliot, “All-optical sampling utilising two-photon absorption in semiconductor microcavity,” Electron. Lett. 41, 489–490 (2005).
    [Crossref]
  4. R. Salem and T. E. Murphy, “Broad-band optical clock recovery system using two-photon absorption,” IEEE Photon. Technol. Lett. 16, 2141–2143 (2004).
    [Crossref]
  5. B J. M. Roth, T. E. Murphy, and C. Xu, “Ultrasensitive and high-dynamic-range two-photon absorption in a GaAs photomultiplier tube,” Opt. Lett. 27, 2076–2078 (2002).
    [Crossref]
  6. C. Xu, J. M. Roth, W. H. Knox, and K. Bergman, “Ultra-sensitive autocorrelation of 1.5 µm light with single photon counting silicon avalanche photodiode,” Electron. Lett. 38, 86–88 (2002).
    [Crossref]
  7. T. K. Liang, H. K. Tsang, I. E. Day, J. Drake, A. P. Knights, and M. Asghari, “Silicon waveguide two-photon absorption detector at 1.5 µm wavelength for autocorrelation measurements,” Appl. Phys. Lett. 81, 1323–1325 (2002).
    [Crossref]
  8. Y. Jing Yong, M. Ishikawa, Y. Yamane, N. Tsurumachi, and H. Nakatsuka, “Enhancement of two-photon excited fluorescence using one-dimensional photonic crystals,” Appl. Phys. Lett. 75, 3605 (1999).
    [Crossref]
  9. H. Folliot, M. Lynch, A. L. Bradley, L. A. Dunbar, J. Hegarty, J. F. Donegan, L. P. Barry, J. S. Roberts, and G. Hill, “Two-photon absorption photocurrent enhancement in bulk AlGaAs semiconductor microcavities,” Appl. Phys. Lett. 80, 1328–1330 (2002).
    [Crossref]
  10. T. Krug, W. H. Guo, J. O’Dowd, M. Lynch, A. L. Bradley, J. F. Donegan, P. J. Maguire, L. P. Barry, and H. Folliot, “Resonance tuning of two-photon absorption microcavities for wavelength-selective pulse monitoring,” IEEE Photon. Technol. Lett. 18, 433–435 (2006).
    [Crossref]
  11. W. H. Guo, J. O’Dowd, M. Lynch, A. L. Bradley, J. F. Donegan, and L. P. Barry, “Influence of cavity lifetime on high-finesse microcavity two-photon absorption photodetectors,” IEEE Photon. Technol. Lett. 19, 432–434 (2007).
    [Crossref]
  12. D. C. Hutchings and B. S. Wherrett, “Theory of anisotropy of two-photon absorption in zinc-blende semiconductors,”  Phys. Rev. B 49, 2418 (1994).
  13. M. D. Dvorak, W. A. Schroeder, D. R. Andersen, A. L. Smirl, and B. S. Wherrett, “Measurement of the anisotropy of two-photon absorption coefficients in zincblende semiconductors,” IEEE J. Quantum Electron. 30, 256–268 (1994).
    [Crossref]
  14. W. H. Guo, J. O’Dowd, E. Flood, M. Lynch, A. L. Bradley, J. F. Donegan, K. Bondarczuk, P. J. Maguire, and L. P. Barry, “Suppression of residual single-photon absorption relative to two-photon absorption in high finesse planar microcavities,” IEEE Photon. Technol. Lett. (accepted for publication).
  15. M. P. van Exter, A. K. Jansen van Doorn, and J. P. Woerdman, “Electro-optic effect and birefringence in semiconductor vertical-cavity lasers,” Phys. Rev. A 56, 845 (1997).
    [Crossref]

2007 (1)

W. H. Guo, J. O’Dowd, M. Lynch, A. L. Bradley, J. F. Donegan, and L. P. Barry, “Influence of cavity lifetime on high-finesse microcavity two-photon absorption photodetectors,” IEEE Photon. Technol. Lett. 19, 432–434 (2007).
[Crossref]

2006 (1)

T. Krug, W. H. Guo, J. O’Dowd, M. Lynch, A. L. Bradley, J. F. Donegan, P. J. Maguire, L. P. Barry, and H. Folliot, “Resonance tuning of two-photon absorption microcavities for wavelength-selective pulse monitoring,” IEEE Photon. Technol. Lett. 18, 433–435 (2006).
[Crossref]

2005 (1)

P. J. Maguire, L. P. Barry, T. Krug, M. Lynch, A. L. Bradley, J. F. Donegan, and H. Folliot, “All-optical sampling utilising two-photon absorption in semiconductor microcavity,” Electron. Lett. 41, 489–490 (2005).
[Crossref]

2004 (2)

R. Salem and T. E. Murphy, “Broad-band optical clock recovery system using two-photon absorption,” IEEE Photon. Technol. Lett. 16, 2141–2143 (2004).
[Crossref]

S. Wielandy, M. Fishteyn, and B. Zhu, “Optical performance monitoring using nonlinear detection,” J. Lightwave Technol. 22, 784–793 (2004)
[Crossref]

2002 (4)

B J. M. Roth, T. E. Murphy, and C. Xu, “Ultrasensitive and high-dynamic-range two-photon absorption in a GaAs photomultiplier tube,” Opt. Lett. 27, 2076–2078 (2002).
[Crossref]

H. Folliot, M. Lynch, A. L. Bradley, L. A. Dunbar, J. Hegarty, J. F. Donegan, L. P. Barry, J. S. Roberts, and G. Hill, “Two-photon absorption photocurrent enhancement in bulk AlGaAs semiconductor microcavities,” Appl. Phys. Lett. 80, 1328–1330 (2002).
[Crossref]

C. Xu, J. M. Roth, W. H. Knox, and K. Bergman, “Ultra-sensitive autocorrelation of 1.5 µm light with single photon counting silicon avalanche photodiode,” Electron. Lett. 38, 86–88 (2002).
[Crossref]

T. K. Liang, H. K. Tsang, I. E. Day, J. Drake, A. P. Knights, and M. Asghari, “Silicon waveguide two-photon absorption detector at 1.5 µm wavelength for autocorrelation measurements,” Appl. Phys. Lett. 81, 1323–1325 (2002).
[Crossref]

1999 (1)

Y. Jing Yong, M. Ishikawa, Y. Yamane, N. Tsurumachi, and H. Nakatsuka, “Enhancement of two-photon excited fluorescence using one-dimensional photonic crystals,” Appl. Phys. Lett. 75, 3605 (1999).
[Crossref]

1997 (2)

J. K. Ranka, A. L. Gaeta, A. Baltuska, M. S. Pshenichnikov, and D. A. Wiersma, “Autocorrelation measurement of 6-fs pulses based on the two-photon-induced photocurrent in a GaAsP photodiode,” Opt. Lett. 22, 1344–1346 (1997).
[Crossref]

M. P. van Exter, A. K. Jansen van Doorn, and J. P. Woerdman, “Electro-optic effect and birefringence in semiconductor vertical-cavity lasers,” Phys. Rev. A 56, 845 (1997).
[Crossref]

1994 (2)

D. C. Hutchings and B. S. Wherrett, “Theory of anisotropy of two-photon absorption in zinc-blende semiconductors,”  Phys. Rev. B 49, 2418 (1994).

M. D. Dvorak, W. A. Schroeder, D. R. Andersen, A. L. Smirl, and B. S. Wherrett, “Measurement of the anisotropy of two-photon absorption coefficients in zincblende semiconductors,” IEEE J. Quantum Electron. 30, 256–268 (1994).
[Crossref]

Andersen, D. R.

M. D. Dvorak, W. A. Schroeder, D. R. Andersen, A. L. Smirl, and B. S. Wherrett, “Measurement of the anisotropy of two-photon absorption coefficients in zincblende semiconductors,” IEEE J. Quantum Electron. 30, 256–268 (1994).
[Crossref]

Asghari, M.

T. K. Liang, H. K. Tsang, I. E. Day, J. Drake, A. P. Knights, and M. Asghari, “Silicon waveguide two-photon absorption detector at 1.5 µm wavelength for autocorrelation measurements,” Appl. Phys. Lett. 81, 1323–1325 (2002).
[Crossref]

Baltuska, A.

Barry, L. P.

W. H. Guo, J. O’Dowd, M. Lynch, A. L. Bradley, J. F. Donegan, and L. P. Barry, “Influence of cavity lifetime on high-finesse microcavity two-photon absorption photodetectors,” IEEE Photon. Technol. Lett. 19, 432–434 (2007).
[Crossref]

T. Krug, W. H. Guo, J. O’Dowd, M. Lynch, A. L. Bradley, J. F. Donegan, P. J. Maguire, L. P. Barry, and H. Folliot, “Resonance tuning of two-photon absorption microcavities for wavelength-selective pulse monitoring,” IEEE Photon. Technol. Lett. 18, 433–435 (2006).
[Crossref]

P. J. Maguire, L. P. Barry, T. Krug, M. Lynch, A. L. Bradley, J. F. Donegan, and H. Folliot, “All-optical sampling utilising two-photon absorption in semiconductor microcavity,” Electron. Lett. 41, 489–490 (2005).
[Crossref]

H. Folliot, M. Lynch, A. L. Bradley, L. A. Dunbar, J. Hegarty, J. F. Donegan, L. P. Barry, J. S. Roberts, and G. Hill, “Two-photon absorption photocurrent enhancement in bulk AlGaAs semiconductor microcavities,” Appl. Phys. Lett. 80, 1328–1330 (2002).
[Crossref]

W. H. Guo, J. O’Dowd, E. Flood, M. Lynch, A. L. Bradley, J. F. Donegan, K. Bondarczuk, P. J. Maguire, and L. P. Barry, “Suppression of residual single-photon absorption relative to two-photon absorption in high finesse planar microcavities,” IEEE Photon. Technol. Lett. (accepted for publication).

Bergman, K.

C. Xu, J. M. Roth, W. H. Knox, and K. Bergman, “Ultra-sensitive autocorrelation of 1.5 µm light with single photon counting silicon avalanche photodiode,” Electron. Lett. 38, 86–88 (2002).
[Crossref]

Bondarczuk, K.

W. H. Guo, J. O’Dowd, E. Flood, M. Lynch, A. L. Bradley, J. F. Donegan, K. Bondarczuk, P. J. Maguire, and L. P. Barry, “Suppression of residual single-photon absorption relative to two-photon absorption in high finesse planar microcavities,” IEEE Photon. Technol. Lett. (accepted for publication).

Bradley, A. L.

W. H. Guo, J. O’Dowd, M. Lynch, A. L. Bradley, J. F. Donegan, and L. P. Barry, “Influence of cavity lifetime on high-finesse microcavity two-photon absorption photodetectors,” IEEE Photon. Technol. Lett. 19, 432–434 (2007).
[Crossref]

T. Krug, W. H. Guo, J. O’Dowd, M. Lynch, A. L. Bradley, J. F. Donegan, P. J. Maguire, L. P. Barry, and H. Folliot, “Resonance tuning of two-photon absorption microcavities for wavelength-selective pulse monitoring,” IEEE Photon. Technol. Lett. 18, 433–435 (2006).
[Crossref]

P. J. Maguire, L. P. Barry, T. Krug, M. Lynch, A. L. Bradley, J. F. Donegan, and H. Folliot, “All-optical sampling utilising two-photon absorption in semiconductor microcavity,” Electron. Lett. 41, 489–490 (2005).
[Crossref]

H. Folliot, M. Lynch, A. L. Bradley, L. A. Dunbar, J. Hegarty, J. F. Donegan, L. P. Barry, J. S. Roberts, and G. Hill, “Two-photon absorption photocurrent enhancement in bulk AlGaAs semiconductor microcavities,” Appl. Phys. Lett. 80, 1328–1330 (2002).
[Crossref]

W. H. Guo, J. O’Dowd, E. Flood, M. Lynch, A. L. Bradley, J. F. Donegan, K. Bondarczuk, P. J. Maguire, and L. P. Barry, “Suppression of residual single-photon absorption relative to two-photon absorption in high finesse planar microcavities,” IEEE Photon. Technol. Lett. (accepted for publication).

Day, I. E.

T. K. Liang, H. K. Tsang, I. E. Day, J. Drake, A. P. Knights, and M. Asghari, “Silicon waveguide two-photon absorption detector at 1.5 µm wavelength for autocorrelation measurements,” Appl. Phys. Lett. 81, 1323–1325 (2002).
[Crossref]

Donegan, J. F.

W. H. Guo, J. O’Dowd, M. Lynch, A. L. Bradley, J. F. Donegan, and L. P. Barry, “Influence of cavity lifetime on high-finesse microcavity two-photon absorption photodetectors,” IEEE Photon. Technol. Lett. 19, 432–434 (2007).
[Crossref]

T. Krug, W. H. Guo, J. O’Dowd, M. Lynch, A. L. Bradley, J. F. Donegan, P. J. Maguire, L. P. Barry, and H. Folliot, “Resonance tuning of two-photon absorption microcavities for wavelength-selective pulse monitoring,” IEEE Photon. Technol. Lett. 18, 433–435 (2006).
[Crossref]

P. J. Maguire, L. P. Barry, T. Krug, M. Lynch, A. L. Bradley, J. F. Donegan, and H. Folliot, “All-optical sampling utilising two-photon absorption in semiconductor microcavity,” Electron. Lett. 41, 489–490 (2005).
[Crossref]

H. Folliot, M. Lynch, A. L. Bradley, L. A. Dunbar, J. Hegarty, J. F. Donegan, L. P. Barry, J. S. Roberts, and G. Hill, “Two-photon absorption photocurrent enhancement in bulk AlGaAs semiconductor microcavities,” Appl. Phys. Lett. 80, 1328–1330 (2002).
[Crossref]

W. H. Guo, J. O’Dowd, E. Flood, M. Lynch, A. L. Bradley, J. F. Donegan, K. Bondarczuk, P. J. Maguire, and L. P. Barry, “Suppression of residual single-photon absorption relative to two-photon absorption in high finesse planar microcavities,” IEEE Photon. Technol. Lett. (accepted for publication).

Drake, J.

T. K. Liang, H. K. Tsang, I. E. Day, J. Drake, A. P. Knights, and M. Asghari, “Silicon waveguide two-photon absorption detector at 1.5 µm wavelength for autocorrelation measurements,” Appl. Phys. Lett. 81, 1323–1325 (2002).
[Crossref]

Dunbar, L. A.

H. Folliot, M. Lynch, A. L. Bradley, L. A. Dunbar, J. Hegarty, J. F. Donegan, L. P. Barry, J. S. Roberts, and G. Hill, “Two-photon absorption photocurrent enhancement in bulk AlGaAs semiconductor microcavities,” Appl. Phys. Lett. 80, 1328–1330 (2002).
[Crossref]

Dvorak, M. D.

M. D. Dvorak, W. A. Schroeder, D. R. Andersen, A. L. Smirl, and B. S. Wherrett, “Measurement of the anisotropy of two-photon absorption coefficients in zincblende semiconductors,” IEEE J. Quantum Electron. 30, 256–268 (1994).
[Crossref]

Fishteyn, M.

Flood, E.

W. H. Guo, J. O’Dowd, E. Flood, M. Lynch, A. L. Bradley, J. F. Donegan, K. Bondarczuk, P. J. Maguire, and L. P. Barry, “Suppression of residual single-photon absorption relative to two-photon absorption in high finesse planar microcavities,” IEEE Photon. Technol. Lett. (accepted for publication).

Folliot, H.

T. Krug, W. H. Guo, J. O’Dowd, M. Lynch, A. L. Bradley, J. F. Donegan, P. J. Maguire, L. P. Barry, and H. Folliot, “Resonance tuning of two-photon absorption microcavities for wavelength-selective pulse monitoring,” IEEE Photon. Technol. Lett. 18, 433–435 (2006).
[Crossref]

P. J. Maguire, L. P. Barry, T. Krug, M. Lynch, A. L. Bradley, J. F. Donegan, and H. Folliot, “All-optical sampling utilising two-photon absorption in semiconductor microcavity,” Electron. Lett. 41, 489–490 (2005).
[Crossref]

H. Folliot, M. Lynch, A. L. Bradley, L. A. Dunbar, J. Hegarty, J. F. Donegan, L. P. Barry, J. S. Roberts, and G. Hill, “Two-photon absorption photocurrent enhancement in bulk AlGaAs semiconductor microcavities,” Appl. Phys. Lett. 80, 1328–1330 (2002).
[Crossref]

Gaeta, A. L.

Guo, W. H.

W. H. Guo, J. O’Dowd, M. Lynch, A. L. Bradley, J. F. Donegan, and L. P. Barry, “Influence of cavity lifetime on high-finesse microcavity two-photon absorption photodetectors,” IEEE Photon. Technol. Lett. 19, 432–434 (2007).
[Crossref]

T. Krug, W. H. Guo, J. O’Dowd, M. Lynch, A. L. Bradley, J. F. Donegan, P. J. Maguire, L. P. Barry, and H. Folliot, “Resonance tuning of two-photon absorption microcavities for wavelength-selective pulse monitoring,” IEEE Photon. Technol. Lett. 18, 433–435 (2006).
[Crossref]

W. H. Guo, J. O’Dowd, E. Flood, M. Lynch, A. L. Bradley, J. F. Donegan, K. Bondarczuk, P. J. Maguire, and L. P. Barry, “Suppression of residual single-photon absorption relative to two-photon absorption in high finesse planar microcavities,” IEEE Photon. Technol. Lett. (accepted for publication).

Hegarty, J.

H. Folliot, M. Lynch, A. L. Bradley, L. A. Dunbar, J. Hegarty, J. F. Donegan, L. P. Barry, J. S. Roberts, and G. Hill, “Two-photon absorption photocurrent enhancement in bulk AlGaAs semiconductor microcavities,” Appl. Phys. Lett. 80, 1328–1330 (2002).
[Crossref]

Hill, G.

H. Folliot, M. Lynch, A. L. Bradley, L. A. Dunbar, J. Hegarty, J. F. Donegan, L. P. Barry, J. S. Roberts, and G. Hill, “Two-photon absorption photocurrent enhancement in bulk AlGaAs semiconductor microcavities,” Appl. Phys. Lett. 80, 1328–1330 (2002).
[Crossref]

Hutchings, D. C.

D. C. Hutchings and B. S. Wherrett, “Theory of anisotropy of two-photon absorption in zinc-blende semiconductors,”  Phys. Rev. B 49, 2418 (1994).

Ishikawa, M.

Y. Jing Yong, M. Ishikawa, Y. Yamane, N. Tsurumachi, and H. Nakatsuka, “Enhancement of two-photon excited fluorescence using one-dimensional photonic crystals,” Appl. Phys. Lett. 75, 3605 (1999).
[Crossref]

Jansen van Doorn, A. K.

M. P. van Exter, A. K. Jansen van Doorn, and J. P. Woerdman, “Electro-optic effect and birefringence in semiconductor vertical-cavity lasers,” Phys. Rev. A 56, 845 (1997).
[Crossref]

Jing Yong, Y.

Y. Jing Yong, M. Ishikawa, Y. Yamane, N. Tsurumachi, and H. Nakatsuka, “Enhancement of two-photon excited fluorescence using one-dimensional photonic crystals,” Appl. Phys. Lett. 75, 3605 (1999).
[Crossref]

Knights, A. P.

T. K. Liang, H. K. Tsang, I. E. Day, J. Drake, A. P. Knights, and M. Asghari, “Silicon waveguide two-photon absorption detector at 1.5 µm wavelength for autocorrelation measurements,” Appl. Phys. Lett. 81, 1323–1325 (2002).
[Crossref]

Knox, W. H.

C. Xu, J. M. Roth, W. H. Knox, and K. Bergman, “Ultra-sensitive autocorrelation of 1.5 µm light with single photon counting silicon avalanche photodiode,” Electron. Lett. 38, 86–88 (2002).
[Crossref]

Krug, T.

T. Krug, W. H. Guo, J. O’Dowd, M. Lynch, A. L. Bradley, J. F. Donegan, P. J. Maguire, L. P. Barry, and H. Folliot, “Resonance tuning of two-photon absorption microcavities for wavelength-selective pulse monitoring,” IEEE Photon. Technol. Lett. 18, 433–435 (2006).
[Crossref]

P. J. Maguire, L. P. Barry, T. Krug, M. Lynch, A. L. Bradley, J. F. Donegan, and H. Folliot, “All-optical sampling utilising two-photon absorption in semiconductor microcavity,” Electron. Lett. 41, 489–490 (2005).
[Crossref]

Liang, T. K.

T. K. Liang, H. K. Tsang, I. E. Day, J. Drake, A. P. Knights, and M. Asghari, “Silicon waveguide two-photon absorption detector at 1.5 µm wavelength for autocorrelation measurements,” Appl. Phys. Lett. 81, 1323–1325 (2002).
[Crossref]

Lynch, M.

W. H. Guo, J. O’Dowd, M. Lynch, A. L. Bradley, J. F. Donegan, and L. P. Barry, “Influence of cavity lifetime on high-finesse microcavity two-photon absorption photodetectors,” IEEE Photon. Technol. Lett. 19, 432–434 (2007).
[Crossref]

T. Krug, W. H. Guo, J. O’Dowd, M. Lynch, A. L. Bradley, J. F. Donegan, P. J. Maguire, L. P. Barry, and H. Folliot, “Resonance tuning of two-photon absorption microcavities for wavelength-selective pulse monitoring,” IEEE Photon. Technol. Lett. 18, 433–435 (2006).
[Crossref]

P. J. Maguire, L. P. Barry, T. Krug, M. Lynch, A. L. Bradley, J. F. Donegan, and H. Folliot, “All-optical sampling utilising two-photon absorption in semiconductor microcavity,” Electron. Lett. 41, 489–490 (2005).
[Crossref]

H. Folliot, M. Lynch, A. L. Bradley, L. A. Dunbar, J. Hegarty, J. F. Donegan, L. P. Barry, J. S. Roberts, and G. Hill, “Two-photon absorption photocurrent enhancement in bulk AlGaAs semiconductor microcavities,” Appl. Phys. Lett. 80, 1328–1330 (2002).
[Crossref]

W. H. Guo, J. O’Dowd, E. Flood, M. Lynch, A. L. Bradley, J. F. Donegan, K. Bondarczuk, P. J. Maguire, and L. P. Barry, “Suppression of residual single-photon absorption relative to two-photon absorption in high finesse planar microcavities,” IEEE Photon. Technol. Lett. (accepted for publication).

Maguire, P. J.

T. Krug, W. H. Guo, J. O’Dowd, M. Lynch, A. L. Bradley, J. F. Donegan, P. J. Maguire, L. P. Barry, and H. Folliot, “Resonance tuning of two-photon absorption microcavities for wavelength-selective pulse monitoring,” IEEE Photon. Technol. Lett. 18, 433–435 (2006).
[Crossref]

P. J. Maguire, L. P. Barry, T. Krug, M. Lynch, A. L. Bradley, J. F. Donegan, and H. Folliot, “All-optical sampling utilising two-photon absorption in semiconductor microcavity,” Electron. Lett. 41, 489–490 (2005).
[Crossref]

W. H. Guo, J. O’Dowd, E. Flood, M. Lynch, A. L. Bradley, J. F. Donegan, K. Bondarczuk, P. J. Maguire, and L. P. Barry, “Suppression of residual single-photon absorption relative to two-photon absorption in high finesse planar microcavities,” IEEE Photon. Technol. Lett. (accepted for publication).

Murphy, T. E.

R. Salem and T. E. Murphy, “Broad-band optical clock recovery system using two-photon absorption,” IEEE Photon. Technol. Lett. 16, 2141–2143 (2004).
[Crossref]

B J. M. Roth, T. E. Murphy, and C. Xu, “Ultrasensitive and high-dynamic-range two-photon absorption in a GaAs photomultiplier tube,” Opt. Lett. 27, 2076–2078 (2002).
[Crossref]

Nakatsuka, H.

Y. Jing Yong, M. Ishikawa, Y. Yamane, N. Tsurumachi, and H. Nakatsuka, “Enhancement of two-photon excited fluorescence using one-dimensional photonic crystals,” Appl. Phys. Lett. 75, 3605 (1999).
[Crossref]

O’Dowd, J.

W. H. Guo, J. O’Dowd, M. Lynch, A. L. Bradley, J. F. Donegan, and L. P. Barry, “Influence of cavity lifetime on high-finesse microcavity two-photon absorption photodetectors,” IEEE Photon. Technol. Lett. 19, 432–434 (2007).
[Crossref]

T. Krug, W. H. Guo, J. O’Dowd, M. Lynch, A. L. Bradley, J. F. Donegan, P. J. Maguire, L. P. Barry, and H. Folliot, “Resonance tuning of two-photon absorption microcavities for wavelength-selective pulse monitoring,” IEEE Photon. Technol. Lett. 18, 433–435 (2006).
[Crossref]

W. H. Guo, J. O’Dowd, E. Flood, M. Lynch, A. L. Bradley, J. F. Donegan, K. Bondarczuk, P. J. Maguire, and L. P. Barry, “Suppression of residual single-photon absorption relative to two-photon absorption in high finesse planar microcavities,” IEEE Photon. Technol. Lett. (accepted for publication).

Pshenichnikov, M. S.

Ranka, J. K.

Roberts, J. S.

H. Folliot, M. Lynch, A. L. Bradley, L. A. Dunbar, J. Hegarty, J. F. Donegan, L. P. Barry, J. S. Roberts, and G. Hill, “Two-photon absorption photocurrent enhancement in bulk AlGaAs semiconductor microcavities,” Appl. Phys. Lett. 80, 1328–1330 (2002).
[Crossref]

Roth, B J. M.

Roth, J. M.

C. Xu, J. M. Roth, W. H. Knox, and K. Bergman, “Ultra-sensitive autocorrelation of 1.5 µm light with single photon counting silicon avalanche photodiode,” Electron. Lett. 38, 86–88 (2002).
[Crossref]

Salem, R.

R. Salem and T. E. Murphy, “Broad-band optical clock recovery system using two-photon absorption,” IEEE Photon. Technol. Lett. 16, 2141–2143 (2004).
[Crossref]

Schroeder, W. A.

M. D. Dvorak, W. A. Schroeder, D. R. Andersen, A. L. Smirl, and B. S. Wherrett, “Measurement of the anisotropy of two-photon absorption coefficients in zincblende semiconductors,” IEEE J. Quantum Electron. 30, 256–268 (1994).
[Crossref]

Smirl, A. L.

M. D. Dvorak, W. A. Schroeder, D. R. Andersen, A. L. Smirl, and B. S. Wherrett, “Measurement of the anisotropy of two-photon absorption coefficients in zincblende semiconductors,” IEEE J. Quantum Electron. 30, 256–268 (1994).
[Crossref]

Tsang, H. K.

T. K. Liang, H. K. Tsang, I. E. Day, J. Drake, A. P. Knights, and M. Asghari, “Silicon waveguide two-photon absorption detector at 1.5 µm wavelength for autocorrelation measurements,” Appl. Phys. Lett. 81, 1323–1325 (2002).
[Crossref]

Tsurumachi, N.

Y. Jing Yong, M. Ishikawa, Y. Yamane, N. Tsurumachi, and H. Nakatsuka, “Enhancement of two-photon excited fluorescence using one-dimensional photonic crystals,” Appl. Phys. Lett. 75, 3605 (1999).
[Crossref]

van Exter, M. P.

M. P. van Exter, A. K. Jansen van Doorn, and J. P. Woerdman, “Electro-optic effect and birefringence in semiconductor vertical-cavity lasers,” Phys. Rev. A 56, 845 (1997).
[Crossref]

Wherrett, B. S.

M. D. Dvorak, W. A. Schroeder, D. R. Andersen, A. L. Smirl, and B. S. Wherrett, “Measurement of the anisotropy of two-photon absorption coefficients in zincblende semiconductors,” IEEE J. Quantum Electron. 30, 256–268 (1994).
[Crossref]

D. C. Hutchings and B. S. Wherrett, “Theory of anisotropy of two-photon absorption in zinc-blende semiconductors,”  Phys. Rev. B 49, 2418 (1994).

Wielandy, S.

Wiersma, D. A.

Woerdman, J. P.

M. P. van Exter, A. K. Jansen van Doorn, and J. P. Woerdman, “Electro-optic effect and birefringence in semiconductor vertical-cavity lasers,” Phys. Rev. A 56, 845 (1997).
[Crossref]

Xu, C.

C. Xu, J. M. Roth, W. H. Knox, and K. Bergman, “Ultra-sensitive autocorrelation of 1.5 µm light with single photon counting silicon avalanche photodiode,” Electron. Lett. 38, 86–88 (2002).
[Crossref]

B J. M. Roth, T. E. Murphy, and C. Xu, “Ultrasensitive and high-dynamic-range two-photon absorption in a GaAs photomultiplier tube,” Opt. Lett. 27, 2076–2078 (2002).
[Crossref]

Yamane, Y.

Y. Jing Yong, M. Ishikawa, Y. Yamane, N. Tsurumachi, and H. Nakatsuka, “Enhancement of two-photon excited fluorescence using one-dimensional photonic crystals,” Appl. Phys. Lett. 75, 3605 (1999).
[Crossref]

Zhu, B.

Appl. Phys. Lett. (3)

T. K. Liang, H. K. Tsang, I. E. Day, J. Drake, A. P. Knights, and M. Asghari, “Silicon waveguide two-photon absorption detector at 1.5 µm wavelength for autocorrelation measurements,” Appl. Phys. Lett. 81, 1323–1325 (2002).
[Crossref]

Y. Jing Yong, M. Ishikawa, Y. Yamane, N. Tsurumachi, and H. Nakatsuka, “Enhancement of two-photon excited fluorescence using one-dimensional photonic crystals,” Appl. Phys. Lett. 75, 3605 (1999).
[Crossref]

H. Folliot, M. Lynch, A. L. Bradley, L. A. Dunbar, J. Hegarty, J. F. Donegan, L. P. Barry, J. S. Roberts, and G. Hill, “Two-photon absorption photocurrent enhancement in bulk AlGaAs semiconductor microcavities,” Appl. Phys. Lett. 80, 1328–1330 (2002).
[Crossref]

Electron. Lett. (2)

P. J. Maguire, L. P. Barry, T. Krug, M. Lynch, A. L. Bradley, J. F. Donegan, and H. Folliot, “All-optical sampling utilising two-photon absorption in semiconductor microcavity,” Electron. Lett. 41, 489–490 (2005).
[Crossref]

C. Xu, J. M. Roth, W. H. Knox, and K. Bergman, “Ultra-sensitive autocorrelation of 1.5 µm light with single photon counting silicon avalanche photodiode,” Electron. Lett. 38, 86–88 (2002).
[Crossref]

IEEE J. Quantum Electron. (1)

M. D. Dvorak, W. A. Schroeder, D. R. Andersen, A. L. Smirl, and B. S. Wherrett, “Measurement of the anisotropy of two-photon absorption coefficients in zincblende semiconductors,” IEEE J. Quantum Electron. 30, 256–268 (1994).
[Crossref]

IEEE Photon. Technol. Lett. (3)

R. Salem and T. E. Murphy, “Broad-band optical clock recovery system using two-photon absorption,” IEEE Photon. Technol. Lett. 16, 2141–2143 (2004).
[Crossref]

T. Krug, W. H. Guo, J. O’Dowd, M. Lynch, A. L. Bradley, J. F. Donegan, P. J. Maguire, L. P. Barry, and H. Folliot, “Resonance tuning of two-photon absorption microcavities for wavelength-selective pulse monitoring,” IEEE Photon. Technol. Lett. 18, 433–435 (2006).
[Crossref]

W. H. Guo, J. O’Dowd, M. Lynch, A. L. Bradley, J. F. Donegan, and L. P. Barry, “Influence of cavity lifetime on high-finesse microcavity two-photon absorption photodetectors,” IEEE Photon. Technol. Lett. 19, 432–434 (2007).
[Crossref]

J. Lightwave Technol. (1)

Opt. Lett. (2)

Phys. Rev. A (1)

M. P. van Exter, A. K. Jansen van Doorn, and J. P. Woerdman, “Electro-optic effect and birefringence in semiconductor vertical-cavity lasers,” Phys. Rev. A 56, 845 (1997).
[Crossref]

Other (2)

W. H. Guo, J. O’Dowd, E. Flood, M. Lynch, A. L. Bradley, J. F. Donegan, K. Bondarczuk, P. J. Maguire, and L. P. Barry, “Suppression of residual single-photon absorption relative to two-photon absorption in high finesse planar microcavities,” IEEE Photon. Technol. Lett. (accepted for publication).

D. C. Hutchings and B. S. Wherrett, “Theory of anisotropy of two-photon absorption in zinc-blende semiconductors,”  Phys. Rev. B 49, 2418 (1994).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

SPA generated photocurrent vs. orientation of linear state of polarization (θ) of the incident optical signal. The polarization scan is carried out at a low average power (0.15 mW) in the SPA dominant regime at three different wavelengths around the cavity resonance.

Fig. 2.
Fig. 2.

Normalized photocurrent vs. wavelength for both high average power incidence and low average power incidence, corresponding to the TPA and SPA dominant regimes, respectively. The wavelength scans were carried out for the linear polarization states corresponding to the peak (θ=900) and trough (θ=00) of Fig. 1. Fig. 2(inset). Photocurrent vs. incident optical power curve carried out near the resonant wavelength.

Fig. 3.
Fig. 3.

Dependence of the SPA photocurrent on the state of polarization as it is rotated from circular to linear to circular along a 4 different longitudinal lines of the Poincaré sphere, where θ is the orientation angle.

Fig. 4.
Fig. 4.

TPA photocurrent vs. orientation of the linear state of polarization of the incident optical signal, recorded for three wavelengths around the cavity resonance.

Fig. 5.
Fig. 5.

Dependence of the TPA photocurrent on the state of polarization as it is rotated from circular to linear to circular along 4 different longitudinal lines of the Poincaré sphere, where θ is the orientation angle.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

e x , y = C x , y 1 R exp [ i 2 π Δ λ x , y FSR ]
β = ω 2 n 2 c 2 ε 0 χ xxxx ( ( 2 σ 2 δ 2 ) + ( 2 δ σ 2 ) ζ ̂ · ζ ̂ 2 + σ i ζ i 4 )

Metrics