Abstract

In this study we have theoretically and experimentally investigated the behavior of first order approximation contrast function when purely scattering inhomogeneities located at different depths inside a turbid thick slab are considered. Results of model predictions have been compared with Finite element method simulations and tested on phantoms. To this aim, we have developed for the first time to our knowledge a fitting algorithm for estimating both the scattering perturbation parameter and the shift of the inhomogeneity from the middle plane, allowing one to reduce the uncertainties due to depth. This is important for optical mammography because effects of the depth can cause uncertainties in the derived tumor optical properties that are above 20% and the scattering properties of tumors differ from those of the sourrounding healthy tissue by a comparable extent.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Chance and R. R. Alfano, eds., "Photon Migration and Imaging in Random Media and Tissues," Proc. SPIE 1888, 454-465 (1993).
  2. R. R. Alfano and J. Fujimoto, "Advances in Optical Imaging and Photon Migration," Opt. Photonics News 7, 37 (1996).
  3. G. E. Cohn,W. S. Grundfest, D. A. Benaron, and T. Vo-Dinh, eds., Advanced Biomedical and Clinical Diagnostic Systems II (2004).
  4. H. Xu, B. W. Pogue, H. Dehghani, K. D. Paulsen, R. Springett, and J. F. Dunn, "Absorption and scattering imaging of tissue with steady-state second-differential spectral-analysis tomography," Opt. Lett. 29, 2043-2045 (2004).
    [CrossRef] [PubMed]
  5. S. Fantini, M. A. Franceschini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, K. T. Moesta, P. M. Schlag, and M. Kaschke, "Frequency-domain optical mammography: Edge effect corrections," Med. Phys. 23, 149-157 (1996).
    [CrossRef] [PubMed]
  6. G. Mitic, J. G. Koelzer, J. Otto, E. Plies, G. Soelkner, and W. Zinth, "Time-resolved transillumination of turbid media," Proc. SPIE 2082, 26-32 (1994).
  7. R. Cubeddu, C. D’Andrea, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, "Effects of the menstrual cycle on the red and near-infrared optical properties of the human breast," Photochem. Photobiol. 72, 383-391 (2000).
    [PubMed]
  8. A. Cerussi, D. Jakubowski, N. Shah, F. Bevilacqua, R. Lanning, A. Berger, D. Hsiang, J. Butler, R. Holcombe, and B. tromberg, "Spectroscopy enhances the information content of optical mammography," J. Biomed. Opt. 7, 60-71 (2002).
    [CrossRef] [PubMed]
  9. B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, S. Srinivasan, X. Song, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, "Characterization of hemoglobin, water, and NIR scattering in breast tissue: analysis of intersubject variability and menstrual cycle changes," J. Biomed. Opt. 9, 541-552 (2004).
    [CrossRef] [PubMed]
  10. L. Spinelli, A. Torricelli, A. Pifferi, P. Taroni, G. M. Danesini, and R. Cubeddu, "Bulk optical properties and tissue components in the female breast from multiwavelength time-resolved optical mammography," J. Biomed. Opt. 9, 1137-1142 (2004).
    [CrossRef] [PubMed]
  11. U. Hampel, E. Schleicher, and R. Freyer, "Volume image reconstruction for diffuse optical tomography," Appl. Opt. 41, 3816-3826 (2002).
    [CrossRef] [PubMed]
  12. Y. Xu, X. Gu, T. Khan, and H. Jiang, "Absorption and Scattering Images of Heterogeneous Scattering Media Can Be Simultaneously Reconstructed by Use of dc Data," Appl. Opt. 41, 5427-5437 (2002).
    [CrossRef] [PubMed]
  13. T. Yates, J. C. Hebden, A. Gibson, N. Everdell, S. R. Arridge, and M. Douek, "Optical tomography of the breast using a multi-channel time-resolved imager," Phys. Med. Biol. 50, 2503-2517 (2005).
    [CrossRef] [PubMed]
  14. J. Ye, K. Webb, R. Millane, and T. Downar, "Modified distorted Born iterative method with an approximate Frchet derivative for optical diffusion tomography," J. Opt. Soc. Am. A 16, 1814 (1999).
    [CrossRef]
  15. F. Gao, Y. Tanikawa, H. Zhao, and Y. Yamada, "Semi-Three-Dimensional Algorithm for Time-Resolved Diffuse Optical Tomography by Use of the Generalized Pulse Spectrum Technique," Appl. Opt.  41, 7346 (2002).
    [CrossRef] [PubMed]
  16. D. Grosenick, H. Wabnitz, and H. Rinneberg, "Time-resolved imaging of solid phantoms for optical mammography," Appl. Opt. 36, 221-231 (1997).
    [CrossRef] [PubMed]
  17. B. Wassermann, A. Kummrow, K. T. Moesta, D. Grosenick, J. Mucke, H. Wabnitz, M. Moller, R. Macdonald, P. M. Schlag, and H. Rinneberg, "In-vivo tissue optical properties derived by linear perturbation theory for edgecorrected time-domain mammograms," Opt. Express 13, 8571-8583 (2005).
    [CrossRef] [PubMed]
  18. A. Pifferi, P. Taroni, A. Torricelli, F. Messina, R. Cubeddu, and G. Danesini, "Four-wavelength time-resolved optical mammography in the 680-980-nm range," Opt. Lett. 28, 1138-1140 (2003).
    [CrossRef] [PubMed]
  19. J. C. Hebden and S. R. Arridge, "Imaging Through Scattering Media by the Use of an Analytical Model of Perturbation Amplitudes in the Time Domain," Appl. Opt. 35, 6788 (1996).
    [CrossRef] [PubMed]
  20. M. Morin, S. Verrealut, A. Mailloux, J. Frechette, S. Chatigny, Y. Painchaud, and P. Beaudry, "Inclusion characterization in a scattering slab with time-resolved transmittance measurements: perturbation analysis," Appl. Opt. 39, 2840-2852 (2000).
    [CrossRef]
  21. S. Carraresi, T. S. M. Shatir, F. Martelli, and G. Zaccanti, "Accuracy of a Perturbation Model to Predict the Effect of Scattering and Absorbing Inhomogeneities on Photon Migration," Appl. Opt. 40, 4622 (2001).
    [CrossRef]
  22. L. Spinelli, A. Torricelli, A. Pifferi, P. Taroni, and R. Cubeddu, "Experimental test of a perturbation model for time-resolved imaging in diffusive media," Appl. Opt. 42, 3145-3153 (2003).
    [CrossRef] [PubMed]
  23. H. Rinneberg, D. Grosenick, K. Moesta, J. Mucke, B. Gebauer, C. Stroszczynski, H. Wabnitz, M. Moeller, B. Wassermann, and P. Schlag, "Scanning time-domain optical mammography: detection and characterization of breast tumors in vivo," Technol Cancer Res Treat 4, 483-496 (2005).
    [PubMed]
  24. R. Esposito, S. De Nicola, M. Lepore, I. Delfino, and P. L. Indovina, "A perturbation approach to characterize absorptive inclusions in diffusing media by time-resolved contrast measurements," J. Opt. A 6, 736-741 (2004).
    [CrossRef]
  25. R. Esposito, S. De Nicola, M. Lepore, and P. L. Indovina, "Perturbation approach to the time-resolved transmittance for a spatially varying scattering inclusion in a diffusive slab," J. Opt. Soc. Am. A 23, 1937-1945 (2006).
    [CrossRef]
  26. R. C. Haskell, L. O. Svaasand, T. T. Tsay, C. Feng, M. S. McAdams, and B. J. Tromberg, "Boundary conditions for the diffusion equation in radiative transfer," J. Opt. Soc. Am. A 11, 2727-2741 (1994).
    [CrossRef]
  27. S. De Nicola, R. Esposito, M. Lepore, and P. L. Indovina, "Time-resolved contrast function and optical characterization of spatially varying absorptive inclusions at different depths in diffusing media," Phys. Rev. E 69, 031901 (2004).
    [CrossRef]

2006 (1)

2005 (3)

B. Wassermann, A. Kummrow, K. T. Moesta, D. Grosenick, J. Mucke, H. Wabnitz, M. Moller, R. Macdonald, P. M. Schlag, and H. Rinneberg, "In-vivo tissue optical properties derived by linear perturbation theory for edgecorrected time-domain mammograms," Opt. Express 13, 8571-8583 (2005).
[CrossRef] [PubMed]

T. Yates, J. C. Hebden, A. Gibson, N. Everdell, S. R. Arridge, and M. Douek, "Optical tomography of the breast using a multi-channel time-resolved imager," Phys. Med. Biol. 50, 2503-2517 (2005).
[CrossRef] [PubMed]

H. Rinneberg, D. Grosenick, K. Moesta, J. Mucke, B. Gebauer, C. Stroszczynski, H. Wabnitz, M. Moeller, B. Wassermann, and P. Schlag, "Scanning time-domain optical mammography: detection and characterization of breast tumors in vivo," Technol Cancer Res Treat 4, 483-496 (2005).
[PubMed]

2004 (5)

R. Esposito, S. De Nicola, M. Lepore, I. Delfino, and P. L. Indovina, "A perturbation approach to characterize absorptive inclusions in diffusing media by time-resolved contrast measurements," J. Opt. A 6, 736-741 (2004).
[CrossRef]

S. De Nicola, R. Esposito, M. Lepore, and P. L. Indovina, "Time-resolved contrast function and optical characterization of spatially varying absorptive inclusions at different depths in diffusing media," Phys. Rev. E 69, 031901 (2004).
[CrossRef]

B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, S. Srinivasan, X. Song, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, "Characterization of hemoglobin, water, and NIR scattering in breast tissue: analysis of intersubject variability and menstrual cycle changes," J. Biomed. Opt. 9, 541-552 (2004).
[CrossRef] [PubMed]

L. Spinelli, A. Torricelli, A. Pifferi, P. Taroni, G. M. Danesini, and R. Cubeddu, "Bulk optical properties and tissue components in the female breast from multiwavelength time-resolved optical mammography," J. Biomed. Opt. 9, 1137-1142 (2004).
[CrossRef] [PubMed]

H. Xu, B. W. Pogue, H. Dehghani, K. D. Paulsen, R. Springett, and J. F. Dunn, "Absorption and scattering imaging of tissue with steady-state second-differential spectral-analysis tomography," Opt. Lett. 29, 2043-2045 (2004).
[CrossRef] [PubMed]

2003 (2)

2002 (4)

2001 (1)

2000 (2)

M. Morin, S. Verrealut, A. Mailloux, J. Frechette, S. Chatigny, Y. Painchaud, and P. Beaudry, "Inclusion characterization in a scattering slab with time-resolved transmittance measurements: perturbation analysis," Appl. Opt. 39, 2840-2852 (2000).
[CrossRef]

R. Cubeddu, C. D’Andrea, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, "Effects of the menstrual cycle on the red and near-infrared optical properties of the human breast," Photochem. Photobiol. 72, 383-391 (2000).
[PubMed]

1999 (1)

1997 (1)

1996 (3)

J. C. Hebden and S. R. Arridge, "Imaging Through Scattering Media by the Use of an Analytical Model of Perturbation Amplitudes in the Time Domain," Appl. Opt. 35, 6788 (1996).
[CrossRef] [PubMed]

S. Fantini, M. A. Franceschini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, K. T. Moesta, P. M. Schlag, and M. Kaschke, "Frequency-domain optical mammography: Edge effect corrections," Med. Phys. 23, 149-157 (1996).
[CrossRef] [PubMed]

R. R. Alfano and J. Fujimoto, "Advances in Optical Imaging and Photon Migration," Opt. Photonics News 7, 37 (1996).

1994 (1)

Alfano, R. R.

R. R. Alfano and J. Fujimoto, "Advances in Optical Imaging and Photon Migration," Opt. Photonics News 7, 37 (1996).

Arridge, S. R.

T. Yates, J. C. Hebden, A. Gibson, N. Everdell, S. R. Arridge, and M. Douek, "Optical tomography of the breast using a multi-channel time-resolved imager," Phys. Med. Biol. 50, 2503-2517 (2005).
[CrossRef] [PubMed]

J. C. Hebden and S. R. Arridge, "Imaging Through Scattering Media by the Use of an Analytical Model of Perturbation Amplitudes in the Time Domain," Appl. Opt. 35, 6788 (1996).
[CrossRef] [PubMed]

Beaudry, P.

Berger, A.

A. Cerussi, D. Jakubowski, N. Shah, F. Bevilacqua, R. Lanning, A. Berger, D. Hsiang, J. Butler, R. Holcombe, and B. tromberg, "Spectroscopy enhances the information content of optical mammography," J. Biomed. Opt. 7, 60-71 (2002).
[CrossRef] [PubMed]

Bevilacqua, F.

A. Cerussi, D. Jakubowski, N. Shah, F. Bevilacqua, R. Lanning, A. Berger, D. Hsiang, J. Butler, R. Holcombe, and B. tromberg, "Spectroscopy enhances the information content of optical mammography," J. Biomed. Opt. 7, 60-71 (2002).
[CrossRef] [PubMed]

Butler, J.

A. Cerussi, D. Jakubowski, N. Shah, F. Bevilacqua, R. Lanning, A. Berger, D. Hsiang, J. Butler, R. Holcombe, and B. tromberg, "Spectroscopy enhances the information content of optical mammography," J. Biomed. Opt. 7, 60-71 (2002).
[CrossRef] [PubMed]

Carraresi, S.

Cerussi, A.

A. Cerussi, D. Jakubowski, N. Shah, F. Bevilacqua, R. Lanning, A. Berger, D. Hsiang, J. Butler, R. Holcombe, and B. tromberg, "Spectroscopy enhances the information content of optical mammography," J. Biomed. Opt. 7, 60-71 (2002).
[CrossRef] [PubMed]

Chatigny, S.

Cubeddu, R.

L. Spinelli, A. Torricelli, A. Pifferi, P. Taroni, G. M. Danesini, and R. Cubeddu, "Bulk optical properties and tissue components in the female breast from multiwavelength time-resolved optical mammography," J. Biomed. Opt. 9, 1137-1142 (2004).
[CrossRef] [PubMed]

L. Spinelli, A. Torricelli, A. Pifferi, P. Taroni, and R. Cubeddu, "Experimental test of a perturbation model for time-resolved imaging in diffusive media," Appl. Opt. 42, 3145-3153 (2003).
[CrossRef] [PubMed]

A. Pifferi, P. Taroni, A. Torricelli, F. Messina, R. Cubeddu, and G. Danesini, "Four-wavelength time-resolved optical mammography in the 680-980-nm range," Opt. Lett. 28, 1138-1140 (2003).
[CrossRef] [PubMed]

R. Cubeddu, C. D’Andrea, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, "Effects of the menstrual cycle on the red and near-infrared optical properties of the human breast," Photochem. Photobiol. 72, 383-391 (2000).
[PubMed]

D’Andrea, C.

R. Cubeddu, C. D’Andrea, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, "Effects of the menstrual cycle on the red and near-infrared optical properties of the human breast," Photochem. Photobiol. 72, 383-391 (2000).
[PubMed]

Danesini, G.

Danesini, G. M.

L. Spinelli, A. Torricelli, A. Pifferi, P. Taroni, G. M. Danesini, and R. Cubeddu, "Bulk optical properties and tissue components in the female breast from multiwavelength time-resolved optical mammography," J. Biomed. Opt. 9, 1137-1142 (2004).
[CrossRef] [PubMed]

De Nicola, S.

R. Esposito, S. De Nicola, M. Lepore, and P. L. Indovina, "Perturbation approach to the time-resolved transmittance for a spatially varying scattering inclusion in a diffusive slab," J. Opt. Soc. Am. A 23, 1937-1945 (2006).
[CrossRef]

S. De Nicola, R. Esposito, M. Lepore, and P. L. Indovina, "Time-resolved contrast function and optical characterization of spatially varying absorptive inclusions at different depths in diffusing media," Phys. Rev. E 69, 031901 (2004).
[CrossRef]

R. Esposito, S. De Nicola, M. Lepore, I. Delfino, and P. L. Indovina, "A perturbation approach to characterize absorptive inclusions in diffusing media by time-resolved contrast measurements," J. Opt. A 6, 736-741 (2004).
[CrossRef]

Dehghani, H.

B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, S. Srinivasan, X. Song, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, "Characterization of hemoglobin, water, and NIR scattering in breast tissue: analysis of intersubject variability and menstrual cycle changes," J. Biomed. Opt. 9, 541-552 (2004).
[CrossRef] [PubMed]

H. Xu, B. W. Pogue, H. Dehghani, K. D. Paulsen, R. Springett, and J. F. Dunn, "Absorption and scattering imaging of tissue with steady-state second-differential spectral-analysis tomography," Opt. Lett. 29, 2043-2045 (2004).
[CrossRef] [PubMed]

Delfino, I.

R. Esposito, S. De Nicola, M. Lepore, I. Delfino, and P. L. Indovina, "A perturbation approach to characterize absorptive inclusions in diffusing media by time-resolved contrast measurements," J. Opt. A 6, 736-741 (2004).
[CrossRef]

Douek, M.

T. Yates, J. C. Hebden, A. Gibson, N. Everdell, S. R. Arridge, and M. Douek, "Optical tomography of the breast using a multi-channel time-resolved imager," Phys. Med. Biol. 50, 2503-2517 (2005).
[CrossRef] [PubMed]

Downar, T.

Dunn, J. F.

Esposito, R.

R. Esposito, S. De Nicola, M. Lepore, and P. L. Indovina, "Perturbation approach to the time-resolved transmittance for a spatially varying scattering inclusion in a diffusive slab," J. Opt. Soc. Am. A 23, 1937-1945 (2006).
[CrossRef]

S. De Nicola, R. Esposito, M. Lepore, and P. L. Indovina, "Time-resolved contrast function and optical characterization of spatially varying absorptive inclusions at different depths in diffusing media," Phys. Rev. E 69, 031901 (2004).
[CrossRef]

R. Esposito, S. De Nicola, M. Lepore, I. Delfino, and P. L. Indovina, "A perturbation approach to characterize absorptive inclusions in diffusing media by time-resolved contrast measurements," J. Opt. A 6, 736-741 (2004).
[CrossRef]

Everdell, N.

T. Yates, J. C. Hebden, A. Gibson, N. Everdell, S. R. Arridge, and M. Douek, "Optical tomography of the breast using a multi-channel time-resolved imager," Phys. Med. Biol. 50, 2503-2517 (2005).
[CrossRef] [PubMed]

Fantini, S.

S. Fantini, M. A. Franceschini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, K. T. Moesta, P. M. Schlag, and M. Kaschke, "Frequency-domain optical mammography: Edge effect corrections," Med. Phys. 23, 149-157 (1996).
[CrossRef] [PubMed]

Feng, C.

Franceschini, M. A.

S. Fantini, M. A. Franceschini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, K. T. Moesta, P. M. Schlag, and M. Kaschke, "Frequency-domain optical mammography: Edge effect corrections," Med. Phys. 23, 149-157 (1996).
[CrossRef] [PubMed]

Frechette, J.

Freyer, R.

Fujimoto, J.

R. R. Alfano and J. Fujimoto, "Advances in Optical Imaging and Photon Migration," Opt. Photonics News 7, 37 (1996).

Gaida, G.

S. Fantini, M. A. Franceschini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, K. T. Moesta, P. M. Schlag, and M. Kaschke, "Frequency-domain optical mammography: Edge effect corrections," Med. Phys. 23, 149-157 (1996).
[CrossRef] [PubMed]

Gao, F.

Gebauer, B.

H. Rinneberg, D. Grosenick, K. Moesta, J. Mucke, B. Gebauer, C. Stroszczynski, H. Wabnitz, M. Moeller, B. Wassermann, and P. Schlag, "Scanning time-domain optical mammography: detection and characterization of breast tumors in vivo," Technol Cancer Res Treat 4, 483-496 (2005).
[PubMed]

Gibson, A.

T. Yates, J. C. Hebden, A. Gibson, N. Everdell, S. R. Arridge, and M. Douek, "Optical tomography of the breast using a multi-channel time-resolved imager," Phys. Med. Biol. 50, 2503-2517 (2005).
[CrossRef] [PubMed]

Gratton, E.

S. Fantini, M. A. Franceschini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, K. T. Moesta, P. M. Schlag, and M. Kaschke, "Frequency-domain optical mammography: Edge effect corrections," Med. Phys. 23, 149-157 (1996).
[CrossRef] [PubMed]

Grosenick, D.

Gu, X.

Hampel, U.

Haskell, R. C.

Hebden, J. C.

T. Yates, J. C. Hebden, A. Gibson, N. Everdell, S. R. Arridge, and M. Douek, "Optical tomography of the breast using a multi-channel time-resolved imager," Phys. Med. Biol. 50, 2503-2517 (2005).
[CrossRef] [PubMed]

J. C. Hebden and S. R. Arridge, "Imaging Through Scattering Media by the Use of an Analytical Model of Perturbation Amplitudes in the Time Domain," Appl. Opt. 35, 6788 (1996).
[CrossRef] [PubMed]

Holcombe, R.

A. Cerussi, D. Jakubowski, N. Shah, F. Bevilacqua, R. Lanning, A. Berger, D. Hsiang, J. Butler, R. Holcombe, and B. tromberg, "Spectroscopy enhances the information content of optical mammography," J. Biomed. Opt. 7, 60-71 (2002).
[CrossRef] [PubMed]

Hsiang, D.

A. Cerussi, D. Jakubowski, N. Shah, F. Bevilacqua, R. Lanning, A. Berger, D. Hsiang, J. Butler, R. Holcombe, and B. tromberg, "Spectroscopy enhances the information content of optical mammography," J. Biomed. Opt. 7, 60-71 (2002).
[CrossRef] [PubMed]

Indovina, P. L.

R. Esposito, S. De Nicola, M. Lepore, and P. L. Indovina, "Perturbation approach to the time-resolved transmittance for a spatially varying scattering inclusion in a diffusive slab," J. Opt. Soc. Am. A 23, 1937-1945 (2006).
[CrossRef]

S. De Nicola, R. Esposito, M. Lepore, and P. L. Indovina, "Time-resolved contrast function and optical characterization of spatially varying absorptive inclusions at different depths in diffusing media," Phys. Rev. E 69, 031901 (2004).
[CrossRef]

R. Esposito, S. De Nicola, M. Lepore, I. Delfino, and P. L. Indovina, "A perturbation approach to characterize absorptive inclusions in diffusing media by time-resolved contrast measurements," J. Opt. A 6, 736-741 (2004).
[CrossRef]

Jakubowski, D.

A. Cerussi, D. Jakubowski, N. Shah, F. Bevilacqua, R. Lanning, A. Berger, D. Hsiang, J. Butler, R. Holcombe, and B. tromberg, "Spectroscopy enhances the information content of optical mammography," J. Biomed. Opt. 7, 60-71 (2002).
[CrossRef] [PubMed]

Jess, H.

S. Fantini, M. A. Franceschini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, K. T. Moesta, P. M. Schlag, and M. Kaschke, "Frequency-domain optical mammography: Edge effect corrections," Med. Phys. 23, 149-157 (1996).
[CrossRef] [PubMed]

Jiang, H.

Jiang, S.

B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, S. Srinivasan, X. Song, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, "Characterization of hemoglobin, water, and NIR scattering in breast tissue: analysis of intersubject variability and menstrual cycle changes," J. Biomed. Opt. 9, 541-552 (2004).
[CrossRef] [PubMed]

Kaschke, M.

S. Fantini, M. A. Franceschini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, K. T. Moesta, P. M. Schlag, and M. Kaschke, "Frequency-domain optical mammography: Edge effect corrections," Med. Phys. 23, 149-157 (1996).
[CrossRef] [PubMed]

Khan, T.

Kogel, C.

B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, S. Srinivasan, X. Song, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, "Characterization of hemoglobin, water, and NIR scattering in breast tissue: analysis of intersubject variability and menstrual cycle changes," J. Biomed. Opt. 9, 541-552 (2004).
[CrossRef] [PubMed]

Kummrow, A.

Lanning, R.

A. Cerussi, D. Jakubowski, N. Shah, F. Bevilacqua, R. Lanning, A. Berger, D. Hsiang, J. Butler, R. Holcombe, and B. tromberg, "Spectroscopy enhances the information content of optical mammography," J. Biomed. Opt. 7, 60-71 (2002).
[CrossRef] [PubMed]

Lepore, M.

R. Esposito, S. De Nicola, M. Lepore, and P. L. Indovina, "Perturbation approach to the time-resolved transmittance for a spatially varying scattering inclusion in a diffusive slab," J. Opt. Soc. Am. A 23, 1937-1945 (2006).
[CrossRef]

S. De Nicola, R. Esposito, M. Lepore, and P. L. Indovina, "Time-resolved contrast function and optical characterization of spatially varying absorptive inclusions at different depths in diffusing media," Phys. Rev. E 69, 031901 (2004).
[CrossRef]

R. Esposito, S. De Nicola, M. Lepore, I. Delfino, and P. L. Indovina, "A perturbation approach to characterize absorptive inclusions in diffusing media by time-resolved contrast measurements," J. Opt. A 6, 736-741 (2004).
[CrossRef]

Macdonald, R.

Mailloux, A.

Mantulin, W. W.

S. Fantini, M. A. Franceschini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, K. T. Moesta, P. M. Schlag, and M. Kaschke, "Frequency-domain optical mammography: Edge effect corrections," Med. Phys. 23, 149-157 (1996).
[CrossRef] [PubMed]

Martelli, F.

McAdams, M. S.

Messina, F.

Millane, R.

Moeller, M.

H. Rinneberg, D. Grosenick, K. Moesta, J. Mucke, B. Gebauer, C. Stroszczynski, H. Wabnitz, M. Moeller, B. Wassermann, and P. Schlag, "Scanning time-domain optical mammography: detection and characterization of breast tumors in vivo," Technol Cancer Res Treat 4, 483-496 (2005).
[PubMed]

Moesta, K.

H. Rinneberg, D. Grosenick, K. Moesta, J. Mucke, B. Gebauer, C. Stroszczynski, H. Wabnitz, M. Moeller, B. Wassermann, and P. Schlag, "Scanning time-domain optical mammography: detection and characterization of breast tumors in vivo," Technol Cancer Res Treat 4, 483-496 (2005).
[PubMed]

Moesta, K. T.

B. Wassermann, A. Kummrow, K. T. Moesta, D. Grosenick, J. Mucke, H. Wabnitz, M. Moller, R. Macdonald, P. M. Schlag, and H. Rinneberg, "In-vivo tissue optical properties derived by linear perturbation theory for edgecorrected time-domain mammograms," Opt. Express 13, 8571-8583 (2005).
[CrossRef] [PubMed]

S. Fantini, M. A. Franceschini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, K. T. Moesta, P. M. Schlag, and M. Kaschke, "Frequency-domain optical mammography: Edge effect corrections," Med. Phys. 23, 149-157 (1996).
[CrossRef] [PubMed]

Moller, M.

Morin, M.

Mucke, J.

B. Wassermann, A. Kummrow, K. T. Moesta, D. Grosenick, J. Mucke, H. Wabnitz, M. Moller, R. Macdonald, P. M. Schlag, and H. Rinneberg, "In-vivo tissue optical properties derived by linear perturbation theory for edgecorrected time-domain mammograms," Opt. Express 13, 8571-8583 (2005).
[CrossRef] [PubMed]

H. Rinneberg, D. Grosenick, K. Moesta, J. Mucke, B. Gebauer, C. Stroszczynski, H. Wabnitz, M. Moeller, B. Wassermann, and P. Schlag, "Scanning time-domain optical mammography: detection and characterization of breast tumors in vivo," Technol Cancer Res Treat 4, 483-496 (2005).
[PubMed]

Painchaud, Y.

Paulsen, K. D.

B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, S. Srinivasan, X. Song, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, "Characterization of hemoglobin, water, and NIR scattering in breast tissue: analysis of intersubject variability and menstrual cycle changes," J. Biomed. Opt. 9, 541-552 (2004).
[CrossRef] [PubMed]

H. Xu, B. W. Pogue, H. Dehghani, K. D. Paulsen, R. Springett, and J. F. Dunn, "Absorption and scattering imaging of tissue with steady-state second-differential spectral-analysis tomography," Opt. Lett. 29, 2043-2045 (2004).
[CrossRef] [PubMed]

Pifferi, A.

L. Spinelli, A. Torricelli, A. Pifferi, P. Taroni, G. M. Danesini, and R. Cubeddu, "Bulk optical properties and tissue components in the female breast from multiwavelength time-resolved optical mammography," J. Biomed. Opt. 9, 1137-1142 (2004).
[CrossRef] [PubMed]

A. Pifferi, P. Taroni, A. Torricelli, F. Messina, R. Cubeddu, and G. Danesini, "Four-wavelength time-resolved optical mammography in the 680-980-nm range," Opt. Lett. 28, 1138-1140 (2003).
[CrossRef] [PubMed]

L. Spinelli, A. Torricelli, A. Pifferi, P. Taroni, and R. Cubeddu, "Experimental test of a perturbation model for time-resolved imaging in diffusive media," Appl. Opt. 42, 3145-3153 (2003).
[CrossRef] [PubMed]

R. Cubeddu, C. D’Andrea, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, "Effects of the menstrual cycle on the red and near-infrared optical properties of the human breast," Photochem. Photobiol. 72, 383-391 (2000).
[PubMed]

Pogue, B. W.

B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, S. Srinivasan, X. Song, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, "Characterization of hemoglobin, water, and NIR scattering in breast tissue: analysis of intersubject variability and menstrual cycle changes," J. Biomed. Opt. 9, 541-552 (2004).
[CrossRef] [PubMed]

H. Xu, B. W. Pogue, H. Dehghani, K. D. Paulsen, R. Springett, and J. F. Dunn, "Absorption and scattering imaging of tissue with steady-state second-differential spectral-analysis tomography," Opt. Lett. 29, 2043-2045 (2004).
[CrossRef] [PubMed]

Poplack, S. P.

B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, S. Srinivasan, X. Song, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, "Characterization of hemoglobin, water, and NIR scattering in breast tissue: analysis of intersubject variability and menstrual cycle changes," J. Biomed. Opt. 9, 541-552 (2004).
[CrossRef] [PubMed]

Rinneberg, H.

Schlag, P.

H. Rinneberg, D. Grosenick, K. Moesta, J. Mucke, B. Gebauer, C. Stroszczynski, H. Wabnitz, M. Moeller, B. Wassermann, and P. Schlag, "Scanning time-domain optical mammography: detection and characterization of breast tumors in vivo," Technol Cancer Res Treat 4, 483-496 (2005).
[PubMed]

Schlag, P. M.

B. Wassermann, A. Kummrow, K. T. Moesta, D. Grosenick, J. Mucke, H. Wabnitz, M. Moller, R. Macdonald, P. M. Schlag, and H. Rinneberg, "In-vivo tissue optical properties derived by linear perturbation theory for edgecorrected time-domain mammograms," Opt. Express 13, 8571-8583 (2005).
[CrossRef] [PubMed]

S. Fantini, M. A. Franceschini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, K. T. Moesta, P. M. Schlag, and M. Kaschke, "Frequency-domain optical mammography: Edge effect corrections," Med. Phys. 23, 149-157 (1996).
[CrossRef] [PubMed]

Schleicher, E.

Shah, N.

A. Cerussi, D. Jakubowski, N. Shah, F. Bevilacqua, R. Lanning, A. Berger, D. Hsiang, J. Butler, R. Holcombe, and B. tromberg, "Spectroscopy enhances the information content of optical mammography," J. Biomed. Opt. 7, 60-71 (2002).
[CrossRef] [PubMed]

Shatir, T. S. M.

Soho, S.

B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, S. Srinivasan, X. Song, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, "Characterization of hemoglobin, water, and NIR scattering in breast tissue: analysis of intersubject variability and menstrual cycle changes," J. Biomed. Opt. 9, 541-552 (2004).
[CrossRef] [PubMed]

Song, X.

B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, S. Srinivasan, X. Song, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, "Characterization of hemoglobin, water, and NIR scattering in breast tissue: analysis of intersubject variability and menstrual cycle changes," J. Biomed. Opt. 9, 541-552 (2004).
[CrossRef] [PubMed]

Spinelli, L.

L. Spinelli, A. Torricelli, A. Pifferi, P. Taroni, G. M. Danesini, and R. Cubeddu, "Bulk optical properties and tissue components in the female breast from multiwavelength time-resolved optical mammography," J. Biomed. Opt. 9, 1137-1142 (2004).
[CrossRef] [PubMed]

L. Spinelli, A. Torricelli, A. Pifferi, P. Taroni, and R. Cubeddu, "Experimental test of a perturbation model for time-resolved imaging in diffusive media," Appl. Opt. 42, 3145-3153 (2003).
[CrossRef] [PubMed]

Springett, R.

Srinivasan, S.

B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, S. Srinivasan, X. Song, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, "Characterization of hemoglobin, water, and NIR scattering in breast tissue: analysis of intersubject variability and menstrual cycle changes," J. Biomed. Opt. 9, 541-552 (2004).
[CrossRef] [PubMed]

Stroszczynski, C.

H. Rinneberg, D. Grosenick, K. Moesta, J. Mucke, B. Gebauer, C. Stroszczynski, H. Wabnitz, M. Moeller, B. Wassermann, and P. Schlag, "Scanning time-domain optical mammography: detection and characterization of breast tumors in vivo," Technol Cancer Res Treat 4, 483-496 (2005).
[PubMed]

Svaasand, L. O.

Tanikawa, Y.

Taroni, P.

L. Spinelli, A. Torricelli, A. Pifferi, P. Taroni, G. M. Danesini, and R. Cubeddu, "Bulk optical properties and tissue components in the female breast from multiwavelength time-resolved optical mammography," J. Biomed. Opt. 9, 1137-1142 (2004).
[CrossRef] [PubMed]

A. Pifferi, P. Taroni, A. Torricelli, F. Messina, R. Cubeddu, and G. Danesini, "Four-wavelength time-resolved optical mammography in the 680-980-nm range," Opt. Lett. 28, 1138-1140 (2003).
[CrossRef] [PubMed]

L. Spinelli, A. Torricelli, A. Pifferi, P. Taroni, and R. Cubeddu, "Experimental test of a perturbation model for time-resolved imaging in diffusive media," Appl. Opt. 42, 3145-3153 (2003).
[CrossRef] [PubMed]

R. Cubeddu, C. D’Andrea, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, "Effects of the menstrual cycle on the red and near-infrared optical properties of the human breast," Photochem. Photobiol. 72, 383-391 (2000).
[PubMed]

Torricelli, A.

L. Spinelli, A. Torricelli, A. Pifferi, P. Taroni, G. M. Danesini, and R. Cubeddu, "Bulk optical properties and tissue components in the female breast from multiwavelength time-resolved optical mammography," J. Biomed. Opt. 9, 1137-1142 (2004).
[CrossRef] [PubMed]

A. Pifferi, P. Taroni, A. Torricelli, F. Messina, R. Cubeddu, and G. Danesini, "Four-wavelength time-resolved optical mammography in the 680-980-nm range," Opt. Lett. 28, 1138-1140 (2003).
[CrossRef] [PubMed]

L. Spinelli, A. Torricelli, A. Pifferi, P. Taroni, and R. Cubeddu, "Experimental test of a perturbation model for time-resolved imaging in diffusive media," Appl. Opt. 42, 3145-3153 (2003).
[CrossRef] [PubMed]

R. Cubeddu, C. D’Andrea, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, "Effects of the menstrual cycle on the red and near-infrared optical properties of the human breast," Photochem. Photobiol. 72, 383-391 (2000).
[PubMed]

Tosteson, T. D.

B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, S. Srinivasan, X. Song, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, "Characterization of hemoglobin, water, and NIR scattering in breast tissue: analysis of intersubject variability and menstrual cycle changes," J. Biomed. Opt. 9, 541-552 (2004).
[CrossRef] [PubMed]

Tromberg, B. J.

Tsay, T. T.

Valentini, G.

R. Cubeddu, C. D’Andrea, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, "Effects of the menstrual cycle on the red and near-infrared optical properties of the human breast," Photochem. Photobiol. 72, 383-391 (2000).
[PubMed]

Verrealut, S.

Wabnitz, H.

Wassermann, B.

B. Wassermann, A. Kummrow, K. T. Moesta, D. Grosenick, J. Mucke, H. Wabnitz, M. Moller, R. Macdonald, P. M. Schlag, and H. Rinneberg, "In-vivo tissue optical properties derived by linear perturbation theory for edgecorrected time-domain mammograms," Opt. Express 13, 8571-8583 (2005).
[CrossRef] [PubMed]

H. Rinneberg, D. Grosenick, K. Moesta, J. Mucke, B. Gebauer, C. Stroszczynski, H. Wabnitz, M. Moeller, B. Wassermann, and P. Schlag, "Scanning time-domain optical mammography: detection and characterization of breast tumors in vivo," Technol Cancer Res Treat 4, 483-496 (2005).
[PubMed]

Webb, K.

Xu, H.

Xu, Y.

Yamada, Y.

Yates, T.

T. Yates, J. C. Hebden, A. Gibson, N. Everdell, S. R. Arridge, and M. Douek, "Optical tomography of the breast using a multi-channel time-resolved imager," Phys. Med. Biol. 50, 2503-2517 (2005).
[CrossRef] [PubMed]

Ye, J.

Zaccanti, G.

Zhao, H.

Appl. Opt. (8)

D. Grosenick, H. Wabnitz, and H. Rinneberg, "Time-resolved imaging of solid phantoms for optical mammography," Appl. Opt. 36, 221-231 (1997).
[CrossRef] [PubMed]

J. C. Hebden and S. R. Arridge, "Imaging Through Scattering Media by the Use of an Analytical Model of Perturbation Amplitudes in the Time Domain," Appl. Opt. 35, 6788 (1996).
[CrossRef] [PubMed]

M. Morin, S. Verrealut, A. Mailloux, J. Frechette, S. Chatigny, Y. Painchaud, and P. Beaudry, "Inclusion characterization in a scattering slab with time-resolved transmittance measurements: perturbation analysis," Appl. Opt. 39, 2840-2852 (2000).
[CrossRef]

S. Carraresi, T. S. M. Shatir, F. Martelli, and G. Zaccanti, "Accuracy of a Perturbation Model to Predict the Effect of Scattering and Absorbing Inhomogeneities on Photon Migration," Appl. Opt. 40, 4622 (2001).
[CrossRef]

U. Hampel, E. Schleicher, and R. Freyer, "Volume image reconstruction for diffuse optical tomography," Appl. Opt. 41, 3816-3826 (2002).
[CrossRef] [PubMed]

Y. Xu, X. Gu, T. Khan, and H. Jiang, "Absorption and Scattering Images of Heterogeneous Scattering Media Can Be Simultaneously Reconstructed by Use of dc Data," Appl. Opt. 41, 5427-5437 (2002).
[CrossRef] [PubMed]

F. Gao, Y. Tanikawa, H. Zhao, and Y. Yamada, "Semi-Three-Dimensional Algorithm for Time-Resolved Diffuse Optical Tomography by Use of the Generalized Pulse Spectrum Technique," Appl. Opt.  41, 7346 (2002).
[CrossRef] [PubMed]

L. Spinelli, A. Torricelli, A. Pifferi, P. Taroni, and R. Cubeddu, "Experimental test of a perturbation model for time-resolved imaging in diffusive media," Appl. Opt. 42, 3145-3153 (2003).
[CrossRef] [PubMed]

J. Biomed. Opt. (3)

A. Cerussi, D. Jakubowski, N. Shah, F. Bevilacqua, R. Lanning, A. Berger, D. Hsiang, J. Butler, R. Holcombe, and B. tromberg, "Spectroscopy enhances the information content of optical mammography," J. Biomed. Opt. 7, 60-71 (2002).
[CrossRef] [PubMed]

B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, S. Srinivasan, X. Song, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, "Characterization of hemoglobin, water, and NIR scattering in breast tissue: analysis of intersubject variability and menstrual cycle changes," J. Biomed. Opt. 9, 541-552 (2004).
[CrossRef] [PubMed]

L. Spinelli, A. Torricelli, A. Pifferi, P. Taroni, G. M. Danesini, and R. Cubeddu, "Bulk optical properties and tissue components in the female breast from multiwavelength time-resolved optical mammography," J. Biomed. Opt. 9, 1137-1142 (2004).
[CrossRef] [PubMed]

J. Opt. A (1)

R. Esposito, S. De Nicola, M. Lepore, I. Delfino, and P. L. Indovina, "A perturbation approach to characterize absorptive inclusions in diffusing media by time-resolved contrast measurements," J. Opt. A 6, 736-741 (2004).
[CrossRef]

J. Opt. Soc. Am. A (3)

Med. Phys. (1)

S. Fantini, M. A. Franceschini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, K. T. Moesta, P. M. Schlag, and M. Kaschke, "Frequency-domain optical mammography: Edge effect corrections," Med. Phys. 23, 149-157 (1996).
[CrossRef] [PubMed]

Opt. Express (1)

Opt. Lett. (2)

Opt. Photontics News (1)

R. R. Alfano and J. Fujimoto, "Advances in Optical Imaging and Photon Migration," Opt. Photonics News 7, 37 (1996).

Photochem. Photobiol. (1)

R. Cubeddu, C. D’Andrea, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, "Effects of the menstrual cycle on the red and near-infrared optical properties of the human breast," Photochem. Photobiol. 72, 383-391 (2000).
[PubMed]

Phys. Med. Biol. (1)

T. Yates, J. C. Hebden, A. Gibson, N. Everdell, S. R. Arridge, and M. Douek, "Optical tomography of the breast using a multi-channel time-resolved imager," Phys. Med. Biol. 50, 2503-2517 (2005).
[CrossRef] [PubMed]

Phys. Rev. E (1)

S. De Nicola, R. Esposito, M. Lepore, and P. L. Indovina, "Time-resolved contrast function and optical characterization of spatially varying absorptive inclusions at different depths in diffusing media," Phys. Rev. E 69, 031901 (2004).
[CrossRef]

Technol Cancer Res Treat (1)

H. Rinneberg, D. Grosenick, K. Moesta, J. Mucke, B. Gebauer, C. Stroszczynski, H. Wabnitz, M. Moeller, B. Wassermann, and P. Schlag, "Scanning time-domain optical mammography: detection and characterization of breast tumors in vivo," Technol Cancer Res Treat 4, 483-496 (2005).
[PubMed]

Other (3)

G. E. Cohn,W. S. Grundfest, D. A. Benaron, and T. Vo-Dinh, eds., Advanced Biomedical and Clinical Diagnostic Systems II (2004).

G. Mitic, J. G. Koelzer, J. Otto, E. Plies, G. Soelkner, and W. Zinth, "Time-resolved transillumination of turbid media," Proc. SPIE 2082, 26-32 (1994).

B. Chance and R. R. Alfano, eds., "Photon Migration and Imaging in Random Media and Tissues," Proc. SPIE 1888, 454-465 (1993).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Geometric scheme assumed for a Gaussian scattering inclusion of cylindrical shape geometry with radius R and height h located at different depths z=zpc inside a turbid slab of thickness d. A pulsed light beam illuminates the front surface of the scattering slab at plane z=0. The photons are assumed to be initially isotropically scattered at a depth zs =1/µ′ s below the front surface. The time-resolved transmittance is measured by a detector at plane z=d coaxial with the source and with the inclusion.

Fig. 2.
Fig. 2.

(a) The temporal behavior of contrast functions C(t, zpc µ s ) and Cnum (t, zpc µ s ) for an inclusion with radius R=2.5 mm at normalized depths zpcn =1/2,3/4, 1. The solid curves refer to Fem simulations, whereas the dashed curves are the perturbation model predictions. The relative scattering perturbation parameter Δµ s /µ s ranges between -20% and +20%. (b) The ratio Cnum (t, zpc )/Cnum (t,1/2) of the numerical contrast for different depths of an inclusion with radius R=2.5 mm and perturbation intensity Δµ s /µ s =0.2.

Fig. 3.
Fig. 3.

Contour plots of the chi-squared function (13) versus the Δzpc µ s plane for an inclusion with size R=2.5 mm and perturbation intensity Δµ s /µ s =0.2. (a) the inclusion is at the center of the slab (Δzpc =0 mm). (b) the inclusion is shifted from the center to Δzpc =10 mm.

Fig. 4.
Fig. 4.

The relative error as a function of the normalized depth zpcn . The solid curves are obtained with the fitting procedure Proczpc Δµ s ), whereas the dashed curves are given by the procedure Procµ s ). (a) The inclusion has size R=2.5 mm. (b) The inclusion has size R=10 mm.

Fig. 5.
Fig. 5.

The error for retrieving the shift Δzpc of the inclusion normalized with respect to the diameter 2R as a function of the relative perturbation intensity Δµ s /µ s . Four values of the radius of the Gaussian inclusion have been considered: R=2.5 mm (black curves), R=5 mm (red curves), R=7.5 mm (blue curves), R=10 mm (green curves).

Fig. 6.
Fig. 6.

Contrast functions calculated at different depths from experimental time-resolved transmittances concerning two cylindrical scattering inclusions with perturbation parameter Δµ s /µ s =39%. The background is a turbid slab with thickness d=40 mm, absorption and reduced scattering coefficient equal to µa =(8.7±0.2)×10-3 mm-1 and µ s =1.17±0.01 mm-1, respectively. (a) The inclusion with radius R=3 mm is located at depths zpc =20 mm (black curve) and zpc =28 mm (red curve). (b) The inclusion with radius R=7.5 mm is located at depths zpc =20 mm (black curve) and zpc =28 mm (red curve)

Fig. 7.
Fig. 7.

The relative perturbation intensity (Δµ s /µ s ) f it as a function of the scan position for the inclusions. Black points refer to the inclusion at depth zpc =20 mm whereas red ones to the case zpc=28 mm. Solid curves represent the Gaussian fits. Plots (a) and (c) have been generated by using the fitting procedure Procµ s ), wheres plots (b) and (d) have been constructed with the fitting procedure Proczpc Δµ s ).

Tables (1)

Tables Icon

Table 1. The relative perturbation intensity Δµ s /µ s estimated by means of the Gaussian fits reported in Fig. 7 by using both the procedures Procµ s ) and Proczpc Δµ s ).

Equations (20)

Equations on this page are rendered with MathJax. Learn more.

δ μ s ( ρ ) = Δ μ s exp ( f ( ρ R ) 2 ) ,
[ D ( r ) 1 v t μ a ] φ ( r , t ; r s , t s = 0 ) = 1 4 π δ ( r r s ) δ ( t ) ,
T ( t , z pc ) = 2 π A φ ( r m , t ; r s , t s = 0 ) ,
T ( t , z pc ) = T 0 ( t ) + δ T μ s ( t ; z pc ) .
T 0 ( t ) = exp ( μ a vt ) 4 π AD 0 d e t m = 1 exp ( π 2 m 2 D 0 vt d e 2 ) sin ( m π ( z s + z e ) d e ) sin ( m π ( d + z e ) d e ) ,
δ T μ s ( t ; z pc ) = Δ μ s 3 b exp ( μ a vt ) 64 π 2 A d e 3 D 0 2 ( 1 + b ) t ×
× k , l = 1 exp ( π 2 Dv 2 d e 2 ( k 2 + l 2 ) t ) [ R k , l ( R , t ) Z k , l ( z pc , h ) + R k , l + ( R , t ) Z k , l + ( z pc , h ) ] ,
R k , l + ( R , t ) = 4 d e 2 bt ( t t 0 ) cosh ( c ( 1 2 t 0 t ) ) b t 2 + 4 ( t t 0 ) t 0 + b d e 2 ( α + E + + α E ) ( 1 + b ) 1 2 ,
R k , l ( R , t ) = 4 π 2 klDv ( 1 + b ) 1 2 ( E + + E ) t ,
c = π 2 Dv d e 2 ( l k + ε ) ( l + k ) t , α ± = 2 ± c ( 1 + b ) 1 2 ,
E ± = exp ( c ( 1 + b ) 1 2 2 ) [ Ei ( ± β + ) Ei ( β ) ] , β ± = c { t [ 1 ± ( 1 + b ) 1 2 ] 2 t 0 } 2 t ,
Ei ( x ) = x exp ( y ) y dy .
Z k , l ± ( z pc , h ) = sin ( k π ( z e + d ) d e ) sin ( l π ( z e + z s ) d e ) ( γ + ± γ ) ,
γ ± = 1 l k + ε [ sin ( ( l k + ε ) π ( z e + z pc + h 2 ) d e ) sin ( ( l k + ε ) π ( z e + z pc h 2 ) d e ) ]
C ( t , z pc , Δ μ s ) = T ( t , z pc ) T 0 ( t ) T 0 ( t ) ,
C num ( t , z pc , Δ μ s ) = T num ( t , z pc ) T 0 ( t ) T 0 ( t ) .
z pcn = z pc z min z max z min ,
χ 2 ( z pc , Δ μ s ) = t min t max ( C ( t , z pc , Δ μ s ) | interp C num ( t , z pc , Δ μ s ) ) 2 dt .
ε Δ μ s = Δ μ s Δ μ s , fit Δ μ s ,
ε Δ z pc = < | Δ z pc, fit Δ z pc | 2 R > ,

Metrics