Abstract

We analytically and numerically analyze the fluorescence decay rate of a quantum emitter placed in the vicinity of a spherical metallic particle of mesoscopic size (i.e with dimensions comparable to the emission wavelength). We discuss the efficiency of the radiative decay rate and non-radiative coupling to the particle as well as their distance dependence. The electromagnetic coupling mechanisms between the emitter and the particle are investigated by analyzing the role of the plasmon modes and their nature (dipole, multipole or interface mode). We demonstrate that near-field coupling can be expressed in a simple form verifying the optical theorem for each particle modes.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. P. Van Duyne, Molecular plasmonics, Science 306, 985 (2004).
  2. D. W. Pohl“Near-field optics seen as an antenna problem,” Near-field Optics, Principles and ApplicationsX. Zhu and M. Ohtsu eds., pp. 9–21. (World Scientific, Singapore, 2000).
  3. P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant Optical Antennas,” Science 308, 1607–1609 (2005).
    [CrossRef] [PubMed]
  4. T. H. Taminiau, R. J. Moerland, F. B. Segerink, L. c , and N. F. van Hulst, “l/4 resonance of an optical monopole antenna probed by single molecule fluorescence,” Nano Lett. 7, 28–33 (2007).
    [CrossRef] [PubMed]
  5. D. Chang, A. Sörensen, P. Hemmer, and M. Lukin, “Quantum Optics with Surface Plasmons,” Phys. Rev. Lett. 97, 053002 (2006).
    [CrossRef] [PubMed]
  6. L. A. Blanco and F. J. G. de Abajo, “Spontaneous light emission in complex nanostructures,” Phys. Rev. B 69, 205414 (2004).
    [CrossRef]
  7. P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single molecule fluorescence,” Phys. Rev. Lett. 96, 113002 (2006).
    [CrossRef] [PubMed]
  8. T. Härtling, P. Reichenbach, and L. M. Eng, “Near-field coupling of a single fluorescent molecule and a spherical gold nanoparticle,” Opt. Express 15, 12806–12817 (2007).
    [CrossRef] [PubMed]
  9. L. Rogobete, F. Kaminski, M. Agio, and V. Sandoghdar, “Design of nanoantennae for the enhancement of spontaneous emission,” Opt. Lett. 32, 1623–1625 (2007).
    [CrossRef] [PubMed]
  10. G. Baffou, C. Girard, E. Dujardin, G. Colas des Francs, and O. Martin, “Molecular quenching and relaxation in a plasmonic tunable nanogap,” Phys. Rev. B 77, 121101(R) (2008).
    [CrossRef]
  11. E. Dulkeith, A. C. Morteani, T. Niedereichholz, T. A. Klar, J. Feldmann, S. A. Levi, F. C. J. M. van Veggel, D. N. Reinhoudt , M. Möller, and D. I. Gittins, “Fluorescence Quenching of Dye Molecules near Gold Nanoparticles: Radiative and Nonradiative Effects,” Phys. Rev. Lett. 89, 203002 (2002).
    [CrossRef] [PubMed]
  12. S. Kühn, U. Hakanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single molecule fluorescence using a gold nanoparticle as an optical nano-antenna,” Phys. Rev. Lett. 97, 017402 (2006).
    [CrossRef] [PubMed]
  13. P. Bharadwaj and L. Novotny, “Spectral dependence of single molecule fluorescence enhancement,” Opt. Express 15, 14266–14274 (2007).
    [CrossRef] [PubMed]
  14. H. Mertens, A. Koenderink, and A. Polman, “Plasmon-enhanced luminescence near noble-metal nanospheres: Comparison of exact theory and an improved Gersten and Nitzan model,” Phys. Rev. B 76, 115123 (2007).
    [CrossRef]
  15. V. Klimov, M. Ducloy, and V. S. Letokhov, “Radiative Frequency Shift and LineWidth of an Atom Dipole in the Vicinity of a Dielectric Microsphere,” J. Mod. Opt. 43, 2251 (1996).
    [CrossRef]
  16. P. T. Leung, “Decay of molecules at spherical surfaces: Nonlocal effects,” Phys. Rev. B 42, 7622 (1990).
    [CrossRef]
  17. C. Girard, S. Maghezzi, and F. Hache, “Multipolar propagators near a small metallic sphere : A self consistent calculation,” J. Chem. Phys. 91, 5509–5517 (1989).
    [CrossRef]
  18. C. Bohren and D. Huffman, Absorption and scattering of light by small particles (1983).
  19. Y. S. Kim, P. T. Leung, and T. F. George, “Classical Decay Rates for Molecules in the Presence of a Spherical Surface: a Complete Treatment,” Surf. Sci. 195, 1–14 (1988).
    [CrossRef]
  20. H. Chew, “Transitions rates of atoms near spherical surfaces,” J. Chem. Phys. 87, 1355–1360 (1987).
    [CrossRef]
  21. M. Abramowitz and I. Stegun, Hanbbook of mathematical functions (Dover Publications, 1972).
  22. G. Colas des Francs, C. Girard, M. Juan, and A. Dereux, “Energy transfer in near-field optics,” J. Chem. Phys. 123, 174709 (2005).
    [CrossRef] [PubMed]
  23. R. Carminati, J. Greffet, C. Henkel, and J. Vigoureux, “Radiative and non-radiative decay of a single molecule close to a metallic nanoparticle,” Opt. Commun. 261, 368–375 (2006).
    [CrossRef]
  24. R. R. Chance, A. Prock, and R. Silbey, “Molecular fluorescence and energy transfer near interfaces,” Adv. Chem. Phys. 37, 1–65 (1978).
    [CrossRef]
  25. M. Meier and A. Wokaun, “Enhanced fields on large metal particles: dynamic depolarization,” Opt. Lett. 8, 581 (1983).
    [CrossRef] [PubMed]
  26. G. Colas des Francs, C. Girard, A. Bruyant, and A. Dereux, “SNOM signal near plasmonic nanostructures: an analogy with fluorescence decay channels,” J. Microsc. (NFO9) 229, 302–306 (2008).
    [CrossRef]
  27. A. Trügler and U. Hohenester, “Strong coupling between a metallic nanoparticle and a single molecule,” Phys. Rev. B  77, 115403 (2008).
    [CrossRef]
  28. W. Barnes, “Fluorescence near interfaces: the role of photonic mode density,” J. Mod. Opt. 45, 661–699 (1998).
    [CrossRef]
  29. C. S. Yun, A. Javier, T. Jennings, M. Fisher, S. Hira, S. Peterson, B. Hopkins, N. O. Reich, and G. F. Strouse Nanometal Surface Energy Transfer in Optical Rulers, Breaking the FRET Barrier, J. Am. Chem. Soc. 127 (2005) 3115–3119.
    [CrossRef] [PubMed]

2008 (3)

G. Baffou, C. Girard, E. Dujardin, G. Colas des Francs, and O. Martin, “Molecular quenching and relaxation in a plasmonic tunable nanogap,” Phys. Rev. B 77, 121101(R) (2008).
[CrossRef]

G. Colas des Francs, C. Girard, A. Bruyant, and A. Dereux, “SNOM signal near plasmonic nanostructures: an analogy with fluorescence decay channels,” J. Microsc. (NFO9) 229, 302–306 (2008).
[CrossRef]

A. Trügler and U. Hohenester, “Strong coupling between a metallic nanoparticle and a single molecule,” Phys. Rev. B  77, 115403 (2008).
[CrossRef]

2007 (5)

T. Härtling, P. Reichenbach, and L. M. Eng, “Near-field coupling of a single fluorescent molecule and a spherical gold nanoparticle,” Opt. Express 15, 12806–12817 (2007).
[CrossRef] [PubMed]

L. Rogobete, F. Kaminski, M. Agio, and V. Sandoghdar, “Design of nanoantennae for the enhancement of spontaneous emission,” Opt. Lett. 32, 1623–1625 (2007).
[CrossRef] [PubMed]

T. H. Taminiau, R. J. Moerland, F. B. Segerink, L. c , and N. F. van Hulst, “l/4 resonance of an optical monopole antenna probed by single molecule fluorescence,” Nano Lett. 7, 28–33 (2007).
[CrossRef] [PubMed]

P. Bharadwaj and L. Novotny, “Spectral dependence of single molecule fluorescence enhancement,” Opt. Express 15, 14266–14274 (2007).
[CrossRef] [PubMed]

H. Mertens, A. Koenderink, and A. Polman, “Plasmon-enhanced luminescence near noble-metal nanospheres: Comparison of exact theory and an improved Gersten and Nitzan model,” Phys. Rev. B 76, 115123 (2007).
[CrossRef]

2006 (4)

S. Kühn, U. Hakanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single molecule fluorescence using a gold nanoparticle as an optical nano-antenna,” Phys. Rev. Lett. 97, 017402 (2006).
[CrossRef] [PubMed]

R. Carminati, J. Greffet, C. Henkel, and J. Vigoureux, “Radiative and non-radiative decay of a single molecule close to a metallic nanoparticle,” Opt. Commun. 261, 368–375 (2006).
[CrossRef]

D. Chang, A. Sörensen, P. Hemmer, and M. Lukin, “Quantum Optics with Surface Plasmons,” Phys. Rev. Lett. 97, 053002 (2006).
[CrossRef] [PubMed]

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single molecule fluorescence,” Phys. Rev. Lett. 96, 113002 (2006).
[CrossRef] [PubMed]

2005 (3)

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant Optical Antennas,” Science 308, 1607–1609 (2005).
[CrossRef] [PubMed]

G. Colas des Francs, C. Girard, M. Juan, and A. Dereux, “Energy transfer in near-field optics,” J. Chem. Phys. 123, 174709 (2005).
[CrossRef] [PubMed]

C. S. Yun, A. Javier, T. Jennings, M. Fisher, S. Hira, S. Peterson, B. Hopkins, N. O. Reich, and G. F. Strouse Nanometal Surface Energy Transfer in Optical Rulers, Breaking the FRET Barrier, J. Am. Chem. Soc. 127 (2005) 3115–3119.
[CrossRef] [PubMed]

2004 (1)

L. A. Blanco and F. J. G. de Abajo, “Spontaneous light emission in complex nanostructures,” Phys. Rev. B 69, 205414 (2004).
[CrossRef]

2002 (1)

E. Dulkeith, A. C. Morteani, T. Niedereichholz, T. A. Klar, J. Feldmann, S. A. Levi, F. C. J. M. van Veggel, D. N. Reinhoudt , M. Möller, and D. I. Gittins, “Fluorescence Quenching of Dye Molecules near Gold Nanoparticles: Radiative and Nonradiative Effects,” Phys. Rev. Lett. 89, 203002 (2002).
[CrossRef] [PubMed]

1998 (1)

W. Barnes, “Fluorescence near interfaces: the role of photonic mode density,” J. Mod. Opt. 45, 661–699 (1998).
[CrossRef]

1996 (1)

V. Klimov, M. Ducloy, and V. S. Letokhov, “Radiative Frequency Shift and LineWidth of an Atom Dipole in the Vicinity of a Dielectric Microsphere,” J. Mod. Opt. 43, 2251 (1996).
[CrossRef]

1990 (1)

P. T. Leung, “Decay of molecules at spherical surfaces: Nonlocal effects,” Phys. Rev. B 42, 7622 (1990).
[CrossRef]

1989 (1)

C. Girard, S. Maghezzi, and F. Hache, “Multipolar propagators near a small metallic sphere : A self consistent calculation,” J. Chem. Phys. 91, 5509–5517 (1989).
[CrossRef]

1988 (1)

Y. S. Kim, P. T. Leung, and T. F. George, “Classical Decay Rates for Molecules in the Presence of a Spherical Surface: a Complete Treatment,” Surf. Sci. 195, 1–14 (1988).
[CrossRef]

1987 (1)

H. Chew, “Transitions rates of atoms near spherical surfaces,” J. Chem. Phys. 87, 1355–1360 (1987).
[CrossRef]

1983 (1)

1978 (1)

R. R. Chance, A. Prock, and R. Silbey, “Molecular fluorescence and energy transfer near interfaces,” Adv. Chem. Phys. 37, 1–65 (1978).
[CrossRef]

Abramowitz, M.

M. Abramowitz and I. Stegun, Hanbbook of mathematical functions (Dover Publications, 1972).

Agio, M.

Anger, P.

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single molecule fluorescence,” Phys. Rev. Lett. 96, 113002 (2006).
[CrossRef] [PubMed]

Baffou, G.

G. Baffou, C. Girard, E. Dujardin, G. Colas des Francs, and O. Martin, “Molecular quenching and relaxation in a plasmonic tunable nanogap,” Phys. Rev. B 77, 121101(R) (2008).
[CrossRef]

Barnes, W.

W. Barnes, “Fluorescence near interfaces: the role of photonic mode density,” J. Mod. Opt. 45, 661–699 (1998).
[CrossRef]

Bharadwaj, P.

P. Bharadwaj and L. Novotny, “Spectral dependence of single molecule fluorescence enhancement,” Opt. Express 15, 14266–14274 (2007).
[CrossRef] [PubMed]

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single molecule fluorescence,” Phys. Rev. Lett. 96, 113002 (2006).
[CrossRef] [PubMed]

Blanco, L. A.

L. A. Blanco and F. J. G. de Abajo, “Spontaneous light emission in complex nanostructures,” Phys. Rev. B 69, 205414 (2004).
[CrossRef]

Bohren, C.

C. Bohren and D. Huffman, Absorption and scattering of light by small particles (1983).

Bruyant, A.

G. Colas des Francs, C. Girard, A. Bruyant, and A. Dereux, “SNOM signal near plasmonic nanostructures: an analogy with fluorescence decay channels,” J. Microsc. (NFO9) 229, 302–306 (2008).
[CrossRef]

c, L.

T. H. Taminiau, R. J. Moerland, F. B. Segerink, L. c , and N. F. van Hulst, “l/4 resonance of an optical monopole antenna probed by single molecule fluorescence,” Nano Lett. 7, 28–33 (2007).
[CrossRef] [PubMed]

Carminati, R.

R. Carminati, J. Greffet, C. Henkel, and J. Vigoureux, “Radiative and non-radiative decay of a single molecule close to a metallic nanoparticle,” Opt. Commun. 261, 368–375 (2006).
[CrossRef]

Chance, R. R.

R. R. Chance, A. Prock, and R. Silbey, “Molecular fluorescence and energy transfer near interfaces,” Adv. Chem. Phys. 37, 1–65 (1978).
[CrossRef]

Chang, D.

D. Chang, A. Sörensen, P. Hemmer, and M. Lukin, “Quantum Optics with Surface Plasmons,” Phys. Rev. Lett. 97, 053002 (2006).
[CrossRef] [PubMed]

Chew, H.

H. Chew, “Transitions rates of atoms near spherical surfaces,” J. Chem. Phys. 87, 1355–1360 (1987).
[CrossRef]

Colas des Francs, G.

G. Baffou, C. Girard, E. Dujardin, G. Colas des Francs, and O. Martin, “Molecular quenching and relaxation in a plasmonic tunable nanogap,” Phys. Rev. B 77, 121101(R) (2008).
[CrossRef]

G. Colas des Francs, C. Girard, A. Bruyant, and A. Dereux, “SNOM signal near plasmonic nanostructures: an analogy with fluorescence decay channels,” J. Microsc. (NFO9) 229, 302–306 (2008).
[CrossRef]

G. Colas des Francs, C. Girard, M. Juan, and A. Dereux, “Energy transfer in near-field optics,” J. Chem. Phys. 123, 174709 (2005).
[CrossRef] [PubMed]

de Abajo, F. J. G.

L. A. Blanco and F. J. G. de Abajo, “Spontaneous light emission in complex nanostructures,” Phys. Rev. B 69, 205414 (2004).
[CrossRef]

Dereux, A.

G. Colas des Francs, C. Girard, A. Bruyant, and A. Dereux, “SNOM signal near plasmonic nanostructures: an analogy with fluorescence decay channels,” J. Microsc. (NFO9) 229, 302–306 (2008).
[CrossRef]

G. Colas des Francs, C. Girard, M. Juan, and A. Dereux, “Energy transfer in near-field optics,” J. Chem. Phys. 123, 174709 (2005).
[CrossRef] [PubMed]

Ducloy, M.

V. Klimov, M. Ducloy, and V. S. Letokhov, “Radiative Frequency Shift and LineWidth of an Atom Dipole in the Vicinity of a Dielectric Microsphere,” J. Mod. Opt. 43, 2251 (1996).
[CrossRef]

Dujardin, E.

G. Baffou, C. Girard, E. Dujardin, G. Colas des Francs, and O. Martin, “Molecular quenching and relaxation in a plasmonic tunable nanogap,” Phys. Rev. B 77, 121101(R) (2008).
[CrossRef]

Dulkeith, E.

E. Dulkeith, A. C. Morteani, T. Niedereichholz, T. A. Klar, J. Feldmann, S. A. Levi, F. C. J. M. van Veggel, D. N. Reinhoudt , M. Möller, and D. I. Gittins, “Fluorescence Quenching of Dye Molecules near Gold Nanoparticles: Radiative and Nonradiative Effects,” Phys. Rev. Lett. 89, 203002 (2002).
[CrossRef] [PubMed]

Eisler, H.-J.

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant Optical Antennas,” Science 308, 1607–1609 (2005).
[CrossRef] [PubMed]

Eng, L. M.

Feldmann, J.

E. Dulkeith, A. C. Morteani, T. Niedereichholz, T. A. Klar, J. Feldmann, S. A. Levi, F. C. J. M. van Veggel, D. N. Reinhoudt , M. Möller, and D. I. Gittins, “Fluorescence Quenching of Dye Molecules near Gold Nanoparticles: Radiative and Nonradiative Effects,” Phys. Rev. Lett. 89, 203002 (2002).
[CrossRef] [PubMed]

Fisher, M.

C. S. Yun, A. Javier, T. Jennings, M. Fisher, S. Hira, S. Peterson, B. Hopkins, N. O. Reich, and G. F. Strouse Nanometal Surface Energy Transfer in Optical Rulers, Breaking the FRET Barrier, J. Am. Chem. Soc. 127 (2005) 3115–3119.
[CrossRef] [PubMed]

George, T. F.

Y. S. Kim, P. T. Leung, and T. F. George, “Classical Decay Rates for Molecules in the Presence of a Spherical Surface: a Complete Treatment,” Surf. Sci. 195, 1–14 (1988).
[CrossRef]

Girard, C.

G. Baffou, C. Girard, E. Dujardin, G. Colas des Francs, and O. Martin, “Molecular quenching and relaxation in a plasmonic tunable nanogap,” Phys. Rev. B 77, 121101(R) (2008).
[CrossRef]

G. Colas des Francs, C. Girard, A. Bruyant, and A. Dereux, “SNOM signal near plasmonic nanostructures: an analogy with fluorescence decay channels,” J. Microsc. (NFO9) 229, 302–306 (2008).
[CrossRef]

G. Colas des Francs, C. Girard, M. Juan, and A. Dereux, “Energy transfer in near-field optics,” J. Chem. Phys. 123, 174709 (2005).
[CrossRef] [PubMed]

C. Girard, S. Maghezzi, and F. Hache, “Multipolar propagators near a small metallic sphere : A self consistent calculation,” J. Chem. Phys. 91, 5509–5517 (1989).
[CrossRef]

Gittins, D. I.

E. Dulkeith, A. C. Morteani, T. Niedereichholz, T. A. Klar, J. Feldmann, S. A. Levi, F. C. J. M. van Veggel, D. N. Reinhoudt , M. Möller, and D. I. Gittins, “Fluorescence Quenching of Dye Molecules near Gold Nanoparticles: Radiative and Nonradiative Effects,” Phys. Rev. Lett. 89, 203002 (2002).
[CrossRef] [PubMed]

Greffet, J.

R. Carminati, J. Greffet, C. Henkel, and J. Vigoureux, “Radiative and non-radiative decay of a single molecule close to a metallic nanoparticle,” Opt. Commun. 261, 368–375 (2006).
[CrossRef]

Hache, F.

C. Girard, S. Maghezzi, and F. Hache, “Multipolar propagators near a small metallic sphere : A self consistent calculation,” J. Chem. Phys. 91, 5509–5517 (1989).
[CrossRef]

Hakanson, U.

S. Kühn, U. Hakanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single molecule fluorescence using a gold nanoparticle as an optical nano-antenna,” Phys. Rev. Lett. 97, 017402 (2006).
[CrossRef] [PubMed]

Härtling, T.

Hecht, B.

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant Optical Antennas,” Science 308, 1607–1609 (2005).
[CrossRef] [PubMed]

Hemmer, P.

D. Chang, A. Sörensen, P. Hemmer, and M. Lukin, “Quantum Optics with Surface Plasmons,” Phys. Rev. Lett. 97, 053002 (2006).
[CrossRef] [PubMed]

Henkel, C.

R. Carminati, J. Greffet, C. Henkel, and J. Vigoureux, “Radiative and non-radiative decay of a single molecule close to a metallic nanoparticle,” Opt. Commun. 261, 368–375 (2006).
[CrossRef]

Hira, S.

C. S. Yun, A. Javier, T. Jennings, M. Fisher, S. Hira, S. Peterson, B. Hopkins, N. O. Reich, and G. F. Strouse Nanometal Surface Energy Transfer in Optical Rulers, Breaking the FRET Barrier, J. Am. Chem. Soc. 127 (2005) 3115–3119.
[CrossRef] [PubMed]

Hohenester, U.

A. Trügler and U. Hohenester, “Strong coupling between a metallic nanoparticle and a single molecule,” Phys. Rev. B  77, 115403 (2008).
[CrossRef]

Hopkins, B.

C. S. Yun, A. Javier, T. Jennings, M. Fisher, S. Hira, S. Peterson, B. Hopkins, N. O. Reich, and G. F. Strouse Nanometal Surface Energy Transfer in Optical Rulers, Breaking the FRET Barrier, J. Am. Chem. Soc. 127 (2005) 3115–3119.
[CrossRef] [PubMed]

Huffman, D.

C. Bohren and D. Huffman, Absorption and scattering of light by small particles (1983).

Javier, A.

C. S. Yun, A. Javier, T. Jennings, M. Fisher, S. Hira, S. Peterson, B. Hopkins, N. O. Reich, and G. F. Strouse Nanometal Surface Energy Transfer in Optical Rulers, Breaking the FRET Barrier, J. Am. Chem. Soc. 127 (2005) 3115–3119.
[CrossRef] [PubMed]

Jennings, T.

C. S. Yun, A. Javier, T. Jennings, M. Fisher, S. Hira, S. Peterson, B. Hopkins, N. O. Reich, and G. F. Strouse Nanometal Surface Energy Transfer in Optical Rulers, Breaking the FRET Barrier, J. Am. Chem. Soc. 127 (2005) 3115–3119.
[CrossRef] [PubMed]

Juan, M.

G. Colas des Francs, C. Girard, M. Juan, and A. Dereux, “Energy transfer in near-field optics,” J. Chem. Phys. 123, 174709 (2005).
[CrossRef] [PubMed]

Kaminski, F.

Kim, Y. S.

Y. S. Kim, P. T. Leung, and T. F. George, “Classical Decay Rates for Molecules in the Presence of a Spherical Surface: a Complete Treatment,” Surf. Sci. 195, 1–14 (1988).
[CrossRef]

Klar, T. A.

E. Dulkeith, A. C. Morteani, T. Niedereichholz, T. A. Klar, J. Feldmann, S. A. Levi, F. C. J. M. van Veggel, D. N. Reinhoudt , M. Möller, and D. I. Gittins, “Fluorescence Quenching of Dye Molecules near Gold Nanoparticles: Radiative and Nonradiative Effects,” Phys. Rev. Lett. 89, 203002 (2002).
[CrossRef] [PubMed]

Klimov, V.

V. Klimov, M. Ducloy, and V. S. Letokhov, “Radiative Frequency Shift and LineWidth of an Atom Dipole in the Vicinity of a Dielectric Microsphere,” J. Mod. Opt. 43, 2251 (1996).
[CrossRef]

Koenderink, A.

H. Mertens, A. Koenderink, and A. Polman, “Plasmon-enhanced luminescence near noble-metal nanospheres: Comparison of exact theory and an improved Gersten and Nitzan model,” Phys. Rev. B 76, 115123 (2007).
[CrossRef]

Kühn, S.

S. Kühn, U. Hakanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single molecule fluorescence using a gold nanoparticle as an optical nano-antenna,” Phys. Rev. Lett. 97, 017402 (2006).
[CrossRef] [PubMed]

Letokhov, V. S.

V. Klimov, M. Ducloy, and V. S. Letokhov, “Radiative Frequency Shift and LineWidth of an Atom Dipole in the Vicinity of a Dielectric Microsphere,” J. Mod. Opt. 43, 2251 (1996).
[CrossRef]

Leung, P. T.

P. T. Leung, “Decay of molecules at spherical surfaces: Nonlocal effects,” Phys. Rev. B 42, 7622 (1990).
[CrossRef]

Y. S. Kim, P. T. Leung, and T. F. George, “Classical Decay Rates for Molecules in the Presence of a Spherical Surface: a Complete Treatment,” Surf. Sci. 195, 1–14 (1988).
[CrossRef]

Levi, S. A.

E. Dulkeith, A. C. Morteani, T. Niedereichholz, T. A. Klar, J. Feldmann, S. A. Levi, F. C. J. M. van Veggel, D. N. Reinhoudt , M. Möller, and D. I. Gittins, “Fluorescence Quenching of Dye Molecules near Gold Nanoparticles: Radiative and Nonradiative Effects,” Phys. Rev. Lett. 89, 203002 (2002).
[CrossRef] [PubMed]

Lukin, M.

D. Chang, A. Sörensen, P. Hemmer, and M. Lukin, “Quantum Optics with Surface Plasmons,” Phys. Rev. Lett. 97, 053002 (2006).
[CrossRef] [PubMed]

Maghezzi, S.

C. Girard, S. Maghezzi, and F. Hache, “Multipolar propagators near a small metallic sphere : A self consistent calculation,” J. Chem. Phys. 91, 5509–5517 (1989).
[CrossRef]

Martin, O.

G. Baffou, C. Girard, E. Dujardin, G. Colas des Francs, and O. Martin, “Molecular quenching and relaxation in a plasmonic tunable nanogap,” Phys. Rev. B 77, 121101(R) (2008).
[CrossRef]

Martin, O. J. F.

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant Optical Antennas,” Science 308, 1607–1609 (2005).
[CrossRef] [PubMed]

Meier, M.

Mertens, H.

H. Mertens, A. Koenderink, and A. Polman, “Plasmon-enhanced luminescence near noble-metal nanospheres: Comparison of exact theory and an improved Gersten and Nitzan model,” Phys. Rev. B 76, 115123 (2007).
[CrossRef]

Moerland, R. J.

T. H. Taminiau, R. J. Moerland, F. B. Segerink, L. c , and N. F. van Hulst, “l/4 resonance of an optical monopole antenna probed by single molecule fluorescence,” Nano Lett. 7, 28–33 (2007).
[CrossRef] [PubMed]

Möller, M.

E. Dulkeith, A. C. Morteani, T. Niedereichholz, T. A. Klar, J. Feldmann, S. A. Levi, F. C. J. M. van Veggel, D. N. Reinhoudt , M. Möller, and D. I. Gittins, “Fluorescence Quenching of Dye Molecules near Gold Nanoparticles: Radiative and Nonradiative Effects,” Phys. Rev. Lett. 89, 203002 (2002).
[CrossRef] [PubMed]

Morteani, A. C.

E. Dulkeith, A. C. Morteani, T. Niedereichholz, T. A. Klar, J. Feldmann, S. A. Levi, F. C. J. M. van Veggel, D. N. Reinhoudt , M. Möller, and D. I. Gittins, “Fluorescence Quenching of Dye Molecules near Gold Nanoparticles: Radiative and Nonradiative Effects,” Phys. Rev. Lett. 89, 203002 (2002).
[CrossRef] [PubMed]

Mühlschlegel, P.

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant Optical Antennas,” Science 308, 1607–1609 (2005).
[CrossRef] [PubMed]

Niedereichholz, T.

E. Dulkeith, A. C. Morteani, T. Niedereichholz, T. A. Klar, J. Feldmann, S. A. Levi, F. C. J. M. van Veggel, D. N. Reinhoudt , M. Möller, and D. I. Gittins, “Fluorescence Quenching of Dye Molecules near Gold Nanoparticles: Radiative and Nonradiative Effects,” Phys. Rev. Lett. 89, 203002 (2002).
[CrossRef] [PubMed]

Novotny, L.

P. Bharadwaj and L. Novotny, “Spectral dependence of single molecule fluorescence enhancement,” Opt. Express 15, 14266–14274 (2007).
[CrossRef] [PubMed]

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single molecule fluorescence,” Phys. Rev. Lett. 96, 113002 (2006).
[CrossRef] [PubMed]

Peterson, S.

C. S. Yun, A. Javier, T. Jennings, M. Fisher, S. Hira, S. Peterson, B. Hopkins, N. O. Reich, and G. F. Strouse Nanometal Surface Energy Transfer in Optical Rulers, Breaking the FRET Barrier, J. Am. Chem. Soc. 127 (2005) 3115–3119.
[CrossRef] [PubMed]

Pohl, D. W.

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant Optical Antennas,” Science 308, 1607–1609 (2005).
[CrossRef] [PubMed]

D. W. Pohl“Near-field optics seen as an antenna problem,” Near-field Optics, Principles and ApplicationsX. Zhu and M. Ohtsu eds., pp. 9–21. (World Scientific, Singapore, 2000).

Polman, A.

H. Mertens, A. Koenderink, and A. Polman, “Plasmon-enhanced luminescence near noble-metal nanospheres: Comparison of exact theory and an improved Gersten and Nitzan model,” Phys. Rev. B 76, 115123 (2007).
[CrossRef]

Prock, A.

R. R. Chance, A. Prock, and R. Silbey, “Molecular fluorescence and energy transfer near interfaces,” Adv. Chem. Phys. 37, 1–65 (1978).
[CrossRef]

Reich, N. O.

C. S. Yun, A. Javier, T. Jennings, M. Fisher, S. Hira, S. Peterson, B. Hopkins, N. O. Reich, and G. F. Strouse Nanometal Surface Energy Transfer in Optical Rulers, Breaking the FRET Barrier, J. Am. Chem. Soc. 127 (2005) 3115–3119.
[CrossRef] [PubMed]

Reichenbach, P.

Reinhoudt, D. N.

E. Dulkeith, A. C. Morteani, T. Niedereichholz, T. A. Klar, J. Feldmann, S. A. Levi, F. C. J. M. van Veggel, D. N. Reinhoudt , M. Möller, and D. I. Gittins, “Fluorescence Quenching of Dye Molecules near Gold Nanoparticles: Radiative and Nonradiative Effects,” Phys. Rev. Lett. 89, 203002 (2002).
[CrossRef] [PubMed]

Rogobete, L.

L. Rogobete, F. Kaminski, M. Agio, and V. Sandoghdar, “Design of nanoantennae for the enhancement of spontaneous emission,” Opt. Lett. 32, 1623–1625 (2007).
[CrossRef] [PubMed]

S. Kühn, U. Hakanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single molecule fluorescence using a gold nanoparticle as an optical nano-antenna,” Phys. Rev. Lett. 97, 017402 (2006).
[CrossRef] [PubMed]

Sandoghdar, V.

L. Rogobete, F. Kaminski, M. Agio, and V. Sandoghdar, “Design of nanoantennae for the enhancement of spontaneous emission,” Opt. Lett. 32, 1623–1625 (2007).
[CrossRef] [PubMed]

S. Kühn, U. Hakanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single molecule fluorescence using a gold nanoparticle as an optical nano-antenna,” Phys. Rev. Lett. 97, 017402 (2006).
[CrossRef] [PubMed]

Segerink, F. B.

T. H. Taminiau, R. J. Moerland, F. B. Segerink, L. c , and N. F. van Hulst, “l/4 resonance of an optical monopole antenna probed by single molecule fluorescence,” Nano Lett. 7, 28–33 (2007).
[CrossRef] [PubMed]

Silbey, R.

R. R. Chance, A. Prock, and R. Silbey, “Molecular fluorescence and energy transfer near interfaces,” Adv. Chem. Phys. 37, 1–65 (1978).
[CrossRef]

Sörensen, A.

D. Chang, A. Sörensen, P. Hemmer, and M. Lukin, “Quantum Optics with Surface Plasmons,” Phys. Rev. Lett. 97, 053002 (2006).
[CrossRef] [PubMed]

Stegun, I.

M. Abramowitz and I. Stegun, Hanbbook of mathematical functions (Dover Publications, 1972).

Strouse, G. F.

C. S. Yun, A. Javier, T. Jennings, M. Fisher, S. Hira, S. Peterson, B. Hopkins, N. O. Reich, and G. F. Strouse Nanometal Surface Energy Transfer in Optical Rulers, Breaking the FRET Barrier, J. Am. Chem. Soc. 127 (2005) 3115–3119.
[CrossRef] [PubMed]

Taminiau, T. H.

T. H. Taminiau, R. J. Moerland, F. B. Segerink, L. c , and N. F. van Hulst, “l/4 resonance of an optical monopole antenna probed by single molecule fluorescence,” Nano Lett. 7, 28–33 (2007).
[CrossRef] [PubMed]

Trügler, A.

A. Trügler and U. Hohenester, “Strong coupling between a metallic nanoparticle and a single molecule,” Phys. Rev. B  77, 115403 (2008).
[CrossRef]

Van Duyne, R. P.

R. P. Van Duyne, Molecular plasmonics, Science 306, 985 (2004).

van Hulst, N. F.

T. H. Taminiau, R. J. Moerland, F. B. Segerink, L. c , and N. F. van Hulst, “l/4 resonance of an optical monopole antenna probed by single molecule fluorescence,” Nano Lett. 7, 28–33 (2007).
[CrossRef] [PubMed]

van Veggel, F. C. J. M.

E. Dulkeith, A. C. Morteani, T. Niedereichholz, T. A. Klar, J. Feldmann, S. A. Levi, F. C. J. M. van Veggel, D. N. Reinhoudt , M. Möller, and D. I. Gittins, “Fluorescence Quenching of Dye Molecules near Gold Nanoparticles: Radiative and Nonradiative Effects,” Phys. Rev. Lett. 89, 203002 (2002).
[CrossRef] [PubMed]

Vigoureux, J.

R. Carminati, J. Greffet, C. Henkel, and J. Vigoureux, “Radiative and non-radiative decay of a single molecule close to a metallic nanoparticle,” Opt. Commun. 261, 368–375 (2006).
[CrossRef]

Wokaun, A.

Yun, C. S.

C. S. Yun, A. Javier, T. Jennings, M. Fisher, S. Hira, S. Peterson, B. Hopkins, N. O. Reich, and G. F. Strouse Nanometal Surface Energy Transfer in Optical Rulers, Breaking the FRET Barrier, J. Am. Chem. Soc. 127 (2005) 3115–3119.
[CrossRef] [PubMed]

Adv. Chem. Phys. (1)

R. R. Chance, A. Prock, and R. Silbey, “Molecular fluorescence and energy transfer near interfaces,” Adv. Chem. Phys. 37, 1–65 (1978).
[CrossRef]

J. Am. Chem. Soc. (1)

C. S. Yun, A. Javier, T. Jennings, M. Fisher, S. Hira, S. Peterson, B. Hopkins, N. O. Reich, and G. F. Strouse Nanometal Surface Energy Transfer in Optical Rulers, Breaking the FRET Barrier, J. Am. Chem. Soc. 127 (2005) 3115–3119.
[CrossRef] [PubMed]

J. Chem. Phys. (3)

C. Girard, S. Maghezzi, and F. Hache, “Multipolar propagators near a small metallic sphere : A self consistent calculation,” J. Chem. Phys. 91, 5509–5517 (1989).
[CrossRef]

H. Chew, “Transitions rates of atoms near spherical surfaces,” J. Chem. Phys. 87, 1355–1360 (1987).
[CrossRef]

G. Colas des Francs, C. Girard, M. Juan, and A. Dereux, “Energy transfer in near-field optics,” J. Chem. Phys. 123, 174709 (2005).
[CrossRef] [PubMed]

J. Microsc. (NFO9) (1)

G. Colas des Francs, C. Girard, A. Bruyant, and A. Dereux, “SNOM signal near plasmonic nanostructures: an analogy with fluorescence decay channels,” J. Microsc. (NFO9) 229, 302–306 (2008).
[CrossRef]

J. Mod. Opt. (2)

W. Barnes, “Fluorescence near interfaces: the role of photonic mode density,” J. Mod. Opt. 45, 661–699 (1998).
[CrossRef]

V. Klimov, M. Ducloy, and V. S. Letokhov, “Radiative Frequency Shift and LineWidth of an Atom Dipole in the Vicinity of a Dielectric Microsphere,” J. Mod. Opt. 43, 2251 (1996).
[CrossRef]

Nano Lett. (1)

T. H. Taminiau, R. J. Moerland, F. B. Segerink, L. c , and N. F. van Hulst, “l/4 resonance of an optical monopole antenna probed by single molecule fluorescence,” Nano Lett. 7, 28–33 (2007).
[CrossRef] [PubMed]

Opt. Commun. (1)

R. Carminati, J. Greffet, C. Henkel, and J. Vigoureux, “Radiative and non-radiative decay of a single molecule close to a metallic nanoparticle,” Opt. Commun. 261, 368–375 (2006).
[CrossRef]

Opt. Express (2)

Opt. Lett. (2)

Phys. Rev. B (5)

A. Trügler and U. Hohenester, “Strong coupling between a metallic nanoparticle and a single molecule,” Phys. Rev. B  77, 115403 (2008).
[CrossRef]

G. Baffou, C. Girard, E. Dujardin, G. Colas des Francs, and O. Martin, “Molecular quenching and relaxation in a plasmonic tunable nanogap,” Phys. Rev. B 77, 121101(R) (2008).
[CrossRef]

P. T. Leung, “Decay of molecules at spherical surfaces: Nonlocal effects,” Phys. Rev. B 42, 7622 (1990).
[CrossRef]

L. A. Blanco and F. J. G. de Abajo, “Spontaneous light emission in complex nanostructures,” Phys. Rev. B 69, 205414 (2004).
[CrossRef]

H. Mertens, A. Koenderink, and A. Polman, “Plasmon-enhanced luminescence near noble-metal nanospheres: Comparison of exact theory and an improved Gersten and Nitzan model,” Phys. Rev. B 76, 115123 (2007).
[CrossRef]

Phys. Rev. Lett. (4)

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single molecule fluorescence,” Phys. Rev. Lett. 96, 113002 (2006).
[CrossRef] [PubMed]

D. Chang, A. Sörensen, P. Hemmer, and M. Lukin, “Quantum Optics with Surface Plasmons,” Phys. Rev. Lett. 97, 053002 (2006).
[CrossRef] [PubMed]

E. Dulkeith, A. C. Morteani, T. Niedereichholz, T. A. Klar, J. Feldmann, S. A. Levi, F. C. J. M. van Veggel, D. N. Reinhoudt , M. Möller, and D. I. Gittins, “Fluorescence Quenching of Dye Molecules near Gold Nanoparticles: Radiative and Nonradiative Effects,” Phys. Rev. Lett. 89, 203002 (2002).
[CrossRef] [PubMed]

S. Kühn, U. Hakanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single molecule fluorescence using a gold nanoparticle as an optical nano-antenna,” Phys. Rev. Lett. 97, 017402 (2006).
[CrossRef] [PubMed]

Science (1)

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant Optical Antennas,” Science 308, 1607–1609 (2005).
[CrossRef] [PubMed]

Surf. Sci. (1)

Y. S. Kim, P. T. Leung, and T. F. George, “Classical Decay Rates for Molecules in the Presence of a Spherical Surface: a Complete Treatment,” Surf. Sci. 195, 1–14 (1988).
[CrossRef]

Other (4)

R. P. Van Duyne, Molecular plasmonics, Science 306, 985 (2004).

D. W. Pohl“Near-field optics seen as an antenna problem,” Near-field Optics, Principles and ApplicationsX. Zhu and M. Ohtsu eds., pp. 9–21. (World Scientific, Singapore, 2000).

C. Bohren and D. Huffman, Absorption and scattering of light by small particles (1983).

M. Abramowitz and I. Stegun, Hanbbook of mathematical functions (Dover Publications, 1972).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Model used to study the molecule-particle coupling.

Fig. 2.
Fig. 2.

Error done on the non radiative decay rate when approximated by Eq. (9) or (10) for a perpendicular or parallel orientation, respectively. The molecule is located 1 nm from a gold particle in air. The emission wavelength is λ 0=580 nm.

Fig. 3.
Fig. 3.

Non radiative decay rate dependence for an emitter placed 5 nm above a gold nanoparticle (80 nm diameter) embedded in a PMMA matrix (solid line) or above a flat gold/PMMA interface film (dashed line, quasi-static approximation). (a) Dipole parallel to the surface. (b) Dipole perpendicular to the surface. Vertical lines indicate the Au/PMMA interface plasmon mode resonance.

Fig. 4.
Fig. 4.

Radiative decay rate for an emitter placed 5 nm above a gold nanoparticle (80 nm in diameter). (a) Dipole parallel to the surface. (b) Dipole perpendicular to the surface. The solid curves are calculated from Mie formalism (Eq. 3,4). The dashed curves assume a dipolar response of the particle, including finite size effects [Eq. 28) and (29) in appendix (6.2)]. Vertical lines indicate the sphere dipolar resonance.

Fig. 5.
Fig. 5.

Non radiative decay rates as a function of the distance d=(z 0-a) to the particle surface (solid lines) or gold flat film(dashed lines, quasi-static approximation) for a parallel (a) and perpendicular (b) dipole. The emission wavelength is λ 0=580 nm.

Fig. 6.
Fig. 6.

Radiative decay rate dependence with respect to the distance d between the particle and the molecule: for a dipole (a) parallel or (b) perpendicular to the particle surface. ‘Exact’ curves refers to Mie formalism (Eq. 3,4), ‘dipolar’ corresponds to a dipolar model, including finite size effects [Eq. 28) and (29) in appendix (6.2)] and ‘dipolar (point-like)’ assumes a point-like dipolar response of the particle to an external field [(Eq. 28) and (29) where α e f f is approximated by α 1]. The insets show far-field behaviours. The emission wavelength is λ 0=580 nm.

Fig. 7.
Fig. 7.

Normalized electric-field intensity (a), decay rate (b) and non-radiative rate (c) calculated 10 nm away the particle surface as a function of both wavelength and particle radius. The system is shown in the inset of Fig. 7(a). The molecule is oriented perpendicularly to the sphere surface.

Fig. 8.
Fig. 8.

Fluorescent enhancement for ‘DiD-gold particle’ coupled system embedded in PMMA.

Equations (35)

Equations on this page are rendered with MathJax. Learn more.

γ γ 0 = n B { 1 + 3 2 R e Σ n = 1 n ( n + 1 ) ( 2 n + 1 ) B n [ h n ( 1 ) ( u ) u ] 2 } ,
γ γ 0 = n B { 1 + 3 2 R e Σ n = 1 ( n + 1 2 ) [ B n [ ζ n ' ( u ) u ] 2 + A n [ h n ( 1 ) ( u ) ] 2 ] } ,
γ rad γ 0 = 3 n B 2 Σ n = 1 n ( n + 1 ) ( 2 n + 1 ) j n ( u ) + B n h n ( 1 ) ( u ) u 2 ,
γ rad γ 0 = 3 n B 4 Σ n = 1 ( 2 n + 1 ) [ j n ( u ) + A n h n ( 1 ) ( u ) 2 + ψ n ( u ) + B n ζ n ( u ) u 2 ] ,
γ rad γ 0 = n B + 3 n B 2 Σ n = 1 n ( n + 1 ) ( 2 n + 1 ) B n h n ( 1 ) ( u ) 2 + 2 j n ( u ) R e [ B n h n ( 1 ) ( u ) ] u 2 ,
γ rad γ 0 = n B + 3 n B 4 Σ n = 1 ( 2 n + 1 )
[ A n h n ( 1 ) ( u ) 2 + 2 j n ( u ) R e [ A n h n ( 1 ) ( u ) ] + B n ζ n ( 1 ) ( u ) 2 + 2 ψ n ' ( u ) R e [ B n ζ n ( 1 ) ( u ) ] u 2 ] .
γ NR γ 0 = γ γ 0 γ rad γ 0 = 3 n B 2 Σ n = 1 n ( n + 1 ) ( 2 n + 1 ) h n ( 1 ) ( u ) u 2 [ R e ( B n ) B n 2 ] ,
γ NR γ 0 = γ γ 0 γ rad γ 0
= 3 n B 2 Σ n = 1 ( n + 1 2 ) [ ζ n ( 1 ) ( u ) u 2 [ R e ( B n ) B n 2 ] + h n ( 1 ) ( u ) 2 [ R e ( A n ) A n 2 ] ] .
γ N R γ 0 u 0 ˜ 3 n B 2 u 3 Σ n = 1 ( n + 1 ) 2 u ( 2 n + 1 ) k B 2 n + 1
[ I m ( α n ) n + 1 n ( 2 n 1 ) ! ! ( 2 n + 1 ) ! ! k B 2 n + 1 α n 2 ] , and
γ N R γ 0 u 0 ˜ 3 n B 2 u 3 Σ n = 1 n ( n + 1 ) ( n + 1 2 ) ( 2 n + 1 ) u ( 2 n + 1 ) k B 2 n + 1
[ I m ( α n ) n + 1 n ( 2 n 1 ) ! ! ( 2 n + 1 ) ! ! k B 2 n + 1 α n 2 ] ,
α n = n ( ε S ε B ) ( n + 1 ) ε B + n ε S a ( 2 n + 1 ) .
γ N R γ 0 z 0 a ˜ 3 n B 2 u 3 a z 0 I m ( ε S ε B ε S + ε B ) Σ n > > 1 n 2 ( a z 0 ) 2 n ,
z 0 a ˜ 3 n B 8 k B 3 I m ( ε S ε B ε S + ε B ) 1 ( z 0 a ) 3
γ N R γ 0 z 0 a ˜ 3 n B 4 u 3 a z 0 I m ( ε S ε B ε S + ε B ) Σ n > > 1 n 2 ( a z 0 ) 2 n ,
z 0 a ˜ 3 n B 16 k B 3 I m ( ε S ε B ε S + ε B ) 1 ( z 0 a ) 3 .
γ rad γ 0 u 0 ˜ n B + 3 2 u 2 Σ n = 1 n ( n + 1 ) 2 ( 2 n + 1 ) { n + 1 [ ( 2 n + 1 ) ! ! ] 2 u 2 n + 2 k B 4 n + 2 α n 2
+ 2 [ ( 2 n + 1 ) ! ! ] 2 u k B 2 n + 1 R e ( α n )
2 ( 2 n 1 ) ! ! [ ( 2 n + 1 ) ! ! ] 3 u 2 n k B 2 n + 1 I m ( α n ) } .
γ rad γ 0 z 0 a ˜ n B { 1 + 4 z 0 3 R e ( α 1 ) + 4 z 0 6 α 1 2 }
γ rad γ 0 z 0 a ˜ n B { 1 2 z 0 3 R e ( α 1 ) + 1 z 0 6 α 1 2 } ,
α e f f = [ 1 M B α 1 a 3 ] 1 α 1
M B = 2 [ ( 1 i k B a ) e i k B a 1 ]
η f l u o ( r 0 ) = u · E ( λ e x c , r 0 ) 2 γ rad ( r 0 ) γ ( r 0 ) ,
A n = j n ( k B a ) ψ n ( k S a ) j n ( k S a ) ψ n ( k B a ) j n ( k S a ) ζ n ( k B a ) h n ( 1 ) ( k B a ) ψ n ( k S a ) ,
B n = ε B j n ( k B a ) ψ n ( k S a ) ε S j n ( k S a ) ψ n ( k B a ) ε S j n ( k S a ) ζ n ( k B a ) ε B h n ( 1 ) ( k B a ) ψ n ( k S a ) .
γ γ 0 = n B { 1 + 3 k B 3 2 I m [ α e f f e 2 i u ( 1 u + i u 2 1 u 3 ) 2 ] } ,
γ γ 0 = n B { 1 + 6 k B 3 I m [ α e f f e 2 i u ( 1 u 3 i u 3 ) 2 ] } ,
γ N R γ 0 = 3 n B 2 k B 3 [ I m ( α e f f ) 2 k B 3 3 α e f f 2 ] [ 1 u 2 1 u 4 + 1 u 6 ] ,
γ N R γ 0 = 6 k B 3 n B [ I m ( α e f f ) 2 k B 3 3 α e f f 2 ] [ 1 u 4 + 1 u 6 ] .
γ rad γ 0 = γ γ 0 γ N R γ 0
γ rad γ 0 = γ γ 0 γ N R γ 0 .

Metrics