Abstract

We present the realization of a ultra fast shutter for optical fields, which allows to preserve a generic polarization state, based on a self-stabilized interferometer. It exhibits high (or low) transmittivity when turned on (or inactive), while the fidelity of the polarization state is high. The shutter is realized through two beam displacing prisms and a longitudinal Pockels cell. This can represent a useful tool for controlling light-atom interfaces in quantum information processing.

© 2008 Optical Society of America

Full Article  |  PDF Article
Related Articles
Bose–Einstein photon correlations in the stochastic interferometer

F. De Martini and L. De Dominicis
Opt. Lett. 17(6) 429-431 (1992)

Selection of cw Mode-Locked Laser Pulses

V. J. Corcoran, R. W. McMillan, and P. M. Rushworth
Appl. Opt. 14(3) 643-646 (1975)

References

  • View by:
  • |
  • |
  • |

  1. N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum Cryptography,” Rev. Mod. Phys. 74, 145 (2002).
    [Crossref]
  2. E. Knill, R. Laflamme, and G. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature (London) 409, 46 (2001).
    [Crossref]
  3. R. Raussendorf and H. J. Briegel, “A One-Way Quantum Computer,” Phys. Rev. Lett. 86, 5188 (2001).
    [Crossref] [PubMed]
  4. S. Giacomini, F. Sciarrino, E. Lombardi, and F. De Martini, “Active teleportation of a quantum bit,” Phys. Rev. A 66, 030302(R) (2002).
    [Crossref]
  5. R. Ursin, R. Ursin, T. Jennewein, M. Aspelmeyer, R. Kaltenbaek, M. Lindenthal, P. Walther, and A. Zeilinger, “Quantum teleportation across the Danube,” Nature (London) 430, 849 (2004).
    [Crossref]
  6. T.B. Pittman, B.C. Jacobs, and J.D. Franson, “Demonstration of feed-forward control for linear optics quantum computation,” Phys. Rev. A 66, 052305 (2002).
    [Crossref]
  7. R. Prevedel, P. Walther, F. Tiefenbacher, P. Bohl, R. Kaltenbaek, T. Jennewein, and A. Zeilinger “High-speed linear optics quantum computing using active feed-forward,” Nature (London) 445, 65 (2007).
    [Crossref]
  8. P. Böhi, R. Prevedel, T. Jennewein, A. Stefanov, F. Tiefenbacher, and A. Zeilinger, “Implementation and characterization of active feed-forward for deterministic linear optics quantum computing,” Appl. Phys. B 89, 499–505 (2007).
    [Crossref]
  9. G. Vallone, E. Pomarico, F. De Martini, and P. Mataloni, “Active one-way quantum computation with 2-photon 4-qubit cluster states,” Phys. Rev. Lett. 100, 160502 (2008).
    [Crossref] [PubMed]
  10. K. Hammerer, A.S. Sorensen, and E.S. Polzik, “Quantum interface between light and atomic ensembles,”’ quant-ph/0807.3358v1.
  11. F. Cataliotti and F. De Martini, “Macroscopic Quantum Superposition and Entanglement in light reflection from Bose-Einstein Condensates,” ArXiv: quant-ph/0804.1453v1.
  12. C. Wittmann, D. Elser, U. L. Andersen, R. Filip, P. Marek, and G. Leuchs, “Experimental Noiseless Filtering of Continuous-Variable Quantum Information,” ArXiv: quant-ph/0704.1918.
  13. F. Sciarrino, E. Nagali, F. De Martini, M. Gavenda, and R. Filip, “Experimental entanglement restoration on entanglement-breaking channels,” ArXiv: quant-ph/0804.3542
  14. J. L. O’Brien, G. J. Pryde, A. G. White, T. C. Ralph, and D. Branning “Demonstration of an all-optical quantum controlled-NOT gate,” Nature 426, 264 (2003).
    [Crossref] [PubMed]
  15. A.I. Bishop and P.F. Barker, “Subnanosecond Pockels cell switching using avalanche transistors,” Rev. Sci. In-strum. 77, 044701(2006).
    [Crossref]

2008 (1)

G. Vallone, E. Pomarico, F. De Martini, and P. Mataloni, “Active one-way quantum computation with 2-photon 4-qubit cluster states,” Phys. Rev. Lett. 100, 160502 (2008).
[Crossref] [PubMed]

2007 (2)

R. Prevedel, P. Walther, F. Tiefenbacher, P. Bohl, R. Kaltenbaek, T. Jennewein, and A. Zeilinger “High-speed linear optics quantum computing using active feed-forward,” Nature (London) 445, 65 (2007).
[Crossref]

P. Böhi, R. Prevedel, T. Jennewein, A. Stefanov, F. Tiefenbacher, and A. Zeilinger, “Implementation and characterization of active feed-forward for deterministic linear optics quantum computing,” Appl. Phys. B 89, 499–505 (2007).
[Crossref]

2006 (1)

A.I. Bishop and P.F. Barker, “Subnanosecond Pockels cell switching using avalanche transistors,” Rev. Sci. In-strum. 77, 044701(2006).
[Crossref]

2004 (1)

R. Ursin, R. Ursin, T. Jennewein, M. Aspelmeyer, R. Kaltenbaek, M. Lindenthal, P. Walther, and A. Zeilinger, “Quantum teleportation across the Danube,” Nature (London) 430, 849 (2004).
[Crossref]

2003 (1)

J. L. O’Brien, G. J. Pryde, A. G. White, T. C. Ralph, and D. Branning “Demonstration of an all-optical quantum controlled-NOT gate,” Nature 426, 264 (2003).
[Crossref] [PubMed]

2002 (3)

T.B. Pittman, B.C. Jacobs, and J.D. Franson, “Demonstration of feed-forward control for linear optics quantum computation,” Phys. Rev. A 66, 052305 (2002).
[Crossref]

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum Cryptography,” Rev. Mod. Phys. 74, 145 (2002).
[Crossref]

S. Giacomini, F. Sciarrino, E. Lombardi, and F. De Martini, “Active teleportation of a quantum bit,” Phys. Rev. A 66, 030302(R) (2002).
[Crossref]

2001 (2)

E. Knill, R. Laflamme, and G. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature (London) 409, 46 (2001).
[Crossref]

R. Raussendorf and H. J. Briegel, “A One-Way Quantum Computer,” Phys. Rev. Lett. 86, 5188 (2001).
[Crossref] [PubMed]

Andersen, U. L.

C. Wittmann, D. Elser, U. L. Andersen, R. Filip, P. Marek, and G. Leuchs, “Experimental Noiseless Filtering of Continuous-Variable Quantum Information,” ArXiv: quant-ph/0704.1918.

Aspelmeyer, M.

R. Ursin, R. Ursin, T. Jennewein, M. Aspelmeyer, R. Kaltenbaek, M. Lindenthal, P. Walther, and A. Zeilinger, “Quantum teleportation across the Danube,” Nature (London) 430, 849 (2004).
[Crossref]

Barker, P.F.

A.I. Bishop and P.F. Barker, “Subnanosecond Pockels cell switching using avalanche transistors,” Rev. Sci. In-strum. 77, 044701(2006).
[Crossref]

Bishop, A.I.

A.I. Bishop and P.F. Barker, “Subnanosecond Pockels cell switching using avalanche transistors,” Rev. Sci. In-strum. 77, 044701(2006).
[Crossref]

Böhi, P.

P. Böhi, R. Prevedel, T. Jennewein, A. Stefanov, F. Tiefenbacher, and A. Zeilinger, “Implementation and characterization of active feed-forward for deterministic linear optics quantum computing,” Appl. Phys. B 89, 499–505 (2007).
[Crossref]

Bohl, P.

R. Prevedel, P. Walther, F. Tiefenbacher, P. Bohl, R. Kaltenbaek, T. Jennewein, and A. Zeilinger “High-speed linear optics quantum computing using active feed-forward,” Nature (London) 445, 65 (2007).
[Crossref]

Branning, D.

J. L. O’Brien, G. J. Pryde, A. G. White, T. C. Ralph, and D. Branning “Demonstration of an all-optical quantum controlled-NOT gate,” Nature 426, 264 (2003).
[Crossref] [PubMed]

Briegel, H. J.

R. Raussendorf and H. J. Briegel, “A One-Way Quantum Computer,” Phys. Rev. Lett. 86, 5188 (2001).
[Crossref] [PubMed]

Cataliotti, F.

F. Cataliotti and F. De Martini, “Macroscopic Quantum Superposition and Entanglement in light reflection from Bose-Einstein Condensates,” ArXiv: quant-ph/0804.1453v1.

De Martini, F.

G. Vallone, E. Pomarico, F. De Martini, and P. Mataloni, “Active one-way quantum computation with 2-photon 4-qubit cluster states,” Phys. Rev. Lett. 100, 160502 (2008).
[Crossref] [PubMed]

S. Giacomini, F. Sciarrino, E. Lombardi, and F. De Martini, “Active teleportation of a quantum bit,” Phys. Rev. A 66, 030302(R) (2002).
[Crossref]

F. Cataliotti and F. De Martini, “Macroscopic Quantum Superposition and Entanglement in light reflection from Bose-Einstein Condensates,” ArXiv: quant-ph/0804.1453v1.

F. Sciarrino, E. Nagali, F. De Martini, M. Gavenda, and R. Filip, “Experimental entanglement restoration on entanglement-breaking channels,” ArXiv: quant-ph/0804.3542

Elser, D.

C. Wittmann, D. Elser, U. L. Andersen, R. Filip, P. Marek, and G. Leuchs, “Experimental Noiseless Filtering of Continuous-Variable Quantum Information,” ArXiv: quant-ph/0704.1918.

Filip, R.

C. Wittmann, D. Elser, U. L. Andersen, R. Filip, P. Marek, and G. Leuchs, “Experimental Noiseless Filtering of Continuous-Variable Quantum Information,” ArXiv: quant-ph/0704.1918.

F. Sciarrino, E. Nagali, F. De Martini, M. Gavenda, and R. Filip, “Experimental entanglement restoration on entanglement-breaking channels,” ArXiv: quant-ph/0804.3542

Franson, J.D.

T.B. Pittman, B.C. Jacobs, and J.D. Franson, “Demonstration of feed-forward control for linear optics quantum computation,” Phys. Rev. A 66, 052305 (2002).
[Crossref]

Gavenda, M.

F. Sciarrino, E. Nagali, F. De Martini, M. Gavenda, and R. Filip, “Experimental entanglement restoration on entanglement-breaking channels,” ArXiv: quant-ph/0804.3542

Giacomini, S.

S. Giacomini, F. Sciarrino, E. Lombardi, and F. De Martini, “Active teleportation of a quantum bit,” Phys. Rev. A 66, 030302(R) (2002).
[Crossref]

Gisin, N.

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum Cryptography,” Rev. Mod. Phys. 74, 145 (2002).
[Crossref]

Hammerer, K.

K. Hammerer, A.S. Sorensen, and E.S. Polzik, “Quantum interface between light and atomic ensembles,”’ quant-ph/0807.3358v1.

Jacobs, B.C.

T.B. Pittman, B.C. Jacobs, and J.D. Franson, “Demonstration of feed-forward control for linear optics quantum computation,” Phys. Rev. A 66, 052305 (2002).
[Crossref]

Jennewein, T.

R. Prevedel, P. Walther, F. Tiefenbacher, P. Bohl, R. Kaltenbaek, T. Jennewein, and A. Zeilinger “High-speed linear optics quantum computing using active feed-forward,” Nature (London) 445, 65 (2007).
[Crossref]

P. Böhi, R. Prevedel, T. Jennewein, A. Stefanov, F. Tiefenbacher, and A. Zeilinger, “Implementation and characterization of active feed-forward for deterministic linear optics quantum computing,” Appl. Phys. B 89, 499–505 (2007).
[Crossref]

R. Ursin, R. Ursin, T. Jennewein, M. Aspelmeyer, R. Kaltenbaek, M. Lindenthal, P. Walther, and A. Zeilinger, “Quantum teleportation across the Danube,” Nature (London) 430, 849 (2004).
[Crossref]

Kaltenbaek, R.

R. Prevedel, P. Walther, F. Tiefenbacher, P. Bohl, R. Kaltenbaek, T. Jennewein, and A. Zeilinger “High-speed linear optics quantum computing using active feed-forward,” Nature (London) 445, 65 (2007).
[Crossref]

R. Ursin, R. Ursin, T. Jennewein, M. Aspelmeyer, R. Kaltenbaek, M. Lindenthal, P. Walther, and A. Zeilinger, “Quantum teleportation across the Danube,” Nature (London) 430, 849 (2004).
[Crossref]

Knill, E.

E. Knill, R. Laflamme, and G. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature (London) 409, 46 (2001).
[Crossref]

Laflamme, R.

E. Knill, R. Laflamme, and G. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature (London) 409, 46 (2001).
[Crossref]

Leuchs, G.

C. Wittmann, D. Elser, U. L. Andersen, R. Filip, P. Marek, and G. Leuchs, “Experimental Noiseless Filtering of Continuous-Variable Quantum Information,” ArXiv: quant-ph/0704.1918.

Lindenthal, M.

R. Ursin, R. Ursin, T. Jennewein, M. Aspelmeyer, R. Kaltenbaek, M. Lindenthal, P. Walther, and A. Zeilinger, “Quantum teleportation across the Danube,” Nature (London) 430, 849 (2004).
[Crossref]

Lombardi, E.

S. Giacomini, F. Sciarrino, E. Lombardi, and F. De Martini, “Active teleportation of a quantum bit,” Phys. Rev. A 66, 030302(R) (2002).
[Crossref]

Marek, P.

C. Wittmann, D. Elser, U. L. Andersen, R. Filip, P. Marek, and G. Leuchs, “Experimental Noiseless Filtering of Continuous-Variable Quantum Information,” ArXiv: quant-ph/0704.1918.

Mataloni, P.

G. Vallone, E. Pomarico, F. De Martini, and P. Mataloni, “Active one-way quantum computation with 2-photon 4-qubit cluster states,” Phys. Rev. Lett. 100, 160502 (2008).
[Crossref] [PubMed]

Milburn, G.

E. Knill, R. Laflamme, and G. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature (London) 409, 46 (2001).
[Crossref]

Nagali, E.

F. Sciarrino, E. Nagali, F. De Martini, M. Gavenda, and R. Filip, “Experimental entanglement restoration on entanglement-breaking channels,” ArXiv: quant-ph/0804.3542

O’Brien, J. L.

J. L. O’Brien, G. J. Pryde, A. G. White, T. C. Ralph, and D. Branning “Demonstration of an all-optical quantum controlled-NOT gate,” Nature 426, 264 (2003).
[Crossref] [PubMed]

Pittman, T.B.

T.B. Pittman, B.C. Jacobs, and J.D. Franson, “Demonstration of feed-forward control for linear optics quantum computation,” Phys. Rev. A 66, 052305 (2002).
[Crossref]

Polzik, E.S.

K. Hammerer, A.S. Sorensen, and E.S. Polzik, “Quantum interface between light and atomic ensembles,”’ quant-ph/0807.3358v1.

Pomarico, E.

G. Vallone, E. Pomarico, F. De Martini, and P. Mataloni, “Active one-way quantum computation with 2-photon 4-qubit cluster states,” Phys. Rev. Lett. 100, 160502 (2008).
[Crossref] [PubMed]

Prevedel, R.

R. Prevedel, P. Walther, F. Tiefenbacher, P. Bohl, R. Kaltenbaek, T. Jennewein, and A. Zeilinger “High-speed linear optics quantum computing using active feed-forward,” Nature (London) 445, 65 (2007).
[Crossref]

P. Böhi, R. Prevedel, T. Jennewein, A. Stefanov, F. Tiefenbacher, and A. Zeilinger, “Implementation and characterization of active feed-forward for deterministic linear optics quantum computing,” Appl. Phys. B 89, 499–505 (2007).
[Crossref]

Pryde, G. J.

J. L. O’Brien, G. J. Pryde, A. G. White, T. C. Ralph, and D. Branning “Demonstration of an all-optical quantum controlled-NOT gate,” Nature 426, 264 (2003).
[Crossref] [PubMed]

Ralph, T. C.

J. L. O’Brien, G. J. Pryde, A. G. White, T. C. Ralph, and D. Branning “Demonstration of an all-optical quantum controlled-NOT gate,” Nature 426, 264 (2003).
[Crossref] [PubMed]

Raussendorf, R.

R. Raussendorf and H. J. Briegel, “A One-Way Quantum Computer,” Phys. Rev. Lett. 86, 5188 (2001).
[Crossref] [PubMed]

Ribordy, G.

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum Cryptography,” Rev. Mod. Phys. 74, 145 (2002).
[Crossref]

Sciarrino, F.

S. Giacomini, F. Sciarrino, E. Lombardi, and F. De Martini, “Active teleportation of a quantum bit,” Phys. Rev. A 66, 030302(R) (2002).
[Crossref]

F. Sciarrino, E. Nagali, F. De Martini, M. Gavenda, and R. Filip, “Experimental entanglement restoration on entanglement-breaking channels,” ArXiv: quant-ph/0804.3542

Sorensen, A.S.

K. Hammerer, A.S. Sorensen, and E.S. Polzik, “Quantum interface between light and atomic ensembles,”’ quant-ph/0807.3358v1.

Stefanov, A.

P. Böhi, R. Prevedel, T. Jennewein, A. Stefanov, F. Tiefenbacher, and A. Zeilinger, “Implementation and characterization of active feed-forward for deterministic linear optics quantum computing,” Appl. Phys. B 89, 499–505 (2007).
[Crossref]

Tiefenbacher, F.

P. Böhi, R. Prevedel, T. Jennewein, A. Stefanov, F. Tiefenbacher, and A. Zeilinger, “Implementation and characterization of active feed-forward for deterministic linear optics quantum computing,” Appl. Phys. B 89, 499–505 (2007).
[Crossref]

R. Prevedel, P. Walther, F. Tiefenbacher, P. Bohl, R. Kaltenbaek, T. Jennewein, and A. Zeilinger “High-speed linear optics quantum computing using active feed-forward,” Nature (London) 445, 65 (2007).
[Crossref]

Tittel, W.

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum Cryptography,” Rev. Mod. Phys. 74, 145 (2002).
[Crossref]

Ursin, R.

R. Ursin, R. Ursin, T. Jennewein, M. Aspelmeyer, R. Kaltenbaek, M. Lindenthal, P. Walther, and A. Zeilinger, “Quantum teleportation across the Danube,” Nature (London) 430, 849 (2004).
[Crossref]

R. Ursin, R. Ursin, T. Jennewein, M. Aspelmeyer, R. Kaltenbaek, M. Lindenthal, P. Walther, and A. Zeilinger, “Quantum teleportation across the Danube,” Nature (London) 430, 849 (2004).
[Crossref]

Vallone, G.

G. Vallone, E. Pomarico, F. De Martini, and P. Mataloni, “Active one-way quantum computation with 2-photon 4-qubit cluster states,” Phys. Rev. Lett. 100, 160502 (2008).
[Crossref] [PubMed]

Walther, P.

R. Prevedel, P. Walther, F. Tiefenbacher, P. Bohl, R. Kaltenbaek, T. Jennewein, and A. Zeilinger “High-speed linear optics quantum computing using active feed-forward,” Nature (London) 445, 65 (2007).
[Crossref]

R. Ursin, R. Ursin, T. Jennewein, M. Aspelmeyer, R. Kaltenbaek, M. Lindenthal, P. Walther, and A. Zeilinger, “Quantum teleportation across the Danube,” Nature (London) 430, 849 (2004).
[Crossref]

White, A. G.

J. L. O’Brien, G. J. Pryde, A. G. White, T. C. Ralph, and D. Branning “Demonstration of an all-optical quantum controlled-NOT gate,” Nature 426, 264 (2003).
[Crossref] [PubMed]

Wittmann, C.

C. Wittmann, D. Elser, U. L. Andersen, R. Filip, P. Marek, and G. Leuchs, “Experimental Noiseless Filtering of Continuous-Variable Quantum Information,” ArXiv: quant-ph/0704.1918.

Zbinden, H.

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum Cryptography,” Rev. Mod. Phys. 74, 145 (2002).
[Crossref]

Zeilinger, A.

P. Böhi, R. Prevedel, T. Jennewein, A. Stefanov, F. Tiefenbacher, and A. Zeilinger, “Implementation and characterization of active feed-forward for deterministic linear optics quantum computing,” Appl. Phys. B 89, 499–505 (2007).
[Crossref]

R. Prevedel, P. Walther, F. Tiefenbacher, P. Bohl, R. Kaltenbaek, T. Jennewein, and A. Zeilinger “High-speed linear optics quantum computing using active feed-forward,” Nature (London) 445, 65 (2007).
[Crossref]

R. Ursin, R. Ursin, T. Jennewein, M. Aspelmeyer, R. Kaltenbaek, M. Lindenthal, P. Walther, and A. Zeilinger, “Quantum teleportation across the Danube,” Nature (London) 430, 849 (2004).
[Crossref]

Appl. Phys. B (1)

P. Böhi, R. Prevedel, T. Jennewein, A. Stefanov, F. Tiefenbacher, and A. Zeilinger, “Implementation and characterization of active feed-forward for deterministic linear optics quantum computing,” Appl. Phys. B 89, 499–505 (2007).
[Crossref]

Nature (1)

J. L. O’Brien, G. J. Pryde, A. G. White, T. C. Ralph, and D. Branning “Demonstration of an all-optical quantum controlled-NOT gate,” Nature 426, 264 (2003).
[Crossref] [PubMed]

Nature (London) (3)

R. Ursin, R. Ursin, T. Jennewein, M. Aspelmeyer, R. Kaltenbaek, M. Lindenthal, P. Walther, and A. Zeilinger, “Quantum teleportation across the Danube,” Nature (London) 430, 849 (2004).
[Crossref]

R. Prevedel, P. Walther, F. Tiefenbacher, P. Bohl, R. Kaltenbaek, T. Jennewein, and A. Zeilinger “High-speed linear optics quantum computing using active feed-forward,” Nature (London) 445, 65 (2007).
[Crossref]

E. Knill, R. Laflamme, and G. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature (London) 409, 46 (2001).
[Crossref]

Phys. Rev. A (2)

S. Giacomini, F. Sciarrino, E. Lombardi, and F. De Martini, “Active teleportation of a quantum bit,” Phys. Rev. A 66, 030302(R) (2002).
[Crossref]

T.B. Pittman, B.C. Jacobs, and J.D. Franson, “Demonstration of feed-forward control for linear optics quantum computation,” Phys. Rev. A 66, 052305 (2002).
[Crossref]

Phys. Rev. Lett. (2)

R. Raussendorf and H. J. Briegel, “A One-Way Quantum Computer,” Phys. Rev. Lett. 86, 5188 (2001).
[Crossref] [PubMed]

G. Vallone, E. Pomarico, F. De Martini, and P. Mataloni, “Active one-way quantum computation with 2-photon 4-qubit cluster states,” Phys. Rev. Lett. 100, 160502 (2008).
[Crossref] [PubMed]

Rev. Mod. Phys. (1)

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum Cryptography,” Rev. Mod. Phys. 74, 145 (2002).
[Crossref]

Rev. Sci. In-strum. (1)

A.I. Bishop and P.F. Barker, “Subnanosecond Pockels cell switching using avalanche transistors,” Rev. Sci. In-strum. 77, 044701(2006).
[Crossref]

Other (4)

K. Hammerer, A.S. Sorensen, and E.S. Polzik, “Quantum interface between light and atomic ensembles,”’ quant-ph/0807.3358v1.

F. Cataliotti and F. De Martini, “Macroscopic Quantum Superposition and Entanglement in light reflection from Bose-Einstein Condensates,” ArXiv: quant-ph/0804.1453v1.

C. Wittmann, D. Elser, U. L. Andersen, R. Filip, P. Marek, and G. Leuchs, “Experimental Noiseless Filtering of Continuous-Variable Quantum Information,” ArXiv: quant-ph/0704.1918.

F. Sciarrino, E. Nagali, F. De Martini, M. Gavenda, and R. Filip, “Experimental entanglement restoration on entanglement-breaking channels,” ArXiv: quant-ph/0804.3542

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Experimental scheme of the shutter: (1) when the shutter is off the two beams separated by the two calcites are stopped by the pin-hole (modes a and c). (2) On the contrary when the shutter is on the two beams are recombined on the second calcite and the resulting beam (mode b) passes through the pin-hole.

Fig. 2.
Fig. 2.

Electronic driver of the Pockels cell. When the signal of the trigger is on the PC is activated.

Fig. 3.
Fig. 3.

Trend of the high voltage signal as function of time. Inset: the trigger signal remain constant for almost 10ns.

Fig. 4.
Fig. 4.

Experimental setup. A PBS and a λ/2 waveplate allow to vary the polarization of the input beam. A second PBS and λ/2 waveplate analyze the polarization state of the output beam b. The signal is detected by a photodiode (PD).

Fig. 5.
Fig. 5.

Transmittivity for an input state with polarization {π+,π-} and {πHV } measured with a frequency of the trigger equal to 1 kHz.

Fig. 6.
Fig. 6.

Fidelity of the polarization state in the {π+- } and the {πHV } basis versus the frequency of the trigger signal.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

F ON = I i ON I i ON + I i ON
F ON = I i ON + I i ON I IN
F OFF = I i OFF + I i OFF I IN

Metrics