Abstract

We propose a platform to achieve ultra-high Quality factor (Q) optical resonators based on semiconductor nanowires. By defining one-dimensional photonic crystal at nanowire ends and engineering the microcavity pattern, cavities with Q of 3×105 and mode volume smaller than 0.2(λ/n)3 have been designed. This represents an increase of almost three orders of magnitude over the Quality factor of an as-grown nanowire. Our cavities are well-suited for the realization of nanowire-based low-threshold lasers, single-photon sources and quantum optical devices that operate in the strong-coupling limit.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, "Room-temperature ultraviolet nanowire nanolasers," Science 292, 1897-1899 (2001).
    [CrossRef] [PubMed]
  2. X. Duan, Y. Huang, R. Agarwal, and C. M. Lieber, "Single-nanowire electrically driven laser," Nature 421, 241-245 (2003).
    [CrossRef] [PubMed]
  3. R. Agarwal, C. J. Barrelet, and C. M. Lieber, "Lasing in single cadmium sulfide nanowire optical cavities," Nano. Lett. 5, 917-920 (2005).
    [CrossRef] [PubMed]
  4. S. Gradecek, F. Qian, Y. Li, H. G. Park, and C. M. Lieber, "GaN nanowire lasers with low lasing threshold," Appl. Phys. Lett. 87, 173111 (2005).
    [CrossRef]
  5. J. M. Bao, M. Zimmler, F. Capasso, X. Wang, and Z. F. Ren, "Broadband ZnO single-nanowire light-emitting diode," Nano. Lett. 6, 1719-1722 (2006).
    [CrossRef] [PubMed]
  6. J. C. Johnson, H. Yan, P. Yang, and R. J. Saykally, "Optical cavity effects in ZnO nanowire lasers and waveguides," J. Phys. Chem. B 107, 8816-8828 (2003).
    [CrossRef]
  7. A. V. Maslov and C. Z. Ning, "Reflection of guided modes in a semiconductor nanowire laser," Appl. Phys. Lett. 83, 1237-1239 (2003).
    [CrossRef]
  8. Z. Y. Li and K. M. Ho, "Bloch mode reflection and lasing threshold in semiconductor nanowire laser arrays," Phys. Rev. B 71, 045315 (2005).
    [CrossRef]
  9. M. Q. Wang, Y. Z. Huang, Q. Chen, and Z. P. Cai, "Analysis of mode quality factors and mode reflectivities for nanowire cavity by FDTD technique," IEEE J. Quantum Electron. 42, 146-151 (2006).
    [CrossRef]
  10. Y. Ding, J. Motohisa, B. Hua, S. Hara, and T. Fukui, "Observation of microcavity modes and waveguides in InP nanowires fabricated by selective-area metalorganic vapor-phase epitaxy," Nano. Lett. 7, 3598-3602 (2007).
    [CrossRef]
  11. A. V. Maslov and C. Z. Ning, "Modal gain in a semiconductor nanowire laser with anisotropic bandstructure," IEEE J. Quantum Electron. 40, 1389-1397 (2004).
    [CrossRef]
  12. C. Barrelet, J. Bao, M. Loncar, H. G. Park, F. Capasso, and C. M. Lieber, "Hybrid single-nanowire photonic crystal and microresonator structures," Nano. Lett. 6, 11-15 (2006).
    [CrossRef] [PubMed]
  13. O. L. Muskens, J. Treffers, M. Forcales, M. T. Borgstrom, E. P. A. M. Bakkers, and J. G. Rivas, "Modification of the photoluminescence anisotropy of semiconductor nanowires by coupling to surface plasmon polaritons," Opt. Lett. 32, 2097-2099 (2007).
    [CrossRef] [PubMed]
  14. H. G. Park, F. Qian, C. J. Barrelet, and Y. Li, "Microstadium single-nanowire laser," Appl. Phys. Lett. 91, 251115 (2007).
    [CrossRef]
  15. M. Pelton, C. Santori, J. Vuckovic, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, "Efficient source of single photons: A single quantum dot in a micropost microcavity," Phys. Rev. Lett. 89, 233602 (2002).
    [CrossRef] [PubMed]
  16. P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, "A quantum dot single-photon turnstile device," Science 290, 2282-2285 (2000).
    [CrossRef] [PubMed]
  17. D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vuckovic, "Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystals," Phys. Rev. Lett. 95, 013904 (2005).
    [CrossRef] [PubMed]
  18. M. S. Gudiksen, L. J. Lauhon, J. Wang, D. C. Smith, and C. M. Lieber, "Growth of nanowire superlattice structures for nanoscale photonics and electronics," Nature 415, 617-620 (2002).
    [CrossRef] [PubMed]
  19. M. T. Bjork, B. J. Ohlsson, T. Sass, A. I. Persson, C. Thelander, M. H. Magnusson, K. Deppert, L. R. Wallenberg, and L. Samuelson, "One-dimensional heterostructures in semiconductor nanowhiskers," Appl. Phys. Lett. 80, 1058-1060 (2002).
    [CrossRef]
  20. N. Panev, A. I. Persson, N. Skold, and L. Samuelson, "Sharp exciton emission from single InAs quantum dots in GaAs nanowires," Appl. Phys. Lett. 83, 2238-2240 (2003).
    [CrossRef]
  21. L. Samuelson, M. T. Bjork, K. Deppert, M. Larsson, B. J. Ohlsson, N. Panev, A. I. Persson, N. Skold, C. Thelander, and L. R. Wallenberg, "Semiconductor nanowires for novel one-dimensional devices," Physica E 21, 560-567 (2004).
    [CrossRef]
  22. M. T. Bjork, C. Thelander, A. E. Hansen, L. E. Jenson, M. W. Larsson, L. R. Wallenberg, and L. Samuelson, "Few-electron quantum dots in nanowires," Nano. Lett. 4, 1621-1625 (2004).
    [CrossRef]
  23. C. P. T. Svensson, W. Seifert, M. W. Larsson, L. R. Wallenberg, J. Stangl, G. Bauer, and L. Samuelson, "Epitaxially grown GaP/ GaAs1-xPx/GaP double heterostructure nanowires for optical applications," Nanotechnology 16, 936-939 (2005).
    [CrossRef]
  24. M. T. Borgstrom, V. Zwiller, E. Muller, and A. Imamoglu, "Optically bright quantum dots in single nanowires," Nano. Lett. 5, 1439-1443 (2005).
    [CrossRef] [PubMed]
  25. E. D. Minot, F. Kelkensberg, M. v. Kouwen, J. A. v. Dam, L. P. Kouwenhoven, V. Zwiller, M. T. Borgstrom, O. Wunnicke, M. A. Verheijen, and E. P. A. M. Bakkers, "Single quantum dot nanowire LEDs," Nano. Lett. 7, 367-371 (2007).
    [CrossRef] [PubMed]
  26. P. Lalanne and J. P. Hugonin, "Bloch-wave engineering for high-Q, small-V microcavities," IEEE J. Quantum Electron. 39, 1430-1438 (2003).
    [CrossRef]
  27. H. J. Kimble, in Cavity Electrodynamics, P. Berman, ed. (Academic Press, San Diego, 1994).
  28. A. Yariv, Photonics: Optical electronics in modern communications, 6 ed. (Oxford University Press, 2006).
  29. L. Tong, J. Lou, and E. Mazur, "Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides," Opt. Express 12, 1025-1035 (2004).
    [CrossRef] [PubMed]
  30. M. Palamaru and P. Lalanne, "Photonic crystal waveguides: Out-of-plane losses and adiabatic modal conversion," Appl. Phys. Lett. 78, 1466-1468 (2001).
    [CrossRef]
  31. C. Sauvan, G. Lecamp, P. Lalanne, and J. P. Hugonin, "Modal-reflectivity enhancement by geometry tuning in Photonic Crystal microcavities," Opt. Express 13, 245-255 (2005).
    [CrossRef] [PubMed]
  32. P. Velha, E. Picard, T. Charvolin, E. Hadji, J. C. Rodier, P. Lalanne, and D. Peyrade, "Ultra-high Q/V Fabry-Perot microcavity on SOI substrate," Opt. Express 15, 16090-16096 (2007).
    [CrossRef] [PubMed]
  33. A. I. Persson, M. T. Bjork, S. Jeppesen, J. B. Wagner, L. R. Wallenberg, and L. Samuelson, "InAs1-xPx nanowires for device engineering," Nano. Lett. 6, 403-407 (2006).
    [CrossRef] [PubMed]
  34. S. K. Lim, M. J. Tambe, M. M. Brewster, and S. Gradecak, "Controlled growth of ternary alloy nanowires using metalorganic chemical vapor deposition," Nano. Lett. 8, 1386-1392 (2008).
    [CrossRef] [PubMed]
  35. M. Notomi, E. Kuramochi, and H. Taniyama, "Ultrahigh-Q nanocavity with 1D photonic gap," Opt. Express 16, 11095-11102 (2008).
    [CrossRef] [PubMed]
  36. T. Asano, B. S. Song, Y. Akahane, and S. Noda, "Ultrahigh-Q nanocavities in two-dimensional photonic crystal slabs," IEEE J. Sel. Top. Quantum Electron. 12, 1123-1134 (2006).
    [CrossRef]
  37. B. S. Song, S. Noda, T. Asano, and Y. Akahane, "Ultra-high-Q photonic double-heterostructure nanocavity," Nat. Mater. 4, 207-210 (2005).
    [CrossRef]
  38. Y. Tanaka, T. Asano, and S. Noda, "Design of photonic crystal nanocavity with Q-factor of similar to 10(9)," J. Lightwave Technol. 26, 1532-1539 (2008).
    [CrossRef]
  39. D. Englund, I. Fushman, and J. Vuckovic, "General recipe for designing photonic crystal cavities," Opt. Express 13, 5961-5975 (2005).
    [CrossRef] [PubMed]
  40. J. Vuckovic, M. Loncar, H. Mabuchi, and A. Scherer, "Optimization of the Q factor in photonic crystal microcavities," IEEE J. Quantum Electron. 38, 850-856 (2002).
    [CrossRef]
  41. K. Srinivasan and O. Painter, "Momentum space design of high-Q photonic crystal optical cavities," Opt. Express 10, 670-684 (2002).
    [PubMed]
  42. J. L. Jewell, J. P. Harbison, A. Scherer, Y. H. Lee, and L. T. Florez, "Vertical-cavity surface-emitting lasers - design, growth, fabrication, characterization," IEEE J. Quantum Electron. 27, 1332-1346 (1991).
    [CrossRef]
  43. J. P. Reithmaier, G. Sek, A. Loffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, "Strong coupling in a single quantum dot-semiconductor microcavity system," Nature 432, 197-200 (2004).
    [CrossRef] [PubMed]
  44. S. Reitzenstein, C. Hofmann, A. Gorbunov, M. Strauss, S. H. Kwon, C. Schneider, A. Loffler, S. Hofling, M. Kamp, and A. Forchel, "AlAs/GaAs micropillar cavities with quality factors exceeding 150,000," Appl. Phys. Lett. 90, 251109 (2007).
    [CrossRef]
  45. J. M. Gerard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, "Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity," Phys. Rev. Lett. 81, 1110-1113 (1998).
    [CrossRef]
  46. J. Vuckovic, M. Pelton, A. Scherer, and Y. Yamamoto, "Optimization of three-dimensional micropost microcavities for cavity quantum electrodynamics," Phys. Rev. A 66, 023808 (2002).
    [CrossRef]
  47. L. Chen and E. Towe, "Photonic band gaps in nanowire superlattices," Appl. Phys. Lett. 87, 10311 (2005).
  48. O. Beyer, I. Nee, F. Havermeyer, and K. Buse, "Holographic recording of Bragg gratings for wavelength division multiplexing in doped and partially polymerized poly(methyl methacrylate)," Appl. Opt. 42, 30-37 (2003).
    [CrossRef] [PubMed]
  49. E. M. Purcell, "Spontaneous emission probabilities at radio frequencies " Phys. Rev. 69, 681-681 (1946).
  50. T. Baba, "Photonic crystals and microdisk cavities based on GaInAsP-InP system," IEEE J. Quantum Electron. 3, 808-830 (1997).
    [CrossRef]
  51. G. Khitrova, H. M. Gibbs, M. Kira, S. W. Koch, and A. Scherer, "Vacuum Rabi splitting in semiconductors," Nature Phys. 2, 81-90 (2006).
    [CrossRef]

2008 (3)

2007 (6)

S. Reitzenstein, C. Hofmann, A. Gorbunov, M. Strauss, S. H. Kwon, C. Schneider, A. Loffler, S. Hofling, M. Kamp, and A. Forchel, "AlAs/GaAs micropillar cavities with quality factors exceeding 150,000," Appl. Phys. Lett. 90, 251109 (2007).
[CrossRef]

P. Velha, E. Picard, T. Charvolin, E. Hadji, J. C. Rodier, P. Lalanne, and D. Peyrade, "Ultra-high Q/V Fabry-Perot microcavity on SOI substrate," Opt. Express 15, 16090-16096 (2007).
[CrossRef] [PubMed]

E. D. Minot, F. Kelkensberg, M. v. Kouwen, J. A. v. Dam, L. P. Kouwenhoven, V. Zwiller, M. T. Borgstrom, O. Wunnicke, M. A. Verheijen, and E. P. A. M. Bakkers, "Single quantum dot nanowire LEDs," Nano. Lett. 7, 367-371 (2007).
[CrossRef] [PubMed]

O. L. Muskens, J. Treffers, M. Forcales, M. T. Borgstrom, E. P. A. M. Bakkers, and J. G. Rivas, "Modification of the photoluminescence anisotropy of semiconductor nanowires by coupling to surface plasmon polaritons," Opt. Lett. 32, 2097-2099 (2007).
[CrossRef] [PubMed]

H. G. Park, F. Qian, C. J. Barrelet, and Y. Li, "Microstadium single-nanowire laser," Appl. Phys. Lett. 91, 251115 (2007).
[CrossRef]

Y. Ding, J. Motohisa, B. Hua, S. Hara, and T. Fukui, "Observation of microcavity modes and waveguides in InP nanowires fabricated by selective-area metalorganic vapor-phase epitaxy," Nano. Lett. 7, 3598-3602 (2007).
[CrossRef]

2006 (6)

J. M. Bao, M. Zimmler, F. Capasso, X. Wang, and Z. F. Ren, "Broadband ZnO single-nanowire light-emitting diode," Nano. Lett. 6, 1719-1722 (2006).
[CrossRef] [PubMed]

M. Q. Wang, Y. Z. Huang, Q. Chen, and Z. P. Cai, "Analysis of mode quality factors and mode reflectivities for nanowire cavity by FDTD technique," IEEE J. Quantum Electron. 42, 146-151 (2006).
[CrossRef]

C. Barrelet, J. Bao, M. Loncar, H. G. Park, F. Capasso, and C. M. Lieber, "Hybrid single-nanowire photonic crystal and microresonator structures," Nano. Lett. 6, 11-15 (2006).
[CrossRef] [PubMed]

A. I. Persson, M. T. Bjork, S. Jeppesen, J. B. Wagner, L. R. Wallenberg, and L. Samuelson, "InAs1-xPx nanowires for device engineering," Nano. Lett. 6, 403-407 (2006).
[CrossRef] [PubMed]

T. Asano, B. S. Song, Y. Akahane, and S. Noda, "Ultrahigh-Q nanocavities in two-dimensional photonic crystal slabs," IEEE J. Sel. Top. Quantum Electron. 12, 1123-1134 (2006).
[CrossRef]

G. Khitrova, H. M. Gibbs, M. Kira, S. W. Koch, and A. Scherer, "Vacuum Rabi splitting in semiconductors," Nature Phys. 2, 81-90 (2006).
[CrossRef]

2005 (10)

L. Chen and E. Towe, "Photonic band gaps in nanowire superlattices," Appl. Phys. Lett. 87, 10311 (2005).

C. Sauvan, G. Lecamp, P. Lalanne, and J. P. Hugonin, "Modal-reflectivity enhancement by geometry tuning in Photonic Crystal microcavities," Opt. Express 13, 245-255 (2005).
[CrossRef] [PubMed]

D. Englund, I. Fushman, and J. Vuckovic, "General recipe for designing photonic crystal cavities," Opt. Express 13, 5961-5975 (2005).
[CrossRef] [PubMed]

B. S. Song, S. Noda, T. Asano, and Y. Akahane, "Ultra-high-Q photonic double-heterostructure nanocavity," Nat. Mater. 4, 207-210 (2005).
[CrossRef]

C. P. T. Svensson, W. Seifert, M. W. Larsson, L. R. Wallenberg, J. Stangl, G. Bauer, and L. Samuelson, "Epitaxially grown GaP/ GaAs1-xPx/GaP double heterostructure nanowires for optical applications," Nanotechnology 16, 936-939 (2005).
[CrossRef]

M. T. Borgstrom, V. Zwiller, E. Muller, and A. Imamoglu, "Optically bright quantum dots in single nanowires," Nano. Lett. 5, 1439-1443 (2005).
[CrossRef] [PubMed]

Z. Y. Li and K. M. Ho, "Bloch mode reflection and lasing threshold in semiconductor nanowire laser arrays," Phys. Rev. B 71, 045315 (2005).
[CrossRef]

R. Agarwal, C. J. Barrelet, and C. M. Lieber, "Lasing in single cadmium sulfide nanowire optical cavities," Nano. Lett. 5, 917-920 (2005).
[CrossRef] [PubMed]

S. Gradecek, F. Qian, Y. Li, H. G. Park, and C. M. Lieber, "GaN nanowire lasers with low lasing threshold," Appl. Phys. Lett. 87, 173111 (2005).
[CrossRef]

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vuckovic, "Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystals," Phys. Rev. Lett. 95, 013904 (2005).
[CrossRef] [PubMed]

2004 (5)

A. V. Maslov and C. Z. Ning, "Modal gain in a semiconductor nanowire laser with anisotropic bandstructure," IEEE J. Quantum Electron. 40, 1389-1397 (2004).
[CrossRef]

L. Samuelson, M. T. Bjork, K. Deppert, M. Larsson, B. J. Ohlsson, N. Panev, A. I. Persson, N. Skold, C. Thelander, and L. R. Wallenberg, "Semiconductor nanowires for novel one-dimensional devices," Physica E 21, 560-567 (2004).
[CrossRef]

M. T. Bjork, C. Thelander, A. E. Hansen, L. E. Jenson, M. W. Larsson, L. R. Wallenberg, and L. Samuelson, "Few-electron quantum dots in nanowires," Nano. Lett. 4, 1621-1625 (2004).
[CrossRef]

L. Tong, J. Lou, and E. Mazur, "Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides," Opt. Express 12, 1025-1035 (2004).
[CrossRef] [PubMed]

J. P. Reithmaier, G. Sek, A. Loffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, "Strong coupling in a single quantum dot-semiconductor microcavity system," Nature 432, 197-200 (2004).
[CrossRef] [PubMed]

2003 (6)

O. Beyer, I. Nee, F. Havermeyer, and K. Buse, "Holographic recording of Bragg gratings for wavelength division multiplexing in doped and partially polymerized poly(methyl methacrylate)," Appl. Opt. 42, 30-37 (2003).
[CrossRef] [PubMed]

N. Panev, A. I. Persson, N. Skold, and L. Samuelson, "Sharp exciton emission from single InAs quantum dots in GaAs nanowires," Appl. Phys. Lett. 83, 2238-2240 (2003).
[CrossRef]

P. Lalanne and J. P. Hugonin, "Bloch-wave engineering for high-Q, small-V microcavities," IEEE J. Quantum Electron. 39, 1430-1438 (2003).
[CrossRef]

X. Duan, Y. Huang, R. Agarwal, and C. M. Lieber, "Single-nanowire electrically driven laser," Nature 421, 241-245 (2003).
[CrossRef] [PubMed]

J. C. Johnson, H. Yan, P. Yang, and R. J. Saykally, "Optical cavity effects in ZnO nanowire lasers and waveguides," J. Phys. Chem. B 107, 8816-8828 (2003).
[CrossRef]

A. V. Maslov and C. Z. Ning, "Reflection of guided modes in a semiconductor nanowire laser," Appl. Phys. Lett. 83, 1237-1239 (2003).
[CrossRef]

2002 (6)

M. S. Gudiksen, L. J. Lauhon, J. Wang, D. C. Smith, and C. M. Lieber, "Growth of nanowire superlattice structures for nanoscale photonics and electronics," Nature 415, 617-620 (2002).
[CrossRef] [PubMed]

M. T. Bjork, B. J. Ohlsson, T. Sass, A. I. Persson, C. Thelander, M. H. Magnusson, K. Deppert, L. R. Wallenberg, and L. Samuelson, "One-dimensional heterostructures in semiconductor nanowhiskers," Appl. Phys. Lett. 80, 1058-1060 (2002).
[CrossRef]

M. Pelton, C. Santori, J. Vuckovic, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, "Efficient source of single photons: A single quantum dot in a micropost microcavity," Phys. Rev. Lett. 89, 233602 (2002).
[CrossRef] [PubMed]

J. Vuckovic, M. Pelton, A. Scherer, and Y. Yamamoto, "Optimization of three-dimensional micropost microcavities for cavity quantum electrodynamics," Phys. Rev. A 66, 023808 (2002).
[CrossRef]

J. Vuckovic, M. Loncar, H. Mabuchi, and A. Scherer, "Optimization of the Q factor in photonic crystal microcavities," IEEE J. Quantum Electron. 38, 850-856 (2002).
[CrossRef]

K. Srinivasan and O. Painter, "Momentum space design of high-Q photonic crystal optical cavities," Opt. Express 10, 670-684 (2002).
[PubMed]

2001 (2)

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, "Room-temperature ultraviolet nanowire nanolasers," Science 292, 1897-1899 (2001).
[CrossRef] [PubMed]

M. Palamaru and P. Lalanne, "Photonic crystal waveguides: Out-of-plane losses and adiabatic modal conversion," Appl. Phys. Lett. 78, 1466-1468 (2001).
[CrossRef]

2000 (1)

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, "A quantum dot single-photon turnstile device," Science 290, 2282-2285 (2000).
[CrossRef] [PubMed]

1998 (1)

J. M. Gerard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, "Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity," Phys. Rev. Lett. 81, 1110-1113 (1998).
[CrossRef]

1997 (1)

T. Baba, "Photonic crystals and microdisk cavities based on GaInAsP-InP system," IEEE J. Quantum Electron. 3, 808-830 (1997).
[CrossRef]

1991 (1)

J. L. Jewell, J. P. Harbison, A. Scherer, Y. H. Lee, and L. T. Florez, "Vertical-cavity surface-emitting lasers - design, growth, fabrication, characterization," IEEE J. Quantum Electron. 27, 1332-1346 (1991).
[CrossRef]

1946 (1)

E. M. Purcell, "Spontaneous emission probabilities at radio frequencies " Phys. Rev. 69, 681-681 (1946).

Agarwal, R.

R. Agarwal, C. J. Barrelet, and C. M. Lieber, "Lasing in single cadmium sulfide nanowire optical cavities," Nano. Lett. 5, 917-920 (2005).
[CrossRef] [PubMed]

X. Duan, Y. Huang, R. Agarwal, and C. M. Lieber, "Single-nanowire electrically driven laser," Nature 421, 241-245 (2003).
[CrossRef] [PubMed]

Akahane, Y.

T. Asano, B. S. Song, Y. Akahane, and S. Noda, "Ultrahigh-Q nanocavities in two-dimensional photonic crystal slabs," IEEE J. Sel. Top. Quantum Electron. 12, 1123-1134 (2006).
[CrossRef]

B. S. Song, S. Noda, T. Asano, and Y. Akahane, "Ultra-high-Q photonic double-heterostructure nanocavity," Nat. Mater. 4, 207-210 (2005).
[CrossRef]

Arakawa, Y.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vuckovic, "Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystals," Phys. Rev. Lett. 95, 013904 (2005).
[CrossRef] [PubMed]

Asano, T.

Y. Tanaka, T. Asano, and S. Noda, "Design of photonic crystal nanocavity with Q-factor of similar to 10(9)," J. Lightwave Technol. 26, 1532-1539 (2008).
[CrossRef]

T. Asano, B. S. Song, Y. Akahane, and S. Noda, "Ultrahigh-Q nanocavities in two-dimensional photonic crystal slabs," IEEE J. Sel. Top. Quantum Electron. 12, 1123-1134 (2006).
[CrossRef]

B. S. Song, S. Noda, T. Asano, and Y. Akahane, "Ultra-high-Q photonic double-heterostructure nanocavity," Nat. Mater. 4, 207-210 (2005).
[CrossRef]

Baba, T.

T. Baba, "Photonic crystals and microdisk cavities based on GaInAsP-InP system," IEEE J. Quantum Electron. 3, 808-830 (1997).
[CrossRef]

Bakkers, E. P. A. M.

Bao, J.

C. Barrelet, J. Bao, M. Loncar, H. G. Park, F. Capasso, and C. M. Lieber, "Hybrid single-nanowire photonic crystal and microresonator structures," Nano. Lett. 6, 11-15 (2006).
[CrossRef] [PubMed]

Bao, J. M.

J. M. Bao, M. Zimmler, F. Capasso, X. Wang, and Z. F. Ren, "Broadband ZnO single-nanowire light-emitting diode," Nano. Lett. 6, 1719-1722 (2006).
[CrossRef] [PubMed]

Barrelet, C.

C. Barrelet, J. Bao, M. Loncar, H. G. Park, F. Capasso, and C. M. Lieber, "Hybrid single-nanowire photonic crystal and microresonator structures," Nano. Lett. 6, 11-15 (2006).
[CrossRef] [PubMed]

Barrelet, C. J.

H. G. Park, F. Qian, C. J. Barrelet, and Y. Li, "Microstadium single-nanowire laser," Appl. Phys. Lett. 91, 251115 (2007).
[CrossRef]

R. Agarwal, C. J. Barrelet, and C. M. Lieber, "Lasing in single cadmium sulfide nanowire optical cavities," Nano. Lett. 5, 917-920 (2005).
[CrossRef] [PubMed]

Bauer, G.

C. P. T. Svensson, W. Seifert, M. W. Larsson, L. R. Wallenberg, J. Stangl, G. Bauer, and L. Samuelson, "Epitaxially grown GaP/ GaAs1-xPx/GaP double heterostructure nanowires for optical applications," Nanotechnology 16, 936-939 (2005).
[CrossRef]

Becher, C.

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, "A quantum dot single-photon turnstile device," Science 290, 2282-2285 (2000).
[CrossRef] [PubMed]

Beyer, O.

Bjork, M. T.

A. I. Persson, M. T. Bjork, S. Jeppesen, J. B. Wagner, L. R. Wallenberg, and L. Samuelson, "InAs1-xPx nanowires for device engineering," Nano. Lett. 6, 403-407 (2006).
[CrossRef] [PubMed]

M. T. Bjork, C. Thelander, A. E. Hansen, L. E. Jenson, M. W. Larsson, L. R. Wallenberg, and L. Samuelson, "Few-electron quantum dots in nanowires," Nano. Lett. 4, 1621-1625 (2004).
[CrossRef]

L. Samuelson, M. T. Bjork, K. Deppert, M. Larsson, B. J. Ohlsson, N. Panev, A. I. Persson, N. Skold, C. Thelander, and L. R. Wallenberg, "Semiconductor nanowires for novel one-dimensional devices," Physica E 21, 560-567 (2004).
[CrossRef]

M. T. Bjork, B. J. Ohlsson, T. Sass, A. I. Persson, C. Thelander, M. H. Magnusson, K. Deppert, L. R. Wallenberg, and L. Samuelson, "One-dimensional heterostructures in semiconductor nanowhiskers," Appl. Phys. Lett. 80, 1058-1060 (2002).
[CrossRef]

Borgstrom, M. T.

Brewster, M. M.

S. K. Lim, M. J. Tambe, M. M. Brewster, and S. Gradecak, "Controlled growth of ternary alloy nanowires using metalorganic chemical vapor deposition," Nano. Lett. 8, 1386-1392 (2008).
[CrossRef] [PubMed]

Buse, K.

Cai, Z. P.

M. Q. Wang, Y. Z. Huang, Q. Chen, and Z. P. Cai, "Analysis of mode quality factors and mode reflectivities for nanowire cavity by FDTD technique," IEEE J. Quantum Electron. 42, 146-151 (2006).
[CrossRef]

Capasso, F.

C. Barrelet, J. Bao, M. Loncar, H. G. Park, F. Capasso, and C. M. Lieber, "Hybrid single-nanowire photonic crystal and microresonator structures," Nano. Lett. 6, 11-15 (2006).
[CrossRef] [PubMed]

J. M. Bao, M. Zimmler, F. Capasso, X. Wang, and Z. F. Ren, "Broadband ZnO single-nanowire light-emitting diode," Nano. Lett. 6, 1719-1722 (2006).
[CrossRef] [PubMed]

Charvolin, T.

Chen, L.

L. Chen and E. Towe, "Photonic band gaps in nanowire superlattices," Appl. Phys. Lett. 87, 10311 (2005).

Chen, Q.

M. Q. Wang, Y. Z. Huang, Q. Chen, and Z. P. Cai, "Analysis of mode quality factors and mode reflectivities for nanowire cavity by FDTD technique," IEEE J. Quantum Electron. 42, 146-151 (2006).
[CrossRef]

Costard, E.

J. M. Gerard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, "Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity," Phys. Rev. Lett. 81, 1110-1113 (1998).
[CrossRef]

Deppert, K.

L. Samuelson, M. T. Bjork, K. Deppert, M. Larsson, B. J. Ohlsson, N. Panev, A. I. Persson, N. Skold, C. Thelander, and L. R. Wallenberg, "Semiconductor nanowires for novel one-dimensional devices," Physica E 21, 560-567 (2004).
[CrossRef]

M. T. Bjork, B. J. Ohlsson, T. Sass, A. I. Persson, C. Thelander, M. H. Magnusson, K. Deppert, L. R. Wallenberg, and L. Samuelson, "One-dimensional heterostructures in semiconductor nanowhiskers," Appl. Phys. Lett. 80, 1058-1060 (2002).
[CrossRef]

Ding, Y.

Y. Ding, J. Motohisa, B. Hua, S. Hara, and T. Fukui, "Observation of microcavity modes and waveguides in InP nanowires fabricated by selective-area metalorganic vapor-phase epitaxy," Nano. Lett. 7, 3598-3602 (2007).
[CrossRef]

Duan, X.

X. Duan, Y. Huang, R. Agarwal, and C. M. Lieber, "Single-nanowire electrically driven laser," Nature 421, 241-245 (2003).
[CrossRef] [PubMed]

Englund, D.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vuckovic, "Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystals," Phys. Rev. Lett. 95, 013904 (2005).
[CrossRef] [PubMed]

D. Englund, I. Fushman, and J. Vuckovic, "General recipe for designing photonic crystal cavities," Opt. Express 13, 5961-5975 (2005).
[CrossRef] [PubMed]

Fattal, D.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vuckovic, "Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystals," Phys. Rev. Lett. 95, 013904 (2005).
[CrossRef] [PubMed]

Feick, H.

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, "Room-temperature ultraviolet nanowire nanolasers," Science 292, 1897-1899 (2001).
[CrossRef] [PubMed]

Florez, L. T.

J. L. Jewell, J. P. Harbison, A. Scherer, Y. H. Lee, and L. T. Florez, "Vertical-cavity surface-emitting lasers - design, growth, fabrication, characterization," IEEE J. Quantum Electron. 27, 1332-1346 (1991).
[CrossRef]

Forcales, M.

Forchel, A.

S. Reitzenstein, C. Hofmann, A. Gorbunov, M. Strauss, S. H. Kwon, C. Schneider, A. Loffler, S. Hofling, M. Kamp, and A. Forchel, "AlAs/GaAs micropillar cavities with quality factors exceeding 150,000," Appl. Phys. Lett. 90, 251109 (2007).
[CrossRef]

J. P. Reithmaier, G. Sek, A. Loffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, "Strong coupling in a single quantum dot-semiconductor microcavity system," Nature 432, 197-200 (2004).
[CrossRef] [PubMed]

Fukui, T.

Y. Ding, J. Motohisa, B. Hua, S. Hara, and T. Fukui, "Observation of microcavity modes and waveguides in InP nanowires fabricated by selective-area metalorganic vapor-phase epitaxy," Nano. Lett. 7, 3598-3602 (2007).
[CrossRef]

Fushman, I.

Gayral, B.

J. M. Gerard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, "Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity," Phys. Rev. Lett. 81, 1110-1113 (1998).
[CrossRef]

Gerard, J. M.

J. M. Gerard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, "Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity," Phys. Rev. Lett. 81, 1110-1113 (1998).
[CrossRef]

Gibbs, H. M.

G. Khitrova, H. M. Gibbs, M. Kira, S. W. Koch, and A. Scherer, "Vacuum Rabi splitting in semiconductors," Nature Phys. 2, 81-90 (2006).
[CrossRef]

Gorbunov, A.

S. Reitzenstein, C. Hofmann, A. Gorbunov, M. Strauss, S. H. Kwon, C. Schneider, A. Loffler, S. Hofling, M. Kamp, and A. Forchel, "AlAs/GaAs micropillar cavities with quality factors exceeding 150,000," Appl. Phys. Lett. 90, 251109 (2007).
[CrossRef]

Gradecak, S.

S. K. Lim, M. J. Tambe, M. M. Brewster, and S. Gradecak, "Controlled growth of ternary alloy nanowires using metalorganic chemical vapor deposition," Nano. Lett. 8, 1386-1392 (2008).
[CrossRef] [PubMed]

Gradecek, S.

S. Gradecek, F. Qian, Y. Li, H. G. Park, and C. M. Lieber, "GaN nanowire lasers with low lasing threshold," Appl. Phys. Lett. 87, 173111 (2005).
[CrossRef]

Gudiksen, M. S.

M. S. Gudiksen, L. J. Lauhon, J. Wang, D. C. Smith, and C. M. Lieber, "Growth of nanowire superlattice structures for nanoscale photonics and electronics," Nature 415, 617-620 (2002).
[CrossRef] [PubMed]

Hadji, E.

Hansen, A. E.

M. T. Bjork, C. Thelander, A. E. Hansen, L. E. Jenson, M. W. Larsson, L. R. Wallenberg, and L. Samuelson, "Few-electron quantum dots in nanowires," Nano. Lett. 4, 1621-1625 (2004).
[CrossRef]

Hara, S.

Y. Ding, J. Motohisa, B. Hua, S. Hara, and T. Fukui, "Observation of microcavity modes and waveguides in InP nanowires fabricated by selective-area metalorganic vapor-phase epitaxy," Nano. Lett. 7, 3598-3602 (2007).
[CrossRef]

Harbison, J. P.

J. L. Jewell, J. P. Harbison, A. Scherer, Y. H. Lee, and L. T. Florez, "Vertical-cavity surface-emitting lasers - design, growth, fabrication, characterization," IEEE J. Quantum Electron. 27, 1332-1346 (1991).
[CrossRef]

Havermeyer, F.

Ho, K. M.

Z. Y. Li and K. M. Ho, "Bloch mode reflection and lasing threshold in semiconductor nanowire laser arrays," Phys. Rev. B 71, 045315 (2005).
[CrossRef]

Hofling, S.

S. Reitzenstein, C. Hofmann, A. Gorbunov, M. Strauss, S. H. Kwon, C. Schneider, A. Loffler, S. Hofling, M. Kamp, and A. Forchel, "AlAs/GaAs micropillar cavities with quality factors exceeding 150,000," Appl. Phys. Lett. 90, 251109 (2007).
[CrossRef]

Hofmann, C.

S. Reitzenstein, C. Hofmann, A. Gorbunov, M. Strauss, S. H. Kwon, C. Schneider, A. Loffler, S. Hofling, M. Kamp, and A. Forchel, "AlAs/GaAs micropillar cavities with quality factors exceeding 150,000," Appl. Phys. Lett. 90, 251109 (2007).
[CrossRef]

J. P. Reithmaier, G. Sek, A. Loffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, "Strong coupling in a single quantum dot-semiconductor microcavity system," Nature 432, 197-200 (2004).
[CrossRef] [PubMed]

Hu, E.

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, "A quantum dot single-photon turnstile device," Science 290, 2282-2285 (2000).
[CrossRef] [PubMed]

Hua, B.

Y. Ding, J. Motohisa, B. Hua, S. Hara, and T. Fukui, "Observation of microcavity modes and waveguides in InP nanowires fabricated by selective-area metalorganic vapor-phase epitaxy," Nano. Lett. 7, 3598-3602 (2007).
[CrossRef]

Huang, M. H.

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, "Room-temperature ultraviolet nanowire nanolasers," Science 292, 1897-1899 (2001).
[CrossRef] [PubMed]

Huang, Y.

X. Duan, Y. Huang, R. Agarwal, and C. M. Lieber, "Single-nanowire electrically driven laser," Nature 421, 241-245 (2003).
[CrossRef] [PubMed]

Huang, Y. Z.

M. Q. Wang, Y. Z. Huang, Q. Chen, and Z. P. Cai, "Analysis of mode quality factors and mode reflectivities for nanowire cavity by FDTD technique," IEEE J. Quantum Electron. 42, 146-151 (2006).
[CrossRef]

Hugonin, J. P.

C. Sauvan, G. Lecamp, P. Lalanne, and J. P. Hugonin, "Modal-reflectivity enhancement by geometry tuning in Photonic Crystal microcavities," Opt. Express 13, 245-255 (2005).
[CrossRef] [PubMed]

P. Lalanne and J. P. Hugonin, "Bloch-wave engineering for high-Q, small-V microcavities," IEEE J. Quantum Electron. 39, 1430-1438 (2003).
[CrossRef]

Imamoglu, A.

M. T. Borgstrom, V. Zwiller, E. Muller, and A. Imamoglu, "Optically bright quantum dots in single nanowires," Nano. Lett. 5, 1439-1443 (2005).
[CrossRef] [PubMed]

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, "A quantum dot single-photon turnstile device," Science 290, 2282-2285 (2000).
[CrossRef] [PubMed]

Jenson, L. E.

M. T. Bjork, C. Thelander, A. E. Hansen, L. E. Jenson, M. W. Larsson, L. R. Wallenberg, and L. Samuelson, "Few-electron quantum dots in nanowires," Nano. Lett. 4, 1621-1625 (2004).
[CrossRef]

Jeppesen, S.

A. I. Persson, M. T. Bjork, S. Jeppesen, J. B. Wagner, L. R. Wallenberg, and L. Samuelson, "InAs1-xPx nanowires for device engineering," Nano. Lett. 6, 403-407 (2006).
[CrossRef] [PubMed]

Jewell, J. L.

J. L. Jewell, J. P. Harbison, A. Scherer, Y. H. Lee, and L. T. Florez, "Vertical-cavity surface-emitting lasers - design, growth, fabrication, characterization," IEEE J. Quantum Electron. 27, 1332-1346 (1991).
[CrossRef]

Johnson, J. C.

J. C. Johnson, H. Yan, P. Yang, and R. J. Saykally, "Optical cavity effects in ZnO nanowire lasers and waveguides," J. Phys. Chem. B 107, 8816-8828 (2003).
[CrossRef]

Kamp, M.

S. Reitzenstein, C. Hofmann, A. Gorbunov, M. Strauss, S. H. Kwon, C. Schneider, A. Loffler, S. Hofling, M. Kamp, and A. Forchel, "AlAs/GaAs micropillar cavities with quality factors exceeding 150,000," Appl. Phys. Lett. 90, 251109 (2007).
[CrossRef]

Keldysh, L. V.

J. P. Reithmaier, G. Sek, A. Loffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, "Strong coupling in a single quantum dot-semiconductor microcavity system," Nature 432, 197-200 (2004).
[CrossRef] [PubMed]

Kelkensberg, F.

E. D. Minot, F. Kelkensberg, M. v. Kouwen, J. A. v. Dam, L. P. Kouwenhoven, V. Zwiller, M. T. Borgstrom, O. Wunnicke, M. A. Verheijen, and E. P. A. M. Bakkers, "Single quantum dot nanowire LEDs," Nano. Lett. 7, 367-371 (2007).
[CrossRef] [PubMed]

Khitrova, G.

G. Khitrova, H. M. Gibbs, M. Kira, S. W. Koch, and A. Scherer, "Vacuum Rabi splitting in semiconductors," Nature Phys. 2, 81-90 (2006).
[CrossRef]

Kind, H.

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, "Room-temperature ultraviolet nanowire nanolasers," Science 292, 1897-1899 (2001).
[CrossRef] [PubMed]

Kira, M.

G. Khitrova, H. M. Gibbs, M. Kira, S. W. Koch, and A. Scherer, "Vacuum Rabi splitting in semiconductors," Nature Phys. 2, 81-90 (2006).
[CrossRef]

Kiraz, A.

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, "A quantum dot single-photon turnstile device," Science 290, 2282-2285 (2000).
[CrossRef] [PubMed]

Koch, S. W.

G. Khitrova, H. M. Gibbs, M. Kira, S. W. Koch, and A. Scherer, "Vacuum Rabi splitting in semiconductors," Nature Phys. 2, 81-90 (2006).
[CrossRef]

Kuhn, S.

J. P. Reithmaier, G. Sek, A. Loffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, "Strong coupling in a single quantum dot-semiconductor microcavity system," Nature 432, 197-200 (2004).
[CrossRef] [PubMed]

Kulakovskii, V. D.

J. P. Reithmaier, G. Sek, A. Loffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, "Strong coupling in a single quantum dot-semiconductor microcavity system," Nature 432, 197-200 (2004).
[CrossRef] [PubMed]

Kuramochi, E.

Kwon, S. H.

S. Reitzenstein, C. Hofmann, A. Gorbunov, M. Strauss, S. H. Kwon, C. Schneider, A. Loffler, S. Hofling, M. Kamp, and A. Forchel, "AlAs/GaAs micropillar cavities with quality factors exceeding 150,000," Appl. Phys. Lett. 90, 251109 (2007).
[CrossRef]

Lalanne, P.

P. Velha, E. Picard, T. Charvolin, E. Hadji, J. C. Rodier, P. Lalanne, and D. Peyrade, "Ultra-high Q/V Fabry-Perot microcavity on SOI substrate," Opt. Express 15, 16090-16096 (2007).
[CrossRef] [PubMed]

C. Sauvan, G. Lecamp, P. Lalanne, and J. P. Hugonin, "Modal-reflectivity enhancement by geometry tuning in Photonic Crystal microcavities," Opt. Express 13, 245-255 (2005).
[CrossRef] [PubMed]

P. Lalanne and J. P. Hugonin, "Bloch-wave engineering for high-Q, small-V microcavities," IEEE J. Quantum Electron. 39, 1430-1438 (2003).
[CrossRef]

M. Palamaru and P. Lalanne, "Photonic crystal waveguides: Out-of-plane losses and adiabatic modal conversion," Appl. Phys. Lett. 78, 1466-1468 (2001).
[CrossRef]

Larsson, M.

L. Samuelson, M. T. Bjork, K. Deppert, M. Larsson, B. J. Ohlsson, N. Panev, A. I. Persson, N. Skold, C. Thelander, and L. R. Wallenberg, "Semiconductor nanowires for novel one-dimensional devices," Physica E 21, 560-567 (2004).
[CrossRef]

Larsson, M. W.

C. P. T. Svensson, W. Seifert, M. W. Larsson, L. R. Wallenberg, J. Stangl, G. Bauer, and L. Samuelson, "Epitaxially grown GaP/ GaAs1-xPx/GaP double heterostructure nanowires for optical applications," Nanotechnology 16, 936-939 (2005).
[CrossRef]

M. T. Bjork, C. Thelander, A. E. Hansen, L. E. Jenson, M. W. Larsson, L. R. Wallenberg, and L. Samuelson, "Few-electron quantum dots in nanowires," Nano. Lett. 4, 1621-1625 (2004).
[CrossRef]

Lauhon, L. J.

M. S. Gudiksen, L. J. Lauhon, J. Wang, D. C. Smith, and C. M. Lieber, "Growth of nanowire superlattice structures for nanoscale photonics and electronics," Nature 415, 617-620 (2002).
[CrossRef] [PubMed]

Lecamp, G.

Lee, Y. H.

J. L. Jewell, J. P. Harbison, A. Scherer, Y. H. Lee, and L. T. Florez, "Vertical-cavity surface-emitting lasers - design, growth, fabrication, characterization," IEEE J. Quantum Electron. 27, 1332-1346 (1991).
[CrossRef]

Legrand, B.

J. M. Gerard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, "Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity," Phys. Rev. Lett. 81, 1110-1113 (1998).
[CrossRef]

Li, Y.

H. G. Park, F. Qian, C. J. Barrelet, and Y. Li, "Microstadium single-nanowire laser," Appl. Phys. Lett. 91, 251115 (2007).
[CrossRef]

S. Gradecek, F. Qian, Y. Li, H. G. Park, and C. M. Lieber, "GaN nanowire lasers with low lasing threshold," Appl. Phys. Lett. 87, 173111 (2005).
[CrossRef]

Li, Z. Y.

Z. Y. Li and K. M. Ho, "Bloch mode reflection and lasing threshold in semiconductor nanowire laser arrays," Phys. Rev. B 71, 045315 (2005).
[CrossRef]

Lieber, C. M.

C. Barrelet, J. Bao, M. Loncar, H. G. Park, F. Capasso, and C. M. Lieber, "Hybrid single-nanowire photonic crystal and microresonator structures," Nano. Lett. 6, 11-15 (2006).
[CrossRef] [PubMed]

S. Gradecek, F. Qian, Y. Li, H. G. Park, and C. M. Lieber, "GaN nanowire lasers with low lasing threshold," Appl. Phys. Lett. 87, 173111 (2005).
[CrossRef]

R. Agarwal, C. J. Barrelet, and C. M. Lieber, "Lasing in single cadmium sulfide nanowire optical cavities," Nano. Lett. 5, 917-920 (2005).
[CrossRef] [PubMed]

X. Duan, Y. Huang, R. Agarwal, and C. M. Lieber, "Single-nanowire electrically driven laser," Nature 421, 241-245 (2003).
[CrossRef] [PubMed]

M. S. Gudiksen, L. J. Lauhon, J. Wang, D. C. Smith, and C. M. Lieber, "Growth of nanowire superlattice structures for nanoscale photonics and electronics," Nature 415, 617-620 (2002).
[CrossRef] [PubMed]

Lim, S. K.

S. K. Lim, M. J. Tambe, M. M. Brewster, and S. Gradecak, "Controlled growth of ternary alloy nanowires using metalorganic chemical vapor deposition," Nano. Lett. 8, 1386-1392 (2008).
[CrossRef] [PubMed]

Loffler, A.

S. Reitzenstein, C. Hofmann, A. Gorbunov, M. Strauss, S. H. Kwon, C. Schneider, A. Loffler, S. Hofling, M. Kamp, and A. Forchel, "AlAs/GaAs micropillar cavities with quality factors exceeding 150,000," Appl. Phys. Lett. 90, 251109 (2007).
[CrossRef]

J. P. Reithmaier, G. Sek, A. Loffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, "Strong coupling in a single quantum dot-semiconductor microcavity system," Nature 432, 197-200 (2004).
[CrossRef] [PubMed]

Loncar, M.

C. Barrelet, J. Bao, M. Loncar, H. G. Park, F. Capasso, and C. M. Lieber, "Hybrid single-nanowire photonic crystal and microresonator structures," Nano. Lett. 6, 11-15 (2006).
[CrossRef] [PubMed]

J. Vuckovic, M. Loncar, H. Mabuchi, and A. Scherer, "Optimization of the Q factor in photonic crystal microcavities," IEEE J. Quantum Electron. 38, 850-856 (2002).
[CrossRef]

Lou, J.

Mabuchi, H.

J. Vuckovic, M. Loncar, H. Mabuchi, and A. Scherer, "Optimization of the Q factor in photonic crystal microcavities," IEEE J. Quantum Electron. 38, 850-856 (2002).
[CrossRef]

Magnusson, M. H.

M. T. Bjork, B. J. Ohlsson, T. Sass, A. I. Persson, C. Thelander, M. H. Magnusson, K. Deppert, L. R. Wallenberg, and L. Samuelson, "One-dimensional heterostructures in semiconductor nanowhiskers," Appl. Phys. Lett. 80, 1058-1060 (2002).
[CrossRef]

Mao, S.

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, "Room-temperature ultraviolet nanowire nanolasers," Science 292, 1897-1899 (2001).
[CrossRef] [PubMed]

Maslov, A. V.

A. V. Maslov and C. Z. Ning, "Modal gain in a semiconductor nanowire laser with anisotropic bandstructure," IEEE J. Quantum Electron. 40, 1389-1397 (2004).
[CrossRef]

A. V. Maslov and C. Z. Ning, "Reflection of guided modes in a semiconductor nanowire laser," Appl. Phys. Lett. 83, 1237-1239 (2003).
[CrossRef]

Mazur, E.

Michler, P.

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, "A quantum dot single-photon turnstile device," Science 290, 2282-2285 (2000).
[CrossRef] [PubMed]

Minot, E. D.

E. D. Minot, F. Kelkensberg, M. v. Kouwen, J. A. v. Dam, L. P. Kouwenhoven, V. Zwiller, M. T. Borgstrom, O. Wunnicke, M. A. Verheijen, and E. P. A. M. Bakkers, "Single quantum dot nanowire LEDs," Nano. Lett. 7, 367-371 (2007).
[CrossRef] [PubMed]

Motohisa, J.

Y. Ding, J. Motohisa, B. Hua, S. Hara, and T. Fukui, "Observation of microcavity modes and waveguides in InP nanowires fabricated by selective-area metalorganic vapor-phase epitaxy," Nano. Lett. 7, 3598-3602 (2007).
[CrossRef]

Muller, E.

M. T. Borgstrom, V. Zwiller, E. Muller, and A. Imamoglu, "Optically bright quantum dots in single nanowires," Nano. Lett. 5, 1439-1443 (2005).
[CrossRef] [PubMed]

Muskens, O. L.

Nakaoka, T.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vuckovic, "Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystals," Phys. Rev. Lett. 95, 013904 (2005).
[CrossRef] [PubMed]

Nee, I.

Ning, C. Z.

A. V. Maslov and C. Z. Ning, "Modal gain in a semiconductor nanowire laser with anisotropic bandstructure," IEEE J. Quantum Electron. 40, 1389-1397 (2004).
[CrossRef]

A. V. Maslov and C. Z. Ning, "Reflection of guided modes in a semiconductor nanowire laser," Appl. Phys. Lett. 83, 1237-1239 (2003).
[CrossRef]

Noda, S.

Y. Tanaka, T. Asano, and S. Noda, "Design of photonic crystal nanocavity with Q-factor of similar to 10(9)," J. Lightwave Technol. 26, 1532-1539 (2008).
[CrossRef]

T. Asano, B. S. Song, Y. Akahane, and S. Noda, "Ultrahigh-Q nanocavities in two-dimensional photonic crystal slabs," IEEE J. Sel. Top. Quantum Electron. 12, 1123-1134 (2006).
[CrossRef]

B. S. Song, S. Noda, T. Asano, and Y. Akahane, "Ultra-high-Q photonic double-heterostructure nanocavity," Nat. Mater. 4, 207-210 (2005).
[CrossRef]

Notomi, M.

Ohlsson, B. J.

L. Samuelson, M. T. Bjork, K. Deppert, M. Larsson, B. J. Ohlsson, N. Panev, A. I. Persson, N. Skold, C. Thelander, and L. R. Wallenberg, "Semiconductor nanowires for novel one-dimensional devices," Physica E 21, 560-567 (2004).
[CrossRef]

M. T. Bjork, B. J. Ohlsson, T. Sass, A. I. Persson, C. Thelander, M. H. Magnusson, K. Deppert, L. R. Wallenberg, and L. Samuelson, "One-dimensional heterostructures in semiconductor nanowhiskers," Appl. Phys. Lett. 80, 1058-1060 (2002).
[CrossRef]

Painter, O.

Palamaru, M.

M. Palamaru and P. Lalanne, "Photonic crystal waveguides: Out-of-plane losses and adiabatic modal conversion," Appl. Phys. Lett. 78, 1466-1468 (2001).
[CrossRef]

Panev, N.

L. Samuelson, M. T. Bjork, K. Deppert, M. Larsson, B. J. Ohlsson, N. Panev, A. I. Persson, N. Skold, C. Thelander, and L. R. Wallenberg, "Semiconductor nanowires for novel one-dimensional devices," Physica E 21, 560-567 (2004).
[CrossRef]

N. Panev, A. I. Persson, N. Skold, and L. Samuelson, "Sharp exciton emission from single InAs quantum dots in GaAs nanowires," Appl. Phys. Lett. 83, 2238-2240 (2003).
[CrossRef]

Park, H. G.

H. G. Park, F. Qian, C. J. Barrelet, and Y. Li, "Microstadium single-nanowire laser," Appl. Phys. Lett. 91, 251115 (2007).
[CrossRef]

C. Barrelet, J. Bao, M. Loncar, H. G. Park, F. Capasso, and C. M. Lieber, "Hybrid single-nanowire photonic crystal and microresonator structures," Nano. Lett. 6, 11-15 (2006).
[CrossRef] [PubMed]

S. Gradecek, F. Qian, Y. Li, H. G. Park, and C. M. Lieber, "GaN nanowire lasers with low lasing threshold," Appl. Phys. Lett. 87, 173111 (2005).
[CrossRef]

Pelton, M.

M. Pelton, C. Santori, J. Vuckovic, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, "Efficient source of single photons: A single quantum dot in a micropost microcavity," Phys. Rev. Lett. 89, 233602 (2002).
[CrossRef] [PubMed]

J. Vuckovic, M. Pelton, A. Scherer, and Y. Yamamoto, "Optimization of three-dimensional micropost microcavities for cavity quantum electrodynamics," Phys. Rev. A 66, 023808 (2002).
[CrossRef]

Persson, A. I.

A. I. Persson, M. T. Bjork, S. Jeppesen, J. B. Wagner, L. R. Wallenberg, and L. Samuelson, "InAs1-xPx nanowires for device engineering," Nano. Lett. 6, 403-407 (2006).
[CrossRef] [PubMed]

L. Samuelson, M. T. Bjork, K. Deppert, M. Larsson, B. J. Ohlsson, N. Panev, A. I. Persson, N. Skold, C. Thelander, and L. R. Wallenberg, "Semiconductor nanowires for novel one-dimensional devices," Physica E 21, 560-567 (2004).
[CrossRef]

N. Panev, A. I. Persson, N. Skold, and L. Samuelson, "Sharp exciton emission from single InAs quantum dots in GaAs nanowires," Appl. Phys. Lett. 83, 2238-2240 (2003).
[CrossRef]

M. T. Bjork, B. J. Ohlsson, T. Sass, A. I. Persson, C. Thelander, M. H. Magnusson, K. Deppert, L. R. Wallenberg, and L. Samuelson, "One-dimensional heterostructures in semiconductor nanowhiskers," Appl. Phys. Lett. 80, 1058-1060 (2002).
[CrossRef]

Petroff, P. M.

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, "A quantum dot single-photon turnstile device," Science 290, 2282-2285 (2000).
[CrossRef] [PubMed]

Peyrade, D.

Picard, E.

Plant, J.

M. Pelton, C. Santori, J. Vuckovic, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, "Efficient source of single photons: A single quantum dot in a micropost microcavity," Phys. Rev. Lett. 89, 233602 (2002).
[CrossRef] [PubMed]

Purcell, E. M.

E. M. Purcell, "Spontaneous emission probabilities at radio frequencies " Phys. Rev. 69, 681-681 (1946).

Qian, F.

H. G. Park, F. Qian, C. J. Barrelet, and Y. Li, "Microstadium single-nanowire laser," Appl. Phys. Lett. 91, 251115 (2007).
[CrossRef]

S. Gradecek, F. Qian, Y. Li, H. G. Park, and C. M. Lieber, "GaN nanowire lasers with low lasing threshold," Appl. Phys. Lett. 87, 173111 (2005).
[CrossRef]

Reinecke, T. L.

J. P. Reithmaier, G. Sek, A. Loffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, "Strong coupling in a single quantum dot-semiconductor microcavity system," Nature 432, 197-200 (2004).
[CrossRef] [PubMed]

Reithmaier, J. P.

J. P. Reithmaier, G. Sek, A. Loffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, "Strong coupling in a single quantum dot-semiconductor microcavity system," Nature 432, 197-200 (2004).
[CrossRef] [PubMed]

Reitzenstein, S.

S. Reitzenstein, C. Hofmann, A. Gorbunov, M. Strauss, S. H. Kwon, C. Schneider, A. Loffler, S. Hofling, M. Kamp, and A. Forchel, "AlAs/GaAs micropillar cavities with quality factors exceeding 150,000," Appl. Phys. Lett. 90, 251109 (2007).
[CrossRef]

J. P. Reithmaier, G. Sek, A. Loffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, "Strong coupling in a single quantum dot-semiconductor microcavity system," Nature 432, 197-200 (2004).
[CrossRef] [PubMed]

Ren, Z. F.

J. M. Bao, M. Zimmler, F. Capasso, X. Wang, and Z. F. Ren, "Broadband ZnO single-nanowire light-emitting diode," Nano. Lett. 6, 1719-1722 (2006).
[CrossRef] [PubMed]

Rivas, J. G.

Rodier, J. C.

Russo, R.

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, "Room-temperature ultraviolet nanowire nanolasers," Science 292, 1897-1899 (2001).
[CrossRef] [PubMed]

Samuelson, L.

A. I. Persson, M. T. Bjork, S. Jeppesen, J. B. Wagner, L. R. Wallenberg, and L. Samuelson, "InAs1-xPx nanowires for device engineering," Nano. Lett. 6, 403-407 (2006).
[CrossRef] [PubMed]

C. P. T. Svensson, W. Seifert, M. W. Larsson, L. R. Wallenberg, J. Stangl, G. Bauer, and L. Samuelson, "Epitaxially grown GaP/ GaAs1-xPx/GaP double heterostructure nanowires for optical applications," Nanotechnology 16, 936-939 (2005).
[CrossRef]

L. Samuelson, M. T. Bjork, K. Deppert, M. Larsson, B. J. Ohlsson, N. Panev, A. I. Persson, N. Skold, C. Thelander, and L. R. Wallenberg, "Semiconductor nanowires for novel one-dimensional devices," Physica E 21, 560-567 (2004).
[CrossRef]

M. T. Bjork, C. Thelander, A. E. Hansen, L. E. Jenson, M. W. Larsson, L. R. Wallenberg, and L. Samuelson, "Few-electron quantum dots in nanowires," Nano. Lett. 4, 1621-1625 (2004).
[CrossRef]

N. Panev, A. I. Persson, N. Skold, and L. Samuelson, "Sharp exciton emission from single InAs quantum dots in GaAs nanowires," Appl. Phys. Lett. 83, 2238-2240 (2003).
[CrossRef]

M. T. Bjork, B. J. Ohlsson, T. Sass, A. I. Persson, C. Thelander, M. H. Magnusson, K. Deppert, L. R. Wallenberg, and L. Samuelson, "One-dimensional heterostructures in semiconductor nanowhiskers," Appl. Phys. Lett. 80, 1058-1060 (2002).
[CrossRef]

Santori, C.

M. Pelton, C. Santori, J. Vuckovic, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, "Efficient source of single photons: A single quantum dot in a micropost microcavity," Phys. Rev. Lett. 89, 233602 (2002).
[CrossRef] [PubMed]

Sass, T.

M. T. Bjork, B. J. Ohlsson, T. Sass, A. I. Persson, C. Thelander, M. H. Magnusson, K. Deppert, L. R. Wallenberg, and L. Samuelson, "One-dimensional heterostructures in semiconductor nanowhiskers," Appl. Phys. Lett. 80, 1058-1060 (2002).
[CrossRef]

Sauvan, C.

Saykally, R. J.

J. C. Johnson, H. Yan, P. Yang, and R. J. Saykally, "Optical cavity effects in ZnO nanowire lasers and waveguides," J. Phys. Chem. B 107, 8816-8828 (2003).
[CrossRef]

Scherer, A.

G. Khitrova, H. M. Gibbs, M. Kira, S. W. Koch, and A. Scherer, "Vacuum Rabi splitting in semiconductors," Nature Phys. 2, 81-90 (2006).
[CrossRef]

J. Vuckovic, M. Loncar, H. Mabuchi, and A. Scherer, "Optimization of the Q factor in photonic crystal microcavities," IEEE J. Quantum Electron. 38, 850-856 (2002).
[CrossRef]

J. Vuckovic, M. Pelton, A. Scherer, and Y. Yamamoto, "Optimization of three-dimensional micropost microcavities for cavity quantum electrodynamics," Phys. Rev. A 66, 023808 (2002).
[CrossRef]

J. L. Jewell, J. P. Harbison, A. Scherer, Y. H. Lee, and L. T. Florez, "Vertical-cavity surface-emitting lasers - design, growth, fabrication, characterization," IEEE J. Quantum Electron. 27, 1332-1346 (1991).
[CrossRef]

Schneider, C.

S. Reitzenstein, C. Hofmann, A. Gorbunov, M. Strauss, S. H. Kwon, C. Schneider, A. Loffler, S. Hofling, M. Kamp, and A. Forchel, "AlAs/GaAs micropillar cavities with quality factors exceeding 150,000," Appl. Phys. Lett. 90, 251109 (2007).
[CrossRef]

Schoenfeld, W. V.

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, "A quantum dot single-photon turnstile device," Science 290, 2282-2285 (2000).
[CrossRef] [PubMed]

Seifert, W.

C. P. T. Svensson, W. Seifert, M. W. Larsson, L. R. Wallenberg, J. Stangl, G. Bauer, and L. Samuelson, "Epitaxially grown GaP/ GaAs1-xPx/GaP double heterostructure nanowires for optical applications," Nanotechnology 16, 936-939 (2005).
[CrossRef]

Sek, G.

J. P. Reithmaier, G. Sek, A. Loffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, "Strong coupling in a single quantum dot-semiconductor microcavity system," Nature 432, 197-200 (2004).
[CrossRef] [PubMed]

Sermage, B.

J. M. Gerard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, "Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity," Phys. Rev. Lett. 81, 1110-1113 (1998).
[CrossRef]

Skold, N.

L. Samuelson, M. T. Bjork, K. Deppert, M. Larsson, B. J. Ohlsson, N. Panev, A. I. Persson, N. Skold, C. Thelander, and L. R. Wallenberg, "Semiconductor nanowires for novel one-dimensional devices," Physica E 21, 560-567 (2004).
[CrossRef]

N. Panev, A. I. Persson, N. Skold, and L. Samuelson, "Sharp exciton emission from single InAs quantum dots in GaAs nanowires," Appl. Phys. Lett. 83, 2238-2240 (2003).
[CrossRef]

Smith, D. C.

M. S. Gudiksen, L. J. Lauhon, J. Wang, D. C. Smith, and C. M. Lieber, "Growth of nanowire superlattice structures for nanoscale photonics and electronics," Nature 415, 617-620 (2002).
[CrossRef] [PubMed]

Solomon, G.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vuckovic, "Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystals," Phys. Rev. Lett. 95, 013904 (2005).
[CrossRef] [PubMed]

Solomon, G. S.

M. Pelton, C. Santori, J. Vuckovic, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, "Efficient source of single photons: A single quantum dot in a micropost microcavity," Phys. Rev. Lett. 89, 233602 (2002).
[CrossRef] [PubMed]

Song, B. S.

T. Asano, B. S. Song, Y. Akahane, and S. Noda, "Ultrahigh-Q nanocavities in two-dimensional photonic crystal slabs," IEEE J. Sel. Top. Quantum Electron. 12, 1123-1134 (2006).
[CrossRef]

B. S. Song, S. Noda, T. Asano, and Y. Akahane, "Ultra-high-Q photonic double-heterostructure nanocavity," Nat. Mater. 4, 207-210 (2005).
[CrossRef]

Srinivasan, K.

Stangl, J.

C. P. T. Svensson, W. Seifert, M. W. Larsson, L. R. Wallenberg, J. Stangl, G. Bauer, and L. Samuelson, "Epitaxially grown GaP/ GaAs1-xPx/GaP double heterostructure nanowires for optical applications," Nanotechnology 16, 936-939 (2005).
[CrossRef]

Strauss, M.

S. Reitzenstein, C. Hofmann, A. Gorbunov, M. Strauss, S. H. Kwon, C. Schneider, A. Loffler, S. Hofling, M. Kamp, and A. Forchel, "AlAs/GaAs micropillar cavities with quality factors exceeding 150,000," Appl. Phys. Lett. 90, 251109 (2007).
[CrossRef]

Svensson, C. P. T.

C. P. T. Svensson, W. Seifert, M. W. Larsson, L. R. Wallenberg, J. Stangl, G. Bauer, and L. Samuelson, "Epitaxially grown GaP/ GaAs1-xPx/GaP double heterostructure nanowires for optical applications," Nanotechnology 16, 936-939 (2005).
[CrossRef]

Tambe, M. J.

S. K. Lim, M. J. Tambe, M. M. Brewster, and S. Gradecak, "Controlled growth of ternary alloy nanowires using metalorganic chemical vapor deposition," Nano. Lett. 8, 1386-1392 (2008).
[CrossRef] [PubMed]

Tanaka, Y.

Taniyama, H.

Thelander, C.

M. T. Bjork, C. Thelander, A. E. Hansen, L. E. Jenson, M. W. Larsson, L. R. Wallenberg, and L. Samuelson, "Few-electron quantum dots in nanowires," Nano. Lett. 4, 1621-1625 (2004).
[CrossRef]

L. Samuelson, M. T. Bjork, K. Deppert, M. Larsson, B. J. Ohlsson, N. Panev, A. I. Persson, N. Skold, C. Thelander, and L. R. Wallenberg, "Semiconductor nanowires for novel one-dimensional devices," Physica E 21, 560-567 (2004).
[CrossRef]

M. T. Bjork, B. J. Ohlsson, T. Sass, A. I. Persson, C. Thelander, M. H. Magnusson, K. Deppert, L. R. Wallenberg, and L. Samuelson, "One-dimensional heterostructures in semiconductor nanowhiskers," Appl. Phys. Lett. 80, 1058-1060 (2002).
[CrossRef]

Thierry-Mieg, V.

J. M. Gerard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, "Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity," Phys. Rev. Lett. 81, 1110-1113 (1998).
[CrossRef]

Tong, L.

Towe, E.

L. Chen and E. Towe, "Photonic band gaps in nanowire superlattices," Appl. Phys. Lett. 87, 10311 (2005).

Treffers, J.

Velha, P.

Vuckovic, J.

D. Englund, I. Fushman, and J. Vuckovic, "General recipe for designing photonic crystal cavities," Opt. Express 13, 5961-5975 (2005).
[CrossRef] [PubMed]

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vuckovic, "Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystals," Phys. Rev. Lett. 95, 013904 (2005).
[CrossRef] [PubMed]

M. Pelton, C. Santori, J. Vuckovic, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, "Efficient source of single photons: A single quantum dot in a micropost microcavity," Phys. Rev. Lett. 89, 233602 (2002).
[CrossRef] [PubMed]

J. Vuckovic, M. Loncar, H. Mabuchi, and A. Scherer, "Optimization of the Q factor in photonic crystal microcavities," IEEE J. Quantum Electron. 38, 850-856 (2002).
[CrossRef]

J. Vuckovic, M. Pelton, A. Scherer, and Y. Yamamoto, "Optimization of three-dimensional micropost microcavities for cavity quantum electrodynamics," Phys. Rev. A 66, 023808 (2002).
[CrossRef]

Wagner, J. B.

A. I. Persson, M. T. Bjork, S. Jeppesen, J. B. Wagner, L. R. Wallenberg, and L. Samuelson, "InAs1-xPx nanowires for device engineering," Nano. Lett. 6, 403-407 (2006).
[CrossRef] [PubMed]

Waks, E.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vuckovic, "Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystals," Phys. Rev. Lett. 95, 013904 (2005).
[CrossRef] [PubMed]

Wallenberg, L. R.

A. I. Persson, M. T. Bjork, S. Jeppesen, J. B. Wagner, L. R. Wallenberg, and L. Samuelson, "InAs1-xPx nanowires for device engineering," Nano. Lett. 6, 403-407 (2006).
[CrossRef] [PubMed]

C. P. T. Svensson, W. Seifert, M. W. Larsson, L. R. Wallenberg, J. Stangl, G. Bauer, and L. Samuelson, "Epitaxially grown GaP/ GaAs1-xPx/GaP double heterostructure nanowires for optical applications," Nanotechnology 16, 936-939 (2005).
[CrossRef]

M. T. Bjork, C. Thelander, A. E. Hansen, L. E. Jenson, M. W. Larsson, L. R. Wallenberg, and L. Samuelson, "Few-electron quantum dots in nanowires," Nano. Lett. 4, 1621-1625 (2004).
[CrossRef]

L. Samuelson, M. T. Bjork, K. Deppert, M. Larsson, B. J. Ohlsson, N. Panev, A. I. Persson, N. Skold, C. Thelander, and L. R. Wallenberg, "Semiconductor nanowires for novel one-dimensional devices," Physica E 21, 560-567 (2004).
[CrossRef]

M. T. Bjork, B. J. Ohlsson, T. Sass, A. I. Persson, C. Thelander, M. H. Magnusson, K. Deppert, L. R. Wallenberg, and L. Samuelson, "One-dimensional heterostructures in semiconductor nanowhiskers," Appl. Phys. Lett. 80, 1058-1060 (2002).
[CrossRef]

Wang, J.

M. S. Gudiksen, L. J. Lauhon, J. Wang, D. C. Smith, and C. M. Lieber, "Growth of nanowire superlattice structures for nanoscale photonics and electronics," Nature 415, 617-620 (2002).
[CrossRef] [PubMed]

Wang, M. Q.

M. Q. Wang, Y. Z. Huang, Q. Chen, and Z. P. Cai, "Analysis of mode quality factors and mode reflectivities for nanowire cavity by FDTD technique," IEEE J. Quantum Electron. 42, 146-151 (2006).
[CrossRef]

Wang, X.

J. M. Bao, M. Zimmler, F. Capasso, X. Wang, and Z. F. Ren, "Broadband ZnO single-nanowire light-emitting diode," Nano. Lett. 6, 1719-1722 (2006).
[CrossRef] [PubMed]

Weber, E.

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, "Room-temperature ultraviolet nanowire nanolasers," Science 292, 1897-1899 (2001).
[CrossRef] [PubMed]

Wu, Y.

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, "Room-temperature ultraviolet nanowire nanolasers," Science 292, 1897-1899 (2001).
[CrossRef] [PubMed]

Yamamoto, Y.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vuckovic, "Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystals," Phys. Rev. Lett. 95, 013904 (2005).
[CrossRef] [PubMed]

M. Pelton, C. Santori, J. Vuckovic, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, "Efficient source of single photons: A single quantum dot in a micropost microcavity," Phys. Rev. Lett. 89, 233602 (2002).
[CrossRef] [PubMed]

J. Vuckovic, M. Pelton, A. Scherer, and Y. Yamamoto, "Optimization of three-dimensional micropost microcavities for cavity quantum electrodynamics," Phys. Rev. A 66, 023808 (2002).
[CrossRef]

Yan, H.

J. C. Johnson, H. Yan, P. Yang, and R. J. Saykally, "Optical cavity effects in ZnO nanowire lasers and waveguides," J. Phys. Chem. B 107, 8816-8828 (2003).
[CrossRef]

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, "Room-temperature ultraviolet nanowire nanolasers," Science 292, 1897-1899 (2001).
[CrossRef] [PubMed]

Yang, P.

J. C. Johnson, H. Yan, P. Yang, and R. J. Saykally, "Optical cavity effects in ZnO nanowire lasers and waveguides," J. Phys. Chem. B 107, 8816-8828 (2003).
[CrossRef]

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, "Room-temperature ultraviolet nanowire nanolasers," Science 292, 1897-1899 (2001).
[CrossRef] [PubMed]

Zhang, B.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vuckovic, "Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystals," Phys. Rev. Lett. 95, 013904 (2005).
[CrossRef] [PubMed]

M. Pelton, C. Santori, J. Vuckovic, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, "Efficient source of single photons: A single quantum dot in a micropost microcavity," Phys. Rev. Lett. 89, 233602 (2002).
[CrossRef] [PubMed]

Zhang, L.

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, "A quantum dot single-photon turnstile device," Science 290, 2282-2285 (2000).
[CrossRef] [PubMed]

Zimmler, M.

J. M. Bao, M. Zimmler, F. Capasso, X. Wang, and Z. F. Ren, "Broadband ZnO single-nanowire light-emitting diode," Nano. Lett. 6, 1719-1722 (2006).
[CrossRef] [PubMed]

Zwiller, V.

M. T. Borgstrom, V. Zwiller, E. Muller, and A. Imamoglu, "Optically bright quantum dots in single nanowires," Nano. Lett. 5, 1439-1443 (2005).
[CrossRef] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (8)

L. Chen and E. Towe, "Photonic band gaps in nanowire superlattices," Appl. Phys. Lett. 87, 10311 (2005).

H. G. Park, F. Qian, C. J. Barrelet, and Y. Li, "Microstadium single-nanowire laser," Appl. Phys. Lett. 91, 251115 (2007).
[CrossRef]

M. T. Bjork, B. J. Ohlsson, T. Sass, A. I. Persson, C. Thelander, M. H. Magnusson, K. Deppert, L. R. Wallenberg, and L. Samuelson, "One-dimensional heterostructures in semiconductor nanowhiskers," Appl. Phys. Lett. 80, 1058-1060 (2002).
[CrossRef]

N. Panev, A. I. Persson, N. Skold, and L. Samuelson, "Sharp exciton emission from single InAs quantum dots in GaAs nanowires," Appl. Phys. Lett. 83, 2238-2240 (2003).
[CrossRef]

S. Gradecek, F. Qian, Y. Li, H. G. Park, and C. M. Lieber, "GaN nanowire lasers with low lasing threshold," Appl. Phys. Lett. 87, 173111 (2005).
[CrossRef]

A. V. Maslov and C. Z. Ning, "Reflection of guided modes in a semiconductor nanowire laser," Appl. Phys. Lett. 83, 1237-1239 (2003).
[CrossRef]

M. Palamaru and P. Lalanne, "Photonic crystal waveguides: Out-of-plane losses and adiabatic modal conversion," Appl. Phys. Lett. 78, 1466-1468 (2001).
[CrossRef]

S. Reitzenstein, C. Hofmann, A. Gorbunov, M. Strauss, S. H. Kwon, C. Schneider, A. Loffler, S. Hofling, M. Kamp, and A. Forchel, "AlAs/GaAs micropillar cavities with quality factors exceeding 150,000," Appl. Phys. Lett. 90, 251109 (2007).
[CrossRef]

IEEE J. Quantum Electron. (6)

J. Vuckovic, M. Loncar, H. Mabuchi, and A. Scherer, "Optimization of the Q factor in photonic crystal microcavities," IEEE J. Quantum Electron. 38, 850-856 (2002).
[CrossRef]

J. L. Jewell, J. P. Harbison, A. Scherer, Y. H. Lee, and L. T. Florez, "Vertical-cavity surface-emitting lasers - design, growth, fabrication, characterization," IEEE J. Quantum Electron. 27, 1332-1346 (1991).
[CrossRef]

M. Q. Wang, Y. Z. Huang, Q. Chen, and Z. P. Cai, "Analysis of mode quality factors and mode reflectivities for nanowire cavity by FDTD technique," IEEE J. Quantum Electron. 42, 146-151 (2006).
[CrossRef]

A. V. Maslov and C. Z. Ning, "Modal gain in a semiconductor nanowire laser with anisotropic bandstructure," IEEE J. Quantum Electron. 40, 1389-1397 (2004).
[CrossRef]

P. Lalanne and J. P. Hugonin, "Bloch-wave engineering for high-Q, small-V microcavities," IEEE J. Quantum Electron. 39, 1430-1438 (2003).
[CrossRef]

T. Baba, "Photonic crystals and microdisk cavities based on GaInAsP-InP system," IEEE J. Quantum Electron. 3, 808-830 (1997).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

T. Asano, B. S. Song, Y. Akahane, and S. Noda, "Ultrahigh-Q nanocavities in two-dimensional photonic crystal slabs," IEEE J. Sel. Top. Quantum Electron. 12, 1123-1134 (2006).
[CrossRef]

J. Lightwave Technol. (1)

J. Phys. Chem. B (1)

J. C. Johnson, H. Yan, P. Yang, and R. J. Saykally, "Optical cavity effects in ZnO nanowire lasers and waveguides," J. Phys. Chem. B 107, 8816-8828 (2003).
[CrossRef]

Nano. Lett. (9)

R. Agarwal, C. J. Barrelet, and C. M. Lieber, "Lasing in single cadmium sulfide nanowire optical cavities," Nano. Lett. 5, 917-920 (2005).
[CrossRef] [PubMed]

C. Barrelet, J. Bao, M. Loncar, H. G. Park, F. Capasso, and C. M. Lieber, "Hybrid single-nanowire photonic crystal and microresonator structures," Nano. Lett. 6, 11-15 (2006).
[CrossRef] [PubMed]

Y. Ding, J. Motohisa, B. Hua, S. Hara, and T. Fukui, "Observation of microcavity modes and waveguides in InP nanowires fabricated by selective-area metalorganic vapor-phase epitaxy," Nano. Lett. 7, 3598-3602 (2007).
[CrossRef]

A. I. Persson, M. T. Bjork, S. Jeppesen, J. B. Wagner, L. R. Wallenberg, and L. Samuelson, "InAs1-xPx nanowires for device engineering," Nano. Lett. 6, 403-407 (2006).
[CrossRef] [PubMed]

S. K. Lim, M. J. Tambe, M. M. Brewster, and S. Gradecak, "Controlled growth of ternary alloy nanowires using metalorganic chemical vapor deposition," Nano. Lett. 8, 1386-1392 (2008).
[CrossRef] [PubMed]

M. T. Borgstrom, V. Zwiller, E. Muller, and A. Imamoglu, "Optically bright quantum dots in single nanowires," Nano. Lett. 5, 1439-1443 (2005).
[CrossRef] [PubMed]

E. D. Minot, F. Kelkensberg, M. v. Kouwen, J. A. v. Dam, L. P. Kouwenhoven, V. Zwiller, M. T. Borgstrom, O. Wunnicke, M. A. Verheijen, and E. P. A. M. Bakkers, "Single quantum dot nanowire LEDs," Nano. Lett. 7, 367-371 (2007).
[CrossRef] [PubMed]

J. M. Bao, M. Zimmler, F. Capasso, X. Wang, and Z. F. Ren, "Broadband ZnO single-nanowire light-emitting diode," Nano. Lett. 6, 1719-1722 (2006).
[CrossRef] [PubMed]

M. T. Bjork, C. Thelander, A. E. Hansen, L. E. Jenson, M. W. Larsson, L. R. Wallenberg, and L. Samuelson, "Few-electron quantum dots in nanowires," Nano. Lett. 4, 1621-1625 (2004).
[CrossRef]

Nanotechnology (1)

C. P. T. Svensson, W. Seifert, M. W. Larsson, L. R. Wallenberg, J. Stangl, G. Bauer, and L. Samuelson, "Epitaxially grown GaP/ GaAs1-xPx/GaP double heterostructure nanowires for optical applications," Nanotechnology 16, 936-939 (2005).
[CrossRef]

Nat. Mater. (1)

B. S. Song, S. Noda, T. Asano, and Y. Akahane, "Ultra-high-Q photonic double-heterostructure nanocavity," Nat. Mater. 4, 207-210 (2005).
[CrossRef]

Nature (3)

J. P. Reithmaier, G. Sek, A. Loffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, "Strong coupling in a single quantum dot-semiconductor microcavity system," Nature 432, 197-200 (2004).
[CrossRef] [PubMed]

M. S. Gudiksen, L. J. Lauhon, J. Wang, D. C. Smith, and C. M. Lieber, "Growth of nanowire superlattice structures for nanoscale photonics and electronics," Nature 415, 617-620 (2002).
[CrossRef] [PubMed]

X. Duan, Y. Huang, R. Agarwal, and C. M. Lieber, "Single-nanowire electrically driven laser," Nature 421, 241-245 (2003).
[CrossRef] [PubMed]

Nature Phys. (1)

G. Khitrova, H. M. Gibbs, M. Kira, S. W. Koch, and A. Scherer, "Vacuum Rabi splitting in semiconductors," Nature Phys. 2, 81-90 (2006).
[CrossRef]

Opt. Express (6)

Opt. Lett. (1)

Phys. Rev. (1)

E. M. Purcell, "Spontaneous emission probabilities at radio frequencies " Phys. Rev. 69, 681-681 (1946).

Phys. Rev. A (1)

J. Vuckovic, M. Pelton, A. Scherer, and Y. Yamamoto, "Optimization of three-dimensional micropost microcavities for cavity quantum electrodynamics," Phys. Rev. A 66, 023808 (2002).
[CrossRef]

Phys. Rev. B (1)

Z. Y. Li and K. M. Ho, "Bloch mode reflection and lasing threshold in semiconductor nanowire laser arrays," Phys. Rev. B 71, 045315 (2005).
[CrossRef]

Phys. Rev. Lett. (3)

J. M. Gerard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, "Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity," Phys. Rev. Lett. 81, 1110-1113 (1998).
[CrossRef]

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vuckovic, "Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystals," Phys. Rev. Lett. 95, 013904 (2005).
[CrossRef] [PubMed]

M. Pelton, C. Santori, J. Vuckovic, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, "Efficient source of single photons: A single quantum dot in a micropost microcavity," Phys. Rev. Lett. 89, 233602 (2002).
[CrossRef] [PubMed]

Physica E (1)

L. Samuelson, M. T. Bjork, K. Deppert, M. Larsson, B. J. Ohlsson, N. Panev, A. I. Persson, N. Skold, C. Thelander, and L. R. Wallenberg, "Semiconductor nanowires for novel one-dimensional devices," Physica E 21, 560-567 (2004).
[CrossRef]

Science (2)

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, "A quantum dot single-photon turnstile device," Science 290, 2282-2285 (2000).
[CrossRef] [PubMed]

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, "Room-temperature ultraviolet nanowire nanolasers," Science 292, 1897-1899 (2001).
[CrossRef] [PubMed]

Other (2)

H. J. Kimble, in Cavity Electrodynamics, P. Berman, ed. (Academic Press, San Diego, 1994).

A. Yariv, Photonics: Optical electronics in modern communications, 6 ed. (Oxford University Press, 2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

(a) Schematic of nanowire and mode profile (E x components) for fundamental HE11 mode with d=120nm and n clad =1. (b) Reflectance of nanowire facets with air and PMMA cladding (HE11 mode).

Fig. 2.
Fig. 2.

(a) Schematic of a semiconductor nanowire with 1D PhC defined at its end. (b) Transmittance and reflectance spectra for nanowire with PhC consisting of 30 PMMA/air pairs.

Fig. 3.
Fig. 3.

(a) Schematic of waveguide-mode cavity. (b) Schematic of Bloch-mode cavity. (c) Dispersion line of Bloch mode with periodicity of 0.78a (blue), Bloch mode with periodicity of a (pink), and waveguide mode of nanowire embedded in PMMA (red).

Fig. 4.
Fig. 4.

(a) Schematic of photonic band tapering. (b) Quality factor and mode volume as a function of number of taper segments. In all cases, the cavity was designed to support one resonance positioned at the mid-gap wavelength of 497nm. (c) Mode profile of cavity modes (E φ component) with 6 taper segments and 40 mirror pairs. Configuration of the tapered gratings is also mapped as background.

Fig. 5.
Fig. 5.

Fourier transform of E φ along wire axis. k-space zones within the light line are shown in green (light green within PMMA light line, dark green within air light line).

Fig. 6.
Fig. 6.

Quality factor (red-square) as a function of imaginary part of refractive index (κ). The Q value with lossless cladding is indicated in black line. The dash lines represent estimation of Q using Eq. (3), while η=0.3 (blue) and 1 (magenta), respectively.

Fig. 7.
Fig. 7.

(a) Schematic of hexagonal cross-section nanowire embedded in air/PMMA grating. (b) Mode profile of E x component of hexagonal cross-section nanowire embedded in PMMA cladding. (c) Mode profile of cavity modes (E x component) with 5 taper segments and 40 mirror pairs.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

1 Q = 1 Q sc + 1 Q tr
V mod = V ε ( r ) E ( r ) 2 d 3 r max [ ε ( r ) E ( r ) 2 ]
1 Q = 1 Q lossless + η 2 κ clad n clad

Metrics