Abstract

We report on the generation of 94 W continuous wave output power at 980 nm using an Yb-doped fiber laser. This is achieved using an ultra large-mode-area rod-type photonic crystal fiber pumped at 915 nm. To the best of our knowledge this is the highest output power close to diffraction-limited beam quality (M2 about 2.2) achieved in this wavelength range from fibers so far. The experimental results are supported by detailed numerical simulations that provide a deeper understanding of the laser process, in particular the competition with the 1030 nm emission.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, "Ytterbium-Doped Fiber Amplifiers," IEEE J. Quantum Electron. 33, 1049-1056 (1997).
    [CrossRef]
  2. J. Nilsson, J. D. Minelly, R. Paschotta, A. C. Tropper, and D. C. Hanna, "Ring-doped cladding-pumped single-mode three-level fiber laser," Opt. Lett. 23, 355-357 (1998)
    [CrossRef]
  3. D. B. S. Soh, C. Codemard, J. K. Sahu, J. Nilsson, V. Philippov, C. Alegria, and Y. Jeong, "A 4.3 W 977 nm ytterbium-doped jacketed-air-clad fiber amplifier," in Advanced Solid-State Photonics, OSA Technical Digest (Optical Society of America, 2004), paper MA3.
  4. R. Selvas, J. K. Sahu, L. B. Fu, J. N. Jang, J. Nilsson, A. B. Grudinin, K. H. Ylä-Jarkko, S. A. Alam, P. W. Turner, and J. Moore, "High-power, low-noise, Yb-doped, cladding-pumped, three-level fiber sources at 980nm," Opt. Lett. 28, 1093-1095 (2003).
    [CrossRef]
  5. L. A. Zenteno, J. D. Minelly, M. Dejneka, and S. Crigler, "0.65 W single-mode Yb-fiber laser at 980 nm pumped by 1.1 W Nd:YAG," in Advanced Solid State Lasers, OSA Technical Digest Series (Optical Society of America, 2000), paper MD7.
  6. V. Pureur, L. Bigot, G. Bouwmans, Y. Quiquempois, M. Douay, and Y. Jaouen, "Ytterbium-doped solid core photonic bandgap fiber for laser operation around 980 nm," Appl. Phys. Lett. 92, 061113 (2008).
    [CrossRef]
  7. L. B. Fu, M. Ibsen, D. J. Richardson, and D. N. Payne, "Three-level fiber DFB laser at 980 nm," in Proceedings of the Optical Fiber Communication Conference (2004).
  8. J. Limpert, O. Schmidt, J. Rothhardt, F. Röser, T. Schreiber, A. Tünnermann, S. Ermeneux, P. Yvernault, and F. Salin, "Extended single-mode photonic crystal fiber lasers," Opt. Express 14, 2715-2720 (2006).
    [CrossRef] [PubMed]
  9. F. Röser, D. N. Schimpf, C. Jauregui, J. Limpert, and A. Tünnermann, "45 W 980 nm single transverse mode Yb-doped fiber laser," in 3rd EPS-QEOD Europhoton Conference, paper TUoC.2 (Paris, 2008).
  10. Y. Wang, C. Q. Xu, and H. Po, "Analysis of Raman and thermal effects in kilowatt fiber lasers," Opt. Commun. 242, 487-502 (2004).
    [CrossRef]

2008

V. Pureur, L. Bigot, G. Bouwmans, Y. Quiquempois, M. Douay, and Y. Jaouen, "Ytterbium-doped solid core photonic bandgap fiber for laser operation around 980 nm," Appl. Phys. Lett. 92, 061113 (2008).
[CrossRef]

2006

2004

Y. Wang, C. Q. Xu, and H. Po, "Analysis of Raman and thermal effects in kilowatt fiber lasers," Opt. Commun. 242, 487-502 (2004).
[CrossRef]

2003

1998

1997

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, "Ytterbium-Doped Fiber Amplifiers," IEEE J. Quantum Electron. 33, 1049-1056 (1997).
[CrossRef]

Alam, S. A.

Bigot, L.

V. Pureur, L. Bigot, G. Bouwmans, Y. Quiquempois, M. Douay, and Y. Jaouen, "Ytterbium-doped solid core photonic bandgap fiber for laser operation around 980 nm," Appl. Phys. Lett. 92, 061113 (2008).
[CrossRef]

Bouwmans, G.

V. Pureur, L. Bigot, G. Bouwmans, Y. Quiquempois, M. Douay, and Y. Jaouen, "Ytterbium-doped solid core photonic bandgap fiber for laser operation around 980 nm," Appl. Phys. Lett. 92, 061113 (2008).
[CrossRef]

Douay, M.

V. Pureur, L. Bigot, G. Bouwmans, Y. Quiquempois, M. Douay, and Y. Jaouen, "Ytterbium-doped solid core photonic bandgap fiber for laser operation around 980 nm," Appl. Phys. Lett. 92, 061113 (2008).
[CrossRef]

Ermeneux, S.

Fu, L. B.

Grudinin, A. B.

Hanna, D. C.

J. Nilsson, J. D. Minelly, R. Paschotta, A. C. Tropper, and D. C. Hanna, "Ring-doped cladding-pumped single-mode three-level fiber laser," Opt. Lett. 23, 355-357 (1998)
[CrossRef]

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, "Ytterbium-Doped Fiber Amplifiers," IEEE J. Quantum Electron. 33, 1049-1056 (1997).
[CrossRef]

Jang, J. N.

Jaouen, Y.

V. Pureur, L. Bigot, G. Bouwmans, Y. Quiquempois, M. Douay, and Y. Jaouen, "Ytterbium-doped solid core photonic bandgap fiber for laser operation around 980 nm," Appl. Phys. Lett. 92, 061113 (2008).
[CrossRef]

Limpert, J.

Minelly, J. D.

Moore, J.

Nilsson, J.

Paschotta, R.

J. Nilsson, J. D. Minelly, R. Paschotta, A. C. Tropper, and D. C. Hanna, "Ring-doped cladding-pumped single-mode three-level fiber laser," Opt. Lett. 23, 355-357 (1998)
[CrossRef]

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, "Ytterbium-Doped Fiber Amplifiers," IEEE J. Quantum Electron. 33, 1049-1056 (1997).
[CrossRef]

Po, H.

Y. Wang, C. Q. Xu, and H. Po, "Analysis of Raman and thermal effects in kilowatt fiber lasers," Opt. Commun. 242, 487-502 (2004).
[CrossRef]

Pureur, V.

V. Pureur, L. Bigot, G. Bouwmans, Y. Quiquempois, M. Douay, and Y. Jaouen, "Ytterbium-doped solid core photonic bandgap fiber for laser operation around 980 nm," Appl. Phys. Lett. 92, 061113 (2008).
[CrossRef]

Quiquempois, Y.

V. Pureur, L. Bigot, G. Bouwmans, Y. Quiquempois, M. Douay, and Y. Jaouen, "Ytterbium-doped solid core photonic bandgap fiber for laser operation around 980 nm," Appl. Phys. Lett. 92, 061113 (2008).
[CrossRef]

Röser, F.

Rothhardt, J.

Sahu, J. K.

Salin, F.

Schmidt, O.

Schreiber, T.

Selvas, R.

Tropper, A. C.

J. Nilsson, J. D. Minelly, R. Paschotta, A. C. Tropper, and D. C. Hanna, "Ring-doped cladding-pumped single-mode three-level fiber laser," Opt. Lett. 23, 355-357 (1998)
[CrossRef]

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, "Ytterbium-Doped Fiber Amplifiers," IEEE J. Quantum Electron. 33, 1049-1056 (1997).
[CrossRef]

Tünnermann, A.

Turner, P. W.

Wang, Y.

Y. Wang, C. Q. Xu, and H. Po, "Analysis of Raman and thermal effects in kilowatt fiber lasers," Opt. Commun. 242, 487-502 (2004).
[CrossRef]

Xu, C. Q.

Y. Wang, C. Q. Xu, and H. Po, "Analysis of Raman and thermal effects in kilowatt fiber lasers," Opt. Commun. 242, 487-502 (2004).
[CrossRef]

Ylä-Jarkko, K. H.

Yvernault, P.

Appl. Phys. Lett.

V. Pureur, L. Bigot, G. Bouwmans, Y. Quiquempois, M. Douay, and Y. Jaouen, "Ytterbium-doped solid core photonic bandgap fiber for laser operation around 980 nm," Appl. Phys. Lett. 92, 061113 (2008).
[CrossRef]

IEEE J. Quantum Electron.

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, "Ytterbium-Doped Fiber Amplifiers," IEEE J. Quantum Electron. 33, 1049-1056 (1997).
[CrossRef]

Opt. Commun.

Y. Wang, C. Q. Xu, and H. Po, "Analysis of Raman and thermal effects in kilowatt fiber lasers," Opt. Commun. 242, 487-502 (2004).
[CrossRef]

Opt. Express

Opt. Lett.

Other

D. B. S. Soh, C. Codemard, J. K. Sahu, J. Nilsson, V. Philippov, C. Alegria, and Y. Jeong, "A 4.3 W 977 nm ytterbium-doped jacketed-air-clad fiber amplifier," in Advanced Solid-State Photonics, OSA Technical Digest (Optical Society of America, 2004), paper MA3.

L. A. Zenteno, J. D. Minelly, M. Dejneka, and S. Crigler, "0.65 W single-mode Yb-fiber laser at 980 nm pumped by 1.1 W Nd:YAG," in Advanced Solid State Lasers, OSA Technical Digest Series (Optical Society of America, 2000), paper MD7.

L. B. Fu, M. Ibsen, D. J. Richardson, and D. N. Payne, "Three-level fiber DFB laser at 980 nm," in Proceedings of the Optical Fiber Communication Conference (2004).

F. Röser, D. N. Schimpf, C. Jauregui, J. Limpert, and A. Tünnermann, "45 W 980 nm single transverse mode Yb-doped fiber laser," in 3rd EPS-QEOD Europhoton Conference, paper TUoC.2 (Paris, 2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Simulation results for the amplified spontaneous emission spectra in (a) forward and (b) backward propagating direction for different pump levels; (c) numerical results for corresponding inversion distributions along the fiber

Fig. 2.
Fig. 2.

Simulated spectrum of the laser output at maximum pump power

Fig. 3.
Fig. 3.

Pump power and inversion distribution for single pass (solid) and double pass (dashed) pump

Fig. 4.
Fig. 4.

Experimental 980 nm laser setup, DM - dicroic mirror

Fig. 5.
Fig. 5.

Measured backward ASE output at different pump power levels

Fig. 6.
Fig. 6.

Spectrum at highest output power; inset shows linear zoom in 980 nm region (0.1 nm resolution)

Fig. 7.
Fig. 7.

Measured output power versus launched pump power for single pass (black) and double pass (red) pump configuration

Fig. 8.
Fig. 8.

Measured M2 values for different output powers

Fig. 9.
Fig. 9.

Intensity profile evolution for different output powers

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

N = N 1 + N 2
N 2 τ = Γ pump λ pump h c A [ σ a ( λ pump ) N 1 σ e ( λ pump ) N 2 ] ( I pump + + I pump ) A eff pump +
i = 1 M Γ s i λ s i h cA [ σ a ( λ s i ) N 1 σ e ( λ s i ) N 2 ] ( I s i + + I s i ) A eff
d I pump ± d z = Γ pump [ σ a ( λ pump ) N 1 σ e ( λ pump ) N 2 ] · I pump ± α pump I pump ±
d I s i ± d z = Γ s [ σ a ( λ s i ) N 1 σ e ( λ s i ) N 2 ] · I s i ± α s i I s i ± ± 2 σ e ( λ s i ) N 2 A eff · h c 2 λ s i 3 Δ λ s
I pump + ( 0 ) = η 1 · ( 1 R 1 ( λ pump ) ) P pump input A eff pump + R 1 ( λ pump ) · I pump ( 0 )
I pump ( L ) = η 2 · ( 1 R 2 ( λ pump ) ) P pump 2 input A eff pump + R 2 ( λ pump ) · I pump + ( L )
I s i + ( 0 ) = R 1 ( λ s i ) · I s i ( 0 )
I s i ( L ) = R 2 ( λ s i ) · I s i + ( L )

Metrics