Abstract

SiO2-based hybrid diffractive-refractive microlenses were fabricated by femtosecond laser lithography-assisted micromachining, which is a combined process of nonlinear lithography and plasma etching. The high-aspect-ratio patterns of resist were formed by laser exposure without translating the laser spot. By scanning this rod three-dimensionally, micro-Fresnel lens patterns were written directly inside resists on the convex lenses. Then, the resist patterns were transferred to the underlying lenses by CHF3 plasma. We obtained SiO2 nonplanar structures with smooth surfaces. This hybridization shifted the focal length of the lens by 216 µm, which was consistent with theoretical value.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Stone and N. George, "Hybrid diffractive-refractive lenses and achromats," Appl. Opt. 27, 2960-2971 (1988).
    [CrossRef] [PubMed]
  2. P. Wu, Z. Liu, J. J. Yang, A. Flores, and M. R. Wang, "Wavelength-multiplexed submicron holograms for disk-compatible data storage," Opt. Express 15, 17798-17804 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-26-17798.
    [CrossRef] [PubMed]
  3. D. Radtke and U. D. Zeitner, "Laser-lithography on non-planar surfaces," Opt. Express 15, 1167-1174 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-3-1167.
    [CrossRef] [PubMed]
  4. V. K. Singh, M. Sasaki, K. Hane, Y. Watanabe, H. Takamatsu, M. Kawakita, and H. Hayashi, "Deposition of thin and uniform photoresist on three-dimensional structures using fast �?ow in spray coating," J. Micromech. Microeng. 15, 2339-2345 (2005).
    [CrossRef]
  5. V. K. Singh, M. Sasaki, and K. Hane, "Angled exposure method for pattering on three-dimensional structures," Jpn. J. Appl. Phys. 46, 6449-6453 (2007).
    [CrossRef]
  6. K. Takada, H.-B. Sun, and S. Kawata, "Improved spatial resolution and surface roughness in photopolymerization-based nanowriting," Appl. Phys. Lett. 86, 071122 (2005).
    [CrossRef]
  7. S. Kawata, H.-B. Sun, T. Tanaka, and K. Takada, "Finer features for functional microdevices," Nature 412, 697-698 (2001).
    [CrossRef] [PubMed]
  8. S. Maruo, O. Nakamura, and S. Kawata, "Three-dimensional microfabrication with two-photon-absorbed photopolymerization," Opt. Lett. 22, 132-134 (1997).
    [CrossRef] [PubMed]
  9. J. Serbin, A. Egbert, A. Ostendorf, and B. N. Chichkov, "Femtosecond laser-induced two-photon polymerization of inorganic-organic hybrid materials for applications in photonics," Opt. Lett. 28, 301-303 (2003).
    [CrossRef] [PubMed]
  10. K. K. Seet, V. Mizeikis, S. Matsuo, S. Juodkazis, and H. Misawa, "Three-dimensional spiral-architecture photonic crystals obtained by direct laser writing," Adv. Mater. 17, 541-545 (2005).
    [CrossRef]
  11. S. Maruo, K. Ikuta, and H. Korogi, "Submicron manipulation tools driven by light in a liquid," Appl. Phys. Lett. 82, 133-135 (2003).
    [CrossRef]
  12. S. Maruo and K. Ikuta, "Three-dimensional microfabrication by use of single-photon-absorbed polymerization," Appl. Phys. Lett. 19, 2656-2658 (2000).
    [CrossRef]
  13. A. S. Kewitsch and A. Yariv, "Self-focusing and self-trapping of optical beams upon photopolymerization," Opt. Lett. 21, 24-26 (1996).
    [CrossRef] [PubMed]
  14. S. Shoji and S. Kawata, "Optically induced growth of fiber patterns into a photopolymerizable resin," Appl. Phys. Lett. 75, 737-739 (1999).
    [CrossRef]
  15. K. K. Seet, S. Juodkazis, V. Jarutis, and H. Misawa, "Feature-size reduction of photopolymerized structures by femtosecond optical curing of SU-8," Appl. Phys. Lett. 89, 024106 (2006).
    [CrossRef]
  16. S. Matsuo, T. Miyamoto, T. Tomita, and S. Hashimoto, "Applications of a microlens array and a photomask to the laser microfabrication of a periodic photopolymer rod array," Appl. Opt. 46, 8264-8267 (2007).
    [CrossRef] [PubMed]
  17. M. Rossi, R. E. Kunz, and H. P. Herzig, "Refractive and diffractive properties of planar micro-optical elements," Appl. Opt. 34, 5996-6007 (1995).
    [CrossRef] [PubMed]

2007

2006

K. K. Seet, S. Juodkazis, V. Jarutis, and H. Misawa, "Feature-size reduction of photopolymerized structures by femtosecond optical curing of SU-8," Appl. Phys. Lett. 89, 024106 (2006).
[CrossRef]

2005

K. K. Seet, V. Mizeikis, S. Matsuo, S. Juodkazis, and H. Misawa, "Three-dimensional spiral-architecture photonic crystals obtained by direct laser writing," Adv. Mater. 17, 541-545 (2005).
[CrossRef]

V. K. Singh, M. Sasaki, K. Hane, Y. Watanabe, H. Takamatsu, M. Kawakita, and H. Hayashi, "Deposition of thin and uniform photoresist on three-dimensional structures using fast �?ow in spray coating," J. Micromech. Microeng. 15, 2339-2345 (2005).
[CrossRef]

K. Takada, H.-B. Sun, and S. Kawata, "Improved spatial resolution and surface roughness in photopolymerization-based nanowriting," Appl. Phys. Lett. 86, 071122 (2005).
[CrossRef]

2003

2001

S. Kawata, H.-B. Sun, T. Tanaka, and K. Takada, "Finer features for functional microdevices," Nature 412, 697-698 (2001).
[CrossRef] [PubMed]

2000

S. Maruo and K. Ikuta, "Three-dimensional microfabrication by use of single-photon-absorbed polymerization," Appl. Phys. Lett. 19, 2656-2658 (2000).
[CrossRef]

1999

S. Shoji and S. Kawata, "Optically induced growth of fiber patterns into a photopolymerizable resin," Appl. Phys. Lett. 75, 737-739 (1999).
[CrossRef]

1997

1996

1995

1988

Chichkov, B. N.

Egbert, A.

Flores, A.

George, N.

Hane, K.

V. K. Singh, M. Sasaki, and K. Hane, "Angled exposure method for pattering on three-dimensional structures," Jpn. J. Appl. Phys. 46, 6449-6453 (2007).
[CrossRef]

V. K. Singh, M. Sasaki, K. Hane, Y. Watanabe, H. Takamatsu, M. Kawakita, and H. Hayashi, "Deposition of thin and uniform photoresist on three-dimensional structures using fast �?ow in spray coating," J. Micromech. Microeng. 15, 2339-2345 (2005).
[CrossRef]

Hashimoto, S.

Hayashi, H.

V. K. Singh, M. Sasaki, K. Hane, Y. Watanabe, H. Takamatsu, M. Kawakita, and H. Hayashi, "Deposition of thin and uniform photoresist on three-dimensional structures using fast �?ow in spray coating," J. Micromech. Microeng. 15, 2339-2345 (2005).
[CrossRef]

Herzig, H. P.

Ikuta, K.

S. Maruo, K. Ikuta, and H. Korogi, "Submicron manipulation tools driven by light in a liquid," Appl. Phys. Lett. 82, 133-135 (2003).
[CrossRef]

S. Maruo and K. Ikuta, "Three-dimensional microfabrication by use of single-photon-absorbed polymerization," Appl. Phys. Lett. 19, 2656-2658 (2000).
[CrossRef]

Jarutis, V.

K. K. Seet, S. Juodkazis, V. Jarutis, and H. Misawa, "Feature-size reduction of photopolymerized structures by femtosecond optical curing of SU-8," Appl. Phys. Lett. 89, 024106 (2006).
[CrossRef]

Juodkazis, S.

K. K. Seet, S. Juodkazis, V. Jarutis, and H. Misawa, "Feature-size reduction of photopolymerized structures by femtosecond optical curing of SU-8," Appl. Phys. Lett. 89, 024106 (2006).
[CrossRef]

K. K. Seet, V. Mizeikis, S. Matsuo, S. Juodkazis, and H. Misawa, "Three-dimensional spiral-architecture photonic crystals obtained by direct laser writing," Adv. Mater. 17, 541-545 (2005).
[CrossRef]

Kawakita, M.

V. K. Singh, M. Sasaki, K. Hane, Y. Watanabe, H. Takamatsu, M. Kawakita, and H. Hayashi, "Deposition of thin and uniform photoresist on three-dimensional structures using fast �?ow in spray coating," J. Micromech. Microeng. 15, 2339-2345 (2005).
[CrossRef]

Kawata, S.

K. Takada, H.-B. Sun, and S. Kawata, "Improved spatial resolution and surface roughness in photopolymerization-based nanowriting," Appl. Phys. Lett. 86, 071122 (2005).
[CrossRef]

S. Kawata, H.-B. Sun, T. Tanaka, and K. Takada, "Finer features for functional microdevices," Nature 412, 697-698 (2001).
[CrossRef] [PubMed]

S. Shoji and S. Kawata, "Optically induced growth of fiber patterns into a photopolymerizable resin," Appl. Phys. Lett. 75, 737-739 (1999).
[CrossRef]

S. Maruo, O. Nakamura, and S. Kawata, "Three-dimensional microfabrication with two-photon-absorbed photopolymerization," Opt. Lett. 22, 132-134 (1997).
[CrossRef] [PubMed]

Kewitsch, A. S.

Korogi, H.

S. Maruo, K. Ikuta, and H. Korogi, "Submicron manipulation tools driven by light in a liquid," Appl. Phys. Lett. 82, 133-135 (2003).
[CrossRef]

Kunz, R. E.

Liu, Z.

Maruo, S.

S. Maruo, K. Ikuta, and H. Korogi, "Submicron manipulation tools driven by light in a liquid," Appl. Phys. Lett. 82, 133-135 (2003).
[CrossRef]

S. Maruo and K. Ikuta, "Three-dimensional microfabrication by use of single-photon-absorbed polymerization," Appl. Phys. Lett. 19, 2656-2658 (2000).
[CrossRef]

S. Maruo, O. Nakamura, and S. Kawata, "Three-dimensional microfabrication with two-photon-absorbed photopolymerization," Opt. Lett. 22, 132-134 (1997).
[CrossRef] [PubMed]

Matsuo, S.

S. Matsuo, T. Miyamoto, T. Tomita, and S. Hashimoto, "Applications of a microlens array and a photomask to the laser microfabrication of a periodic photopolymer rod array," Appl. Opt. 46, 8264-8267 (2007).
[CrossRef] [PubMed]

K. K. Seet, V. Mizeikis, S. Matsuo, S. Juodkazis, and H. Misawa, "Three-dimensional spiral-architecture photonic crystals obtained by direct laser writing," Adv. Mater. 17, 541-545 (2005).
[CrossRef]

Misawa, H.

K. K. Seet, S. Juodkazis, V. Jarutis, and H. Misawa, "Feature-size reduction of photopolymerized structures by femtosecond optical curing of SU-8," Appl. Phys. Lett. 89, 024106 (2006).
[CrossRef]

K. K. Seet, V. Mizeikis, S. Matsuo, S. Juodkazis, and H. Misawa, "Three-dimensional spiral-architecture photonic crystals obtained by direct laser writing," Adv. Mater. 17, 541-545 (2005).
[CrossRef]

Miyamoto, T.

Mizeikis, V.

K. K. Seet, V. Mizeikis, S. Matsuo, S. Juodkazis, and H. Misawa, "Three-dimensional spiral-architecture photonic crystals obtained by direct laser writing," Adv. Mater. 17, 541-545 (2005).
[CrossRef]

Nakamura, O.

Ostendorf, A.

Radtke, D.

Rossi, M.

Sasaki, M.

V. K. Singh, M. Sasaki, and K. Hane, "Angled exposure method for pattering on three-dimensional structures," Jpn. J. Appl. Phys. 46, 6449-6453 (2007).
[CrossRef]

V. K. Singh, M. Sasaki, K. Hane, Y. Watanabe, H. Takamatsu, M. Kawakita, and H. Hayashi, "Deposition of thin and uniform photoresist on three-dimensional structures using fast �?ow in spray coating," J. Micromech. Microeng. 15, 2339-2345 (2005).
[CrossRef]

Seet, K. K.

K. K. Seet, S. Juodkazis, V. Jarutis, and H. Misawa, "Feature-size reduction of photopolymerized structures by femtosecond optical curing of SU-8," Appl. Phys. Lett. 89, 024106 (2006).
[CrossRef]

K. K. Seet, V. Mizeikis, S. Matsuo, S. Juodkazis, and H. Misawa, "Three-dimensional spiral-architecture photonic crystals obtained by direct laser writing," Adv. Mater. 17, 541-545 (2005).
[CrossRef]

Serbin, J.

Shoji, S.

S. Shoji and S. Kawata, "Optically induced growth of fiber patterns into a photopolymerizable resin," Appl. Phys. Lett. 75, 737-739 (1999).
[CrossRef]

Singh, V. K.

V. K. Singh, M. Sasaki, and K. Hane, "Angled exposure method for pattering on three-dimensional structures," Jpn. J. Appl. Phys. 46, 6449-6453 (2007).
[CrossRef]

V. K. Singh, M. Sasaki, K. Hane, Y. Watanabe, H. Takamatsu, M. Kawakita, and H. Hayashi, "Deposition of thin and uniform photoresist on three-dimensional structures using fast �?ow in spray coating," J. Micromech. Microeng. 15, 2339-2345 (2005).
[CrossRef]

Stone, T.

Sun, H.-B.

K. Takada, H.-B. Sun, and S. Kawata, "Improved spatial resolution and surface roughness in photopolymerization-based nanowriting," Appl. Phys. Lett. 86, 071122 (2005).
[CrossRef]

S. Kawata, H.-B. Sun, T. Tanaka, and K. Takada, "Finer features for functional microdevices," Nature 412, 697-698 (2001).
[CrossRef] [PubMed]

Takada, K.

K. Takada, H.-B. Sun, and S. Kawata, "Improved spatial resolution and surface roughness in photopolymerization-based nanowriting," Appl. Phys. Lett. 86, 071122 (2005).
[CrossRef]

S. Kawata, H.-B. Sun, T. Tanaka, and K. Takada, "Finer features for functional microdevices," Nature 412, 697-698 (2001).
[CrossRef] [PubMed]

Takamatsu, H.

V. K. Singh, M. Sasaki, K. Hane, Y. Watanabe, H. Takamatsu, M. Kawakita, and H. Hayashi, "Deposition of thin and uniform photoresist on three-dimensional structures using fast �?ow in spray coating," J. Micromech. Microeng. 15, 2339-2345 (2005).
[CrossRef]

Tanaka, T.

S. Kawata, H.-B. Sun, T. Tanaka, and K. Takada, "Finer features for functional microdevices," Nature 412, 697-698 (2001).
[CrossRef] [PubMed]

Tomita, T.

Wang, M. R.

Watanabe, Y.

V. K. Singh, M. Sasaki, K. Hane, Y. Watanabe, H. Takamatsu, M. Kawakita, and H. Hayashi, "Deposition of thin and uniform photoresist on three-dimensional structures using fast �?ow in spray coating," J. Micromech. Microeng. 15, 2339-2345 (2005).
[CrossRef]

Wu, P.

Yang, J. J.

Yariv, A.

Zeitner, U. D.

Adv. Mater.

K. K. Seet, V. Mizeikis, S. Matsuo, S. Juodkazis, and H. Misawa, "Three-dimensional spiral-architecture photonic crystals obtained by direct laser writing," Adv. Mater. 17, 541-545 (2005).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

S. Maruo, K. Ikuta, and H. Korogi, "Submicron manipulation tools driven by light in a liquid," Appl. Phys. Lett. 82, 133-135 (2003).
[CrossRef]

S. Maruo and K. Ikuta, "Three-dimensional microfabrication by use of single-photon-absorbed polymerization," Appl. Phys. Lett. 19, 2656-2658 (2000).
[CrossRef]

S. Shoji and S. Kawata, "Optically induced growth of fiber patterns into a photopolymerizable resin," Appl. Phys. Lett. 75, 737-739 (1999).
[CrossRef]

K. K. Seet, S. Juodkazis, V. Jarutis, and H. Misawa, "Feature-size reduction of photopolymerized structures by femtosecond optical curing of SU-8," Appl. Phys. Lett. 89, 024106 (2006).
[CrossRef]

K. Takada, H.-B. Sun, and S. Kawata, "Improved spatial resolution and surface roughness in photopolymerization-based nanowriting," Appl. Phys. Lett. 86, 071122 (2005).
[CrossRef]

J. Micromech. Microeng.

V. K. Singh, M. Sasaki, K. Hane, Y. Watanabe, H. Takamatsu, M. Kawakita, and H. Hayashi, "Deposition of thin and uniform photoresist on three-dimensional structures using fast �?ow in spray coating," J. Micromech. Microeng. 15, 2339-2345 (2005).
[CrossRef]

Jpn. J. Appl. Phys.

V. K. Singh, M. Sasaki, and K. Hane, "Angled exposure method for pattering on three-dimensional structures," Jpn. J. Appl. Phys. 46, 6449-6453 (2007).
[CrossRef]

Nature

S. Kawata, H.-B. Sun, T. Tanaka, and K. Takada, "Finer features for functional microdevices," Nature 412, 697-698 (2001).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Schematic illustration of femtosecond laser lithography-assisted micromachining.

Fig. 2.
Fig. 2.

SEM image of filamentary rod patterns of resist formed by femtosecond laser exposure. The z-position of the focal spot for writing each pattern is indicated. The laser was not translated along the z-axis during the writing process.

Fig. 3.
Fig. 3.

Dependence of the z-position of the focal spot on the filament height. The dotted line marks the resist surface before development.

Fig. 4.
Fig. 4.

Schematic illustration of laser writing procedures for the formation of micro-Fresnel lens patterns inside the resist on convex lenses. The Fresnel lens consists of a series of concentric circles of different radii and heights. The patterns were written by scanning the laser-induced rod three-dimensionally inside the resist.

Fig. 5.
Fig. 5.

SEM images of (a) overview, (b) enlarged view of a SiO2-based hybrid lens, and (c) resist structures before the pattern transfer.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

1 f h = 1 f m + 1 f F ,
r m m f F λ 0 ,

Metrics