Abstract

We report a novel high-quality (Q) factor optical resonator using a subwavelength high-contrast grating (HCG) with in-plane resonance and surface-normal emission. We show that the in-plane resonance is manifested is by a sharp, asymmetric lineshape in the surface-normal reflectivity spectrum. The simulated Q factor of the resonator is shown to be as high as 500,000. A HCG-resonator was fabricated with an InGaAs quantum well active region sandwiched in-between AlGaAs layers and a Q factor of >14,000 was inferred from the photoluminescence linewidth of 0.07 nm, which is currently limited by instrumentation. The novel HCG resonator design will serve as a potential platform for many devices including surface emitting lasers, optical filters, and biological or chemical sensors.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D.  Armani, T.  Kippenberg, S.  Spillane, and K.  Vahala, "Ultra-high-Q toroid microcavity on a chip," Nature  421, 925-928 (2003).
    [CrossRef] [PubMed]
  2. T.  Asano, B.-S.  Song, Y.  Akahane, and S.  Noda, "Ultrahigh-Q nanocavities in two-dimensional photonic crystal slabs," IEEE J. Sel. Top. Quantum Electron.  12, 1121-1134 (2006).
  3. D. Ohnishi, T. Okano, M. Imada, and S. Noda, "Room temperature continuous wave operation of a surface-emitting two-dimensional photonic crystal diode laser," Opt. Express 12, 1562-1568 (2004).
    [CrossRef] [PubMed]
  4. W.-H. Chang, W.-Y. Chen, H.-S. Chang, T.-P. Hsieh, J.-I. Chyi, and T.-M. Hsu, "Efficient single-photon sources based on low-density quantum dots in photonic-crystal nanocavities," Phys. Rev. Lett. 96, 117401-1-117401-4 (2006).
    [CrossRef]
  5. H. Takano, Y. Akahane, T. Asano, and S. Noda, "In-plane-type channel drop filter in a two-dimensional photonic crystal slab," Appl. Phys. Lett. 84, 2226-2228 (2004).
    [CrossRef]
  6. E. Chow, A. Grot, L. Mirkarimi, M. Sigalas, and G. Girolami, "Ultracompact biochemical sensor built with two-dimensional photonic crystal microcavity," Opt. Lett. 29, 1093-1095 (2004).
    [CrossRef] [PubMed]
  7. J. Niehusmann, A. Vörckel, P. H. Bolivar, T. Wahlbrink, W. Henschel, and H. Kurz, "Ultrahigh-quality-factor silicon-on-insulator microring resonator," Opt. Lett. 29, 2861-2863 (2004).
    [CrossRef]
  8. A. Loffler, J. Reithmaier, G. Sek, C. Hofmann, S. Reitzenstein, M. Kamp, and A. Forchel, "Semiconductor quantum dot microcavity pillars with high-quality factors and enlarged dot dimensions," Appl. Phys. Lett. 86, 111105 (2005).
    [CrossRef]
  9. H. A.  Haus and Y.  Lai, "Narrow-band distributed feedback reflector design," J. Lightwave Technol.  9, 754-760 (1991).
    [CrossRef]
  10. R. Magnusson and S. Wang, "New principle for optical filters," Appl. Phys. Lett. 61, 1022-1024 (1992).
    [CrossRef]
  11. S. Peng and G. M. Morris, "Experimental demonstration of resonant anomalies in diffraction from two-dimensional gratings," Opt. Lett. 21, 549-551 (1996).
    [CrossRef] [PubMed]
  12. M. Neviere, R. Petit, and M. Cadilhac, "About the theory of optical crating coupler-waveguide systems," Opt. Commun. 8, 113-117 (1973).
    [CrossRef]
  13. C. F. R. Mateus, M. C. Y. Huang, J. E. Foley, P. R. Beatty, P. Li, B. T. Cunningham, and C. J. Chang-Hasnain, "Compact label-free biosensor using VCSEL-based measurement system," IEEE Photon. Technol. Lett. 16, 1712 (2004).
    [CrossRef]
  14. M. Lu, S. S. Choi, C. J. Wagner, J. G. Eden, and B. T. Cunningham, "Label free biosensor incorporating a replica-molded, vertically emitting distributed feedback laser," Appl. Phys. Lett. 92, 261502 (2008).
    [CrossRef]
  15. C. F. R. Mateus, M. C. Y. Huang, D. Yunfei, A. R. Neureuther, and C. J. Chang-Hasnain, "Ultrabroadband mirror using low-index cladded subwavelength grating," IEEE Photon. Technol. Lett. 16, 518-520 (2004).
    [CrossRef]
  16. M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, "A surface-emitting laser incorporating a high-index-contrast subwavelength grating," Nat. Photonics 1, 119-122 (2007).
    [CrossRef]
  17. L. Ferrier, S. Boutami, F. Mandorlo, X. Letartre, P. Rojo Romeo, P. Viktorovitch,P. Gilet, B. B. Bakir, P. Grosse, J.-M. Fedeli, and A. Chelnokov, "Vertical microcavities based on photonic crystal mirrors for III-V/Si integrated microlasers," Proc. SPIE. 6989, 69890W (2008).
    [CrossRef]
  18. M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, "A nanoelectromechanical tunable laser," Nat. Photonics 2, 180-184 (2008).
    [CrossRef]
  19. M. G. Moharam, and T. K. Gaylord, "Rigorous coupled-wave analysis of planar-grating diffraction," J. Opt. Soc. Am. 71, 811-818 (1981).
    [CrossRef]
  20. S. H. Fan, W. Suh, and J. D. Joannopoulos, "Temporal coupled-mode theory for the Fano resonance in optical resonators," J. Opt. Soc. Am. A 20, 569-572 (2003).
    [CrossRef]
  21. J. P. Kim and A. M. Sarangan, "Temperature-dependent Sellmeier equation for the refractive index of AlxGa1-xAs," Opt. Lett. 32, 536 (2007).
    [CrossRef] [PubMed]

2008 (3)

M. Lu, S. S. Choi, C. J. Wagner, J. G. Eden, and B. T. Cunningham, "Label free biosensor incorporating a replica-molded, vertically emitting distributed feedback laser," Appl. Phys. Lett. 92, 261502 (2008).
[CrossRef]

L. Ferrier, S. Boutami, F. Mandorlo, X. Letartre, P. Rojo Romeo, P. Viktorovitch,P. Gilet, B. B. Bakir, P. Grosse, J.-M. Fedeli, and A. Chelnokov, "Vertical microcavities based on photonic crystal mirrors for III-V/Si integrated microlasers," Proc. SPIE. 6989, 69890W (2008).
[CrossRef]

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, "A nanoelectromechanical tunable laser," Nat. Photonics 2, 180-184 (2008).
[CrossRef]

2007 (2)

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, "A surface-emitting laser incorporating a high-index-contrast subwavelength grating," Nat. Photonics 1, 119-122 (2007).
[CrossRef]

J. P. Kim and A. M. Sarangan, "Temperature-dependent Sellmeier equation for the refractive index of AlxGa1-xAs," Opt. Lett. 32, 536 (2007).
[CrossRef] [PubMed]

2006 (1)

T.  Asano, B.-S.  Song, Y.  Akahane, and S.  Noda, "Ultrahigh-Q nanocavities in two-dimensional photonic crystal slabs," IEEE J. Sel. Top. Quantum Electron.  12, 1121-1134 (2006).

2005 (1)

A. Loffler, J. Reithmaier, G. Sek, C. Hofmann, S. Reitzenstein, M. Kamp, and A. Forchel, "Semiconductor quantum dot microcavity pillars with high-quality factors and enlarged dot dimensions," Appl. Phys. Lett. 86, 111105 (2005).
[CrossRef]

2004 (6)

D. Ohnishi, T. Okano, M. Imada, and S. Noda, "Room temperature continuous wave operation of a surface-emitting two-dimensional photonic crystal diode laser," Opt. Express 12, 1562-1568 (2004).
[CrossRef] [PubMed]

H. Takano, Y. Akahane, T. Asano, and S. Noda, "In-plane-type channel drop filter in a two-dimensional photonic crystal slab," Appl. Phys. Lett. 84, 2226-2228 (2004).
[CrossRef]

E. Chow, A. Grot, L. Mirkarimi, M. Sigalas, and G. Girolami, "Ultracompact biochemical sensor built with two-dimensional photonic crystal microcavity," Opt. Lett. 29, 1093-1095 (2004).
[CrossRef] [PubMed]

J. Niehusmann, A. Vörckel, P. H. Bolivar, T. Wahlbrink, W. Henschel, and H. Kurz, "Ultrahigh-quality-factor silicon-on-insulator microring resonator," Opt. Lett. 29, 2861-2863 (2004).
[CrossRef]

C. F. R. Mateus, M. C. Y. Huang, J. E. Foley, P. R. Beatty, P. Li, B. T. Cunningham, and C. J. Chang-Hasnain, "Compact label-free biosensor using VCSEL-based measurement system," IEEE Photon. Technol. Lett. 16, 1712 (2004).
[CrossRef]

C. F. R. Mateus, M. C. Y. Huang, D. Yunfei, A. R. Neureuther, and C. J. Chang-Hasnain, "Ultrabroadband mirror using low-index cladded subwavelength grating," IEEE Photon. Technol. Lett. 16, 518-520 (2004).
[CrossRef]

2003 (2)

D.  Armani, T.  Kippenberg, S.  Spillane, and K.  Vahala, "Ultra-high-Q toroid microcavity on a chip," Nature  421, 925-928 (2003).
[CrossRef] [PubMed]

S. H. Fan, W. Suh, and J. D. Joannopoulos, "Temporal coupled-mode theory for the Fano resonance in optical resonators," J. Opt. Soc. Am. A 20, 569-572 (2003).
[CrossRef]

1996 (1)

1992 (1)

R. Magnusson and S. Wang, "New principle for optical filters," Appl. Phys. Lett. 61, 1022-1024 (1992).
[CrossRef]

1991 (1)

H. A.  Haus and Y.  Lai, "Narrow-band distributed feedback reflector design," J. Lightwave Technol.  9, 754-760 (1991).
[CrossRef]

1981 (1)

1973 (1)

M. Neviere, R. Petit, and M. Cadilhac, "About the theory of optical crating coupler-waveguide systems," Opt. Commun. 8, 113-117 (1973).
[CrossRef]

Akahane, Y.

T.  Asano, B.-S.  Song, Y.  Akahane, and S.  Noda, "Ultrahigh-Q nanocavities in two-dimensional photonic crystal slabs," IEEE J. Sel. Top. Quantum Electron.  12, 1121-1134 (2006).

H. Takano, Y. Akahane, T. Asano, and S. Noda, "In-plane-type channel drop filter in a two-dimensional photonic crystal slab," Appl. Phys. Lett. 84, 2226-2228 (2004).
[CrossRef]

Armani, D.

D.  Armani, T.  Kippenberg, S.  Spillane, and K.  Vahala, "Ultra-high-Q toroid microcavity on a chip," Nature  421, 925-928 (2003).
[CrossRef] [PubMed]

Asano, T.

T.  Asano, B.-S.  Song, Y.  Akahane, and S.  Noda, "Ultrahigh-Q nanocavities in two-dimensional photonic crystal slabs," IEEE J. Sel. Top. Quantum Electron.  12, 1121-1134 (2006).

H. Takano, Y. Akahane, T. Asano, and S. Noda, "In-plane-type channel drop filter in a two-dimensional photonic crystal slab," Appl. Phys. Lett. 84, 2226-2228 (2004).
[CrossRef]

Bakir, B. B.

L. Ferrier, S. Boutami, F. Mandorlo, X. Letartre, P. Rojo Romeo, P. Viktorovitch,P. Gilet, B. B. Bakir, P. Grosse, J.-M. Fedeli, and A. Chelnokov, "Vertical microcavities based on photonic crystal mirrors for III-V/Si integrated microlasers," Proc. SPIE. 6989, 69890W (2008).
[CrossRef]

Beatty, P. R.

C. F. R. Mateus, M. C. Y. Huang, J. E. Foley, P. R. Beatty, P. Li, B. T. Cunningham, and C. J. Chang-Hasnain, "Compact label-free biosensor using VCSEL-based measurement system," IEEE Photon. Technol. Lett. 16, 1712 (2004).
[CrossRef]

Bolivar, P. H.

Boutami, S.

L. Ferrier, S. Boutami, F. Mandorlo, X. Letartre, P. Rojo Romeo, P. Viktorovitch,P. Gilet, B. B. Bakir, P. Grosse, J.-M. Fedeli, and A. Chelnokov, "Vertical microcavities based on photonic crystal mirrors for III-V/Si integrated microlasers," Proc. SPIE. 6989, 69890W (2008).
[CrossRef]

Cadilhac, M.

M. Neviere, R. Petit, and M. Cadilhac, "About the theory of optical crating coupler-waveguide systems," Opt. Commun. 8, 113-117 (1973).
[CrossRef]

Chang-Hasnain, C. J.

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, "A nanoelectromechanical tunable laser," Nat. Photonics 2, 180-184 (2008).
[CrossRef]

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, "A surface-emitting laser incorporating a high-index-contrast subwavelength grating," Nat. Photonics 1, 119-122 (2007).
[CrossRef]

C. F. R. Mateus, M. C. Y. Huang, D. Yunfei, A. R. Neureuther, and C. J. Chang-Hasnain, "Ultrabroadband mirror using low-index cladded subwavelength grating," IEEE Photon. Technol. Lett. 16, 518-520 (2004).
[CrossRef]

C. F. R. Mateus, M. C. Y. Huang, J. E. Foley, P. R. Beatty, P. Li, B. T. Cunningham, and C. J. Chang-Hasnain, "Compact label-free biosensor using VCSEL-based measurement system," IEEE Photon. Technol. Lett. 16, 1712 (2004).
[CrossRef]

Chelnokov, A.

L. Ferrier, S. Boutami, F. Mandorlo, X. Letartre, P. Rojo Romeo, P. Viktorovitch,P. Gilet, B. B. Bakir, P. Grosse, J.-M. Fedeli, and A. Chelnokov, "Vertical microcavities based on photonic crystal mirrors for III-V/Si integrated microlasers," Proc. SPIE. 6989, 69890W (2008).
[CrossRef]

Choi, S. S.

M. Lu, S. S. Choi, C. J. Wagner, J. G. Eden, and B. T. Cunningham, "Label free biosensor incorporating a replica-molded, vertically emitting distributed feedback laser," Appl. Phys. Lett. 92, 261502 (2008).
[CrossRef]

Chow, E.

Cunningham, B. T.

M. Lu, S. S. Choi, C. J. Wagner, J. G. Eden, and B. T. Cunningham, "Label free biosensor incorporating a replica-molded, vertically emitting distributed feedback laser," Appl. Phys. Lett. 92, 261502 (2008).
[CrossRef]

C. F. R. Mateus, M. C. Y. Huang, J. E. Foley, P. R. Beatty, P. Li, B. T. Cunningham, and C. J. Chang-Hasnain, "Compact label-free biosensor using VCSEL-based measurement system," IEEE Photon. Technol. Lett. 16, 1712 (2004).
[CrossRef]

Eden, J. G.

M. Lu, S. S. Choi, C. J. Wagner, J. G. Eden, and B. T. Cunningham, "Label free biosensor incorporating a replica-molded, vertically emitting distributed feedback laser," Appl. Phys. Lett. 92, 261502 (2008).
[CrossRef]

Fan, S. H.

Fedeli, J.-M.

L. Ferrier, S. Boutami, F. Mandorlo, X. Letartre, P. Rojo Romeo, P. Viktorovitch,P. Gilet, B. B. Bakir, P. Grosse, J.-M. Fedeli, and A. Chelnokov, "Vertical microcavities based on photonic crystal mirrors for III-V/Si integrated microlasers," Proc. SPIE. 6989, 69890W (2008).
[CrossRef]

Ferrier, L.

L. Ferrier, S. Boutami, F. Mandorlo, X. Letartre, P. Rojo Romeo, P. Viktorovitch,P. Gilet, B. B. Bakir, P. Grosse, J.-M. Fedeli, and A. Chelnokov, "Vertical microcavities based on photonic crystal mirrors for III-V/Si integrated microlasers," Proc. SPIE. 6989, 69890W (2008).
[CrossRef]

Foley, J. E.

C. F. R. Mateus, M. C. Y. Huang, J. E. Foley, P. R. Beatty, P. Li, B. T. Cunningham, and C. J. Chang-Hasnain, "Compact label-free biosensor using VCSEL-based measurement system," IEEE Photon. Technol. Lett. 16, 1712 (2004).
[CrossRef]

Forchel, A.

A. Loffler, J. Reithmaier, G. Sek, C. Hofmann, S. Reitzenstein, M. Kamp, and A. Forchel, "Semiconductor quantum dot microcavity pillars with high-quality factors and enlarged dot dimensions," Appl. Phys. Lett. 86, 111105 (2005).
[CrossRef]

Gaylord, T. K.

Gilet, P.

L. Ferrier, S. Boutami, F. Mandorlo, X. Letartre, P. Rojo Romeo, P. Viktorovitch,P. Gilet, B. B. Bakir, P. Grosse, J.-M. Fedeli, and A. Chelnokov, "Vertical microcavities based on photonic crystal mirrors for III-V/Si integrated microlasers," Proc. SPIE. 6989, 69890W (2008).
[CrossRef]

Girolami, G.

Grosse, P.

L. Ferrier, S. Boutami, F. Mandorlo, X. Letartre, P. Rojo Romeo, P. Viktorovitch,P. Gilet, B. B. Bakir, P. Grosse, J.-M. Fedeli, and A. Chelnokov, "Vertical microcavities based on photonic crystal mirrors for III-V/Si integrated microlasers," Proc. SPIE. 6989, 69890W (2008).
[CrossRef]

Grot, A.

Haus, H. A.

H. A.  Haus and Y.  Lai, "Narrow-band distributed feedback reflector design," J. Lightwave Technol.  9, 754-760 (1991).
[CrossRef]

Henschel, W.

Hofmann, C.

A. Loffler, J. Reithmaier, G. Sek, C. Hofmann, S. Reitzenstein, M. Kamp, and A. Forchel, "Semiconductor quantum dot microcavity pillars with high-quality factors and enlarged dot dimensions," Appl. Phys. Lett. 86, 111105 (2005).
[CrossRef]

Huang, M. C. Y.

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, "A nanoelectromechanical tunable laser," Nat. Photonics 2, 180-184 (2008).
[CrossRef]

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, "A surface-emitting laser incorporating a high-index-contrast subwavelength grating," Nat. Photonics 1, 119-122 (2007).
[CrossRef]

C. F. R. Mateus, M. C. Y. Huang, D. Yunfei, A. R. Neureuther, and C. J. Chang-Hasnain, "Ultrabroadband mirror using low-index cladded subwavelength grating," IEEE Photon. Technol. Lett. 16, 518-520 (2004).
[CrossRef]

C. F. R. Mateus, M. C. Y. Huang, J. E. Foley, P. R. Beatty, P. Li, B. T. Cunningham, and C. J. Chang-Hasnain, "Compact label-free biosensor using VCSEL-based measurement system," IEEE Photon. Technol. Lett. 16, 1712 (2004).
[CrossRef]

Imada, M.

Joannopoulos, J. D.

Kamp, M.

A. Loffler, J. Reithmaier, G. Sek, C. Hofmann, S. Reitzenstein, M. Kamp, and A. Forchel, "Semiconductor quantum dot microcavity pillars with high-quality factors and enlarged dot dimensions," Appl. Phys. Lett. 86, 111105 (2005).
[CrossRef]

Kim, J. P.

Kippenberg, T.

D.  Armani, T.  Kippenberg, S.  Spillane, and K.  Vahala, "Ultra-high-Q toroid microcavity on a chip," Nature  421, 925-928 (2003).
[CrossRef] [PubMed]

Kurz, H.

Lai, Y.

H. A.  Haus and Y.  Lai, "Narrow-band distributed feedback reflector design," J. Lightwave Technol.  9, 754-760 (1991).
[CrossRef]

Letartre, X.

L. Ferrier, S. Boutami, F. Mandorlo, X. Letartre, P. Rojo Romeo, P. Viktorovitch,P. Gilet, B. B. Bakir, P. Grosse, J.-M. Fedeli, and A. Chelnokov, "Vertical microcavities based on photonic crystal mirrors for III-V/Si integrated microlasers," Proc. SPIE. 6989, 69890W (2008).
[CrossRef]

Li, P.

C. F. R. Mateus, M. C. Y. Huang, J. E. Foley, P. R. Beatty, P. Li, B. T. Cunningham, and C. J. Chang-Hasnain, "Compact label-free biosensor using VCSEL-based measurement system," IEEE Photon. Technol. Lett. 16, 1712 (2004).
[CrossRef]

Loffler, A.

A. Loffler, J. Reithmaier, G. Sek, C. Hofmann, S. Reitzenstein, M. Kamp, and A. Forchel, "Semiconductor quantum dot microcavity pillars with high-quality factors and enlarged dot dimensions," Appl. Phys. Lett. 86, 111105 (2005).
[CrossRef]

Lu, M.

M. Lu, S. S. Choi, C. J. Wagner, J. G. Eden, and B. T. Cunningham, "Label free biosensor incorporating a replica-molded, vertically emitting distributed feedback laser," Appl. Phys. Lett. 92, 261502 (2008).
[CrossRef]

Magnusson, R.

R. Magnusson and S. Wang, "New principle for optical filters," Appl. Phys. Lett. 61, 1022-1024 (1992).
[CrossRef]

Mandorlo, F.

L. Ferrier, S. Boutami, F. Mandorlo, X. Letartre, P. Rojo Romeo, P. Viktorovitch,P. Gilet, B. B. Bakir, P. Grosse, J.-M. Fedeli, and A. Chelnokov, "Vertical microcavities based on photonic crystal mirrors for III-V/Si integrated microlasers," Proc. SPIE. 6989, 69890W (2008).
[CrossRef]

Mateus, C. F. R.

C. F. R. Mateus, M. C. Y. Huang, D. Yunfei, A. R. Neureuther, and C. J. Chang-Hasnain, "Ultrabroadband mirror using low-index cladded subwavelength grating," IEEE Photon. Technol. Lett. 16, 518-520 (2004).
[CrossRef]

C. F. R. Mateus, M. C. Y. Huang, J. E. Foley, P. R. Beatty, P. Li, B. T. Cunningham, and C. J. Chang-Hasnain, "Compact label-free biosensor using VCSEL-based measurement system," IEEE Photon. Technol. Lett. 16, 1712 (2004).
[CrossRef]

Mirkarimi, L.

Moharam, M. G.

Morris, G. M.

Neureuther, A. R.

C. F. R. Mateus, M. C. Y. Huang, D. Yunfei, A. R. Neureuther, and C. J. Chang-Hasnain, "Ultrabroadband mirror using low-index cladded subwavelength grating," IEEE Photon. Technol. Lett. 16, 518-520 (2004).
[CrossRef]

Neviere, M.

M. Neviere, R. Petit, and M. Cadilhac, "About the theory of optical crating coupler-waveguide systems," Opt. Commun. 8, 113-117 (1973).
[CrossRef]

Niehusmann, J.

Noda, S.

T.  Asano, B.-S.  Song, Y.  Akahane, and S.  Noda, "Ultrahigh-Q nanocavities in two-dimensional photonic crystal slabs," IEEE J. Sel. Top. Quantum Electron.  12, 1121-1134 (2006).

H. Takano, Y. Akahane, T. Asano, and S. Noda, "In-plane-type channel drop filter in a two-dimensional photonic crystal slab," Appl. Phys. Lett. 84, 2226-2228 (2004).
[CrossRef]

D. Ohnishi, T. Okano, M. Imada, and S. Noda, "Room temperature continuous wave operation of a surface-emitting two-dimensional photonic crystal diode laser," Opt. Express 12, 1562-1568 (2004).
[CrossRef] [PubMed]

Ohnishi, D.

Okano, T.

Peng, S.

Petit, R.

M. Neviere, R. Petit, and M. Cadilhac, "About the theory of optical crating coupler-waveguide systems," Opt. Commun. 8, 113-117 (1973).
[CrossRef]

Reithmaier, J.

A. Loffler, J. Reithmaier, G. Sek, C. Hofmann, S. Reitzenstein, M. Kamp, and A. Forchel, "Semiconductor quantum dot microcavity pillars with high-quality factors and enlarged dot dimensions," Appl. Phys. Lett. 86, 111105 (2005).
[CrossRef]

Reitzenstein, S.

A. Loffler, J. Reithmaier, G. Sek, C. Hofmann, S. Reitzenstein, M. Kamp, and A. Forchel, "Semiconductor quantum dot microcavity pillars with high-quality factors and enlarged dot dimensions," Appl. Phys. Lett. 86, 111105 (2005).
[CrossRef]

Rojo Romeo, P.

L. Ferrier, S. Boutami, F. Mandorlo, X. Letartre, P. Rojo Romeo, P. Viktorovitch,P. Gilet, B. B. Bakir, P. Grosse, J.-M. Fedeli, and A. Chelnokov, "Vertical microcavities based on photonic crystal mirrors for III-V/Si integrated microlasers," Proc. SPIE. 6989, 69890W (2008).
[CrossRef]

Sarangan, A. M.

Sek, G.

A. Loffler, J. Reithmaier, G. Sek, C. Hofmann, S. Reitzenstein, M. Kamp, and A. Forchel, "Semiconductor quantum dot microcavity pillars with high-quality factors and enlarged dot dimensions," Appl. Phys. Lett. 86, 111105 (2005).
[CrossRef]

Sigalas, M.

Song, B.-S.

T.  Asano, B.-S.  Song, Y.  Akahane, and S.  Noda, "Ultrahigh-Q nanocavities in two-dimensional photonic crystal slabs," IEEE J. Sel. Top. Quantum Electron.  12, 1121-1134 (2006).

Spillane, S.

D.  Armani, T.  Kippenberg, S.  Spillane, and K.  Vahala, "Ultra-high-Q toroid microcavity on a chip," Nature  421, 925-928 (2003).
[CrossRef] [PubMed]

Suh, W.

Takano, H.

H. Takano, Y. Akahane, T. Asano, and S. Noda, "In-plane-type channel drop filter in a two-dimensional photonic crystal slab," Appl. Phys. Lett. 84, 2226-2228 (2004).
[CrossRef]

Vahala, K.

D.  Armani, T.  Kippenberg, S.  Spillane, and K.  Vahala, "Ultra-high-Q toroid microcavity on a chip," Nature  421, 925-928 (2003).
[CrossRef] [PubMed]

Viktorovitch, P.

L. Ferrier, S. Boutami, F. Mandorlo, X. Letartre, P. Rojo Romeo, P. Viktorovitch,P. Gilet, B. B. Bakir, P. Grosse, J.-M. Fedeli, and A. Chelnokov, "Vertical microcavities based on photonic crystal mirrors for III-V/Si integrated microlasers," Proc. SPIE. 6989, 69890W (2008).
[CrossRef]

Vörckel, A.

Wagner, C. J.

M. Lu, S. S. Choi, C. J. Wagner, J. G. Eden, and B. T. Cunningham, "Label free biosensor incorporating a replica-molded, vertically emitting distributed feedback laser," Appl. Phys. Lett. 92, 261502 (2008).
[CrossRef]

Wahlbrink, T.

Wang, S.

R. Magnusson and S. Wang, "New principle for optical filters," Appl. Phys. Lett. 61, 1022-1024 (1992).
[CrossRef]

Yunfei, D.

C. F. R. Mateus, M. C. Y. Huang, D. Yunfei, A. R. Neureuther, and C. J. Chang-Hasnain, "Ultrabroadband mirror using low-index cladded subwavelength grating," IEEE Photon. Technol. Lett. 16, 518-520 (2004).
[CrossRef]

Zhou, Y.

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, "A nanoelectromechanical tunable laser," Nat. Photonics 2, 180-184 (2008).
[CrossRef]

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, "A surface-emitting laser incorporating a high-index-contrast subwavelength grating," Nat. Photonics 1, 119-122 (2007).
[CrossRef]

Appl. Phys. Lett. (4)

H. Takano, Y. Akahane, T. Asano, and S. Noda, "In-plane-type channel drop filter in a two-dimensional photonic crystal slab," Appl. Phys. Lett. 84, 2226-2228 (2004).
[CrossRef]

A. Loffler, J. Reithmaier, G. Sek, C. Hofmann, S. Reitzenstein, M. Kamp, and A. Forchel, "Semiconductor quantum dot microcavity pillars with high-quality factors and enlarged dot dimensions," Appl. Phys. Lett. 86, 111105 (2005).
[CrossRef]

R. Magnusson and S. Wang, "New principle for optical filters," Appl. Phys. Lett. 61, 1022-1024 (1992).
[CrossRef]

M. Lu, S. S. Choi, C. J. Wagner, J. G. Eden, and B. T. Cunningham, "Label free biosensor incorporating a replica-molded, vertically emitting distributed feedback laser," Appl. Phys. Lett. 92, 261502 (2008).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

T.  Asano, B.-S.  Song, Y.  Akahane, and S.  Noda, "Ultrahigh-Q nanocavities in two-dimensional photonic crystal slabs," IEEE J. Sel. Top. Quantum Electron.  12, 1121-1134 (2006).

IEEE Photon. Technol. Lett. (2)

C. F. R. Mateus, M. C. Y. Huang, D. Yunfei, A. R. Neureuther, and C. J. Chang-Hasnain, "Ultrabroadband mirror using low-index cladded subwavelength grating," IEEE Photon. Technol. Lett. 16, 518-520 (2004).
[CrossRef]

C. F. R. Mateus, M. C. Y. Huang, J. E. Foley, P. R. Beatty, P. Li, B. T. Cunningham, and C. J. Chang-Hasnain, "Compact label-free biosensor using VCSEL-based measurement system," IEEE Photon. Technol. Lett. 16, 1712 (2004).
[CrossRef]

J. Lightwave Technol. (1)

H. A.  Haus and Y.  Lai, "Narrow-band distributed feedback reflector design," J. Lightwave Technol.  9, 754-760 (1991).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (1)

Nat. Photonics (2)

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, "A nanoelectromechanical tunable laser," Nat. Photonics 2, 180-184 (2008).
[CrossRef]

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, "A surface-emitting laser incorporating a high-index-contrast subwavelength grating," Nat. Photonics 1, 119-122 (2007).
[CrossRef]

Nature (1)

D.  Armani, T.  Kippenberg, S.  Spillane, and K.  Vahala, "Ultra-high-Q toroid microcavity on a chip," Nature  421, 925-928 (2003).
[CrossRef] [PubMed]

Opt. Commun. (1)

M. Neviere, R. Petit, and M. Cadilhac, "About the theory of optical crating coupler-waveguide systems," Opt. Commun. 8, 113-117 (1973).
[CrossRef]

Opt. Express (1)

Opt. Lett. (4)

Proc. SPIE. (1)

L. Ferrier, S. Boutami, F. Mandorlo, X. Letartre, P. Rojo Romeo, P. Viktorovitch,P. Gilet, B. B. Bakir, P. Grosse, J.-M. Fedeli, and A. Chelnokov, "Vertical microcavities based on photonic crystal mirrors for III-V/Si integrated microlasers," Proc. SPIE. 6989, 69890W (2008).
[CrossRef]

Other (1)

W.-H. Chang, W.-Y. Chen, H.-S. Chang, T.-P. Hsieh, J.-I. Chyi, and T.-M. Hsu, "Efficient single-photon sources based on low-density quantum dots in photonic-crystal nanocavities," Phys. Rev. Lett. 96, 117401-1-117401-4 (2006).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

(a). Schematic of a HCG structure (b). Simulated reflectivity spectrum of HCG grating using RCWA shown in blue circles. Red curve is the fitted Fano resonance line shape. Q factor is ~500,000

Fig. 2.
Fig. 2.

(a). Schematic of HCG high-Q resonator. (b) Schematic of middle HCG grating with three In0.2Ga0.8As quantum wells embedded inside grating layer. (c) Schematic of side mix-DBR grating mirror which is a combination of 1st-order and 3rd-order DBR gratings.

Fig. 3.
Fig. 3.

(a). Simulated electric field intensity profile in the HCG resonator. Color is labeled in log scale. Q is estimated to be 500,000. (b) Normalized electrical field decay as a function of time in the HCG resonator for different number of HCG periods (3 periods, 5 periods, 7 periods and 15 periods). Q is estimated to be 900, 4000, 17000 and 500000 respectively.

Fig. 4.
Fig. 4.

(a). Simulation results for a HCG biosensor. The resonant wavelength red shift when biomolecule layers with different thicknesses are deposited onto the HCG structure. (b). Simulation results for HCG resonant wavelength and Q factor as a function of temperature. Resonant wavelength only shifts 0.5 Å/K and the Q factor of the HCG cavity remains almost constant when temperature is changed from 0 °C to 100 °C.

Fig. 5.
Fig. 5.

SEM image of fabricated HCG high-Q resonator.

Fig. 6.
Fig. 6.

(a). Emission spectrum of HCG resonator (in red) and emission spectrum in the area without grating (in blue). The inset shows a zoomed-in picture of the HCG emission spectrum. The FWHM of the HCG resonator emission peak is ~0.07nm and Q is ~14000. (b) Emission spectra of HCG resonator under 10µW, 100µW, 300µW optical pumping, respectively.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

R = r 2 ( ω ω 0 ) 2 + t 2 ( 1 / τ ) 2 2 r t ( ω ω 0 ) ( 1 / τ ) ( ω ω 0 ) 2 + ( 1 / τ ) 2

Metrics