Abstract

This article describes the first demonstration of ring resonators based on vertical multiple-slot silicon nitride waveguides. The design, fabrication and measurement of multiple-slot waveguide ring resonators with several coupling distances and ring radii (70 µm, 90 µm and 110 µm) have been carried out for TE and TM polarizations at the wavelength of 1.3 µm. Quality factors of 6,100 and 16,000 have been achieved for TE and TM polarization, respectively.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Lardenois, D. Pascal, L. Vivien, E. Cassan, S. Laval, R. Orobtchouk, M. Heitzmann, N. Bouaida, and L. Mollard, "Low-loss sub-micrometer SOI rib waveguides and corner mirrors," Opt. Lett. 28, 1150-1152 (2003).
    [CrossRef] [PubMed]
  2. P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, and R. Baets, "Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography," IEEE Photon. Technol. Lett 16, 1328-1330 (2004).
    [CrossRef]
  3. V. Almeida, Q. Xu, C.A. Barrios, and M. Lipson, "Guiding and confining light in void nanostructure," Opt. Lett. 29, 1209-1211 (2004)
    [CrossRef] [PubMed]
  4. T. Baehr-Jones, M. Hochberg, C. Walker, and Scherer, "High-Q optical resonators in silicon-on-insulator-based slot waveguides," Appl. Phys. Lett. 86, 081101 (2005).
    [CrossRef]
  5. H. G. Yoo, Y. Fu, D. Riley, J. H. Shin, and P. M. Fauchet, "Birefringence and optical power confinement in horizontal multi-slot waveguides made of Si and SiO2," Opt. Express 16, 8623-8628 (2008).
    [CrossRef] [PubMed]
  6. R. Sun, P. Dong, N-N. Feng, C-Y Hong, J. Michel, M. Lipson, and L. Kimerling, "Horizontal single and multiple slot waveguides : optical transmission at λ=1550nm," Opt. Express 15, 17967-17972 (2007).
    [CrossRef] [PubMed]
  7. C. A. Barrios, B. Sànchez, K. B. Gylfason, A. Griol, H. Sohlström, M. Holgado, and R. Casquet, "Demonstration of slot-waveguide structures on silicon nitride/silicon oxide platform," Opt. Express 15, 6846-6857 (2007).
    [CrossRef] [PubMed]
  8. C. A. Barrios, M. J. Bañuls, V. Gonzàlez-Pedro, K. B. Gylfason, B. Sànchez, A. Griol, A. Maquieira, H. Sohlström, M. Holgado, and R. Casquet, "Label-free optical biosensing with slot-waveguides," Opt. Lett. 33, 708-710 (2008).
    [CrossRef] [PubMed]
  9. U. Levy, M. Abashin, K. Ikeda, A. Krishnamoorthy, J. Cunningham, and Y. Fainman, "Inhomogenous Dielectric Metamaterials with Space-Variant Polarizability," Phys. Rev. Lett.  98, 243.901 (2007).
    [CrossRef]
  10. S-H Yang, M. L. Cooper, P. R. Bandaru, and S. Mookherjea, "Giant birefringence in multi-slotted silicon nanophotonic waveguides," Opt. Express 16, 8306-8316 (2008).
    [CrossRef] [PubMed]
  11. X. Tu, X Xu, S. Chen, J. Yu, and Q. Wang, "Simulation demonstration and experimental fabrication of multiple-slot waveguide," IEEE Phot. Techn. Lett. 20, 333-335 (2008).
    [CrossRef]
  12. PhotonDesign: URL: www.photonDesign.com
  13. A. Yariv, "Universal relations for coupling of optical power between microresonators and dielectric waveguides," Electron. Lett. 36, 321-322 (2000).
    [CrossRef]

2008 (4)

2007 (2)

2005 (1)

T. Baehr-Jones, M. Hochberg, C. Walker, and Scherer, "High-Q optical resonators in silicon-on-insulator-based slot waveguides," Appl. Phys. Lett. 86, 081101 (2005).
[CrossRef]

2004 (2)

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, and R. Baets, "Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography," IEEE Photon. Technol. Lett 16, 1328-1330 (2004).
[CrossRef]

V. Almeida, Q. Xu, C.A. Barrios, and M. Lipson, "Guiding and confining light in void nanostructure," Opt. Lett. 29, 1209-1211 (2004)
[CrossRef] [PubMed]

2003 (1)

2000 (1)

A. Yariv, "Universal relations for coupling of optical power between microresonators and dielectric waveguides," Electron. Lett. 36, 321-322 (2000).
[CrossRef]

Almeida, V.

Baehr-Jones, T.

T. Baehr-Jones, M. Hochberg, C. Walker, and Scherer, "High-Q optical resonators in silicon-on-insulator-based slot waveguides," Appl. Phys. Lett. 86, 081101 (2005).
[CrossRef]

Baets, R.

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, and R. Baets, "Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography," IEEE Photon. Technol. Lett 16, 1328-1330 (2004).
[CrossRef]

Bandaru, P. R.

Bañuls, M. J.

Barrios, C. A.

Barrios, C.A.

Beckx, S.

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, and R. Baets, "Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography," IEEE Photon. Technol. Lett 16, 1328-1330 (2004).
[CrossRef]

Bienstman, P.

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, and R. Baets, "Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography," IEEE Photon. Technol. Lett 16, 1328-1330 (2004).
[CrossRef]

Bogaerts, W.

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, and R. Baets, "Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography," IEEE Photon. Technol. Lett 16, 1328-1330 (2004).
[CrossRef]

Bouaida, N.

Casquet, R.

Cassan, E.

Chen, S.

X. Tu, X Xu, S. Chen, J. Yu, and Q. Wang, "Simulation demonstration and experimental fabrication of multiple-slot waveguide," IEEE Phot. Techn. Lett. 20, 333-335 (2008).
[CrossRef]

Cooper, M. L.

Dong, P.

Dumon, P.

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, and R. Baets, "Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography," IEEE Photon. Technol. Lett 16, 1328-1330 (2004).
[CrossRef]

Fauchet, P. M.

Feng, N-N.

Fu, Y.

Gonzàlez-Pedro, V.

Griol, A.

Gylfason, K. B.

Heitzmann, M.

Hochberg, M.

T. Baehr-Jones, M. Hochberg, C. Walker, and Scherer, "High-Q optical resonators in silicon-on-insulator-based slot waveguides," Appl. Phys. Lett. 86, 081101 (2005).
[CrossRef]

Holgado, M.

Hong, C-Y

Kimerling, L.

Lardenois, S.

Laval, S.

Lipson, M.

Luyssaert, B.

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, and R. Baets, "Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography," IEEE Photon. Technol. Lett 16, 1328-1330 (2004).
[CrossRef]

Maquieira, A.

Michel, J.

Mollard, L.

Mookherjea, S.

Orobtchouk, R.

Pascal, D.

Riley, D.

Sànchez, B.

Scherer, C.

T. Baehr-Jones, M. Hochberg, C. Walker, and Scherer, "High-Q optical resonators in silicon-on-insulator-based slot waveguides," Appl. Phys. Lett. 86, 081101 (2005).
[CrossRef]

Shin, J. H.

Sohlström, H.

Sun, R.

Taillaert, D.

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, and R. Baets, "Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography," IEEE Photon. Technol. Lett 16, 1328-1330 (2004).
[CrossRef]

Tu, X.

X. Tu, X Xu, S. Chen, J. Yu, and Q. Wang, "Simulation demonstration and experimental fabrication of multiple-slot waveguide," IEEE Phot. Techn. Lett. 20, 333-335 (2008).
[CrossRef]

Van Campenhout, J.

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, and R. Baets, "Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography," IEEE Photon. Technol. Lett 16, 1328-1330 (2004).
[CrossRef]

Van Thourhout, D.

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, and R. Baets, "Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography," IEEE Photon. Technol. Lett 16, 1328-1330 (2004).
[CrossRef]

Vivien, L.

Walker, C.

T. Baehr-Jones, M. Hochberg, C. Walker, and Scherer, "High-Q optical resonators in silicon-on-insulator-based slot waveguides," Appl. Phys. Lett. 86, 081101 (2005).
[CrossRef]

Wang, Q.

X. Tu, X Xu, S. Chen, J. Yu, and Q. Wang, "Simulation demonstration and experimental fabrication of multiple-slot waveguide," IEEE Phot. Techn. Lett. 20, 333-335 (2008).
[CrossRef]

Wiaux, V.

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, and R. Baets, "Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography," IEEE Photon. Technol. Lett 16, 1328-1330 (2004).
[CrossRef]

Wouters, J.

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, and R. Baets, "Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography," IEEE Photon. Technol. Lett 16, 1328-1330 (2004).
[CrossRef]

Xu, Q.

Xu, X

X. Tu, X Xu, S. Chen, J. Yu, and Q. Wang, "Simulation demonstration and experimental fabrication of multiple-slot waveguide," IEEE Phot. Techn. Lett. 20, 333-335 (2008).
[CrossRef]

Yang, S-H

Yariv, A.

A. Yariv, "Universal relations for coupling of optical power between microresonators and dielectric waveguides," Electron. Lett. 36, 321-322 (2000).
[CrossRef]

Yoo, H. G.

Yu, J.

X. Tu, X Xu, S. Chen, J. Yu, and Q. Wang, "Simulation demonstration and experimental fabrication of multiple-slot waveguide," IEEE Phot. Techn. Lett. 20, 333-335 (2008).
[CrossRef]

Appl. Phys. Lett. (1)

T. Baehr-Jones, M. Hochberg, C. Walker, and Scherer, "High-Q optical resonators in silicon-on-insulator-based slot waveguides," Appl. Phys. Lett. 86, 081101 (2005).
[CrossRef]

Electron. Lett. (1)

A. Yariv, "Universal relations for coupling of optical power between microresonators and dielectric waveguides," Electron. Lett. 36, 321-322 (2000).
[CrossRef]

IEEE Phot. Techn. Lett. (1)

X. Tu, X Xu, S. Chen, J. Yu, and Q. Wang, "Simulation demonstration and experimental fabrication of multiple-slot waveguide," IEEE Phot. Techn. Lett. 20, 333-335 (2008).
[CrossRef]

IEEE Photon. Technol. Lett (1)

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, and R. Baets, "Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography," IEEE Photon. Technol. Lett 16, 1328-1330 (2004).
[CrossRef]

Opt. Express (4)

Opt. Lett. (3)

Other (2)

U. Levy, M. Abashin, K. Ikeda, A. Krishnamoorthy, J. Cunningham, and Y. Fainman, "Inhomogenous Dielectric Metamaterials with Space-Variant Polarizability," Phys. Rev. Lett.  98, 243.901 (2007).
[CrossRef]

PhotonDesign: URL: www.photonDesign.com

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a) A schematic cross-section of the multiple-slot waveguide surrounded by silicon oxide top and bottom claddings. The slot and rail widths are both 200 nm and the silicon nitride waveguide height is 300 nm. (b) Calculated electric field distribution of the quasi-TE mode (Ex ) and (c) of the quasi-TM mode (Hx ) at a wavelength of 1.3 µm. The refractive indices of silicon nitride and silicon oxide are 2.00 and 1.45, respectively.

Fig. 2.
Fig. 2.

A comparison of the effective index change as a function of the variation of the refractive index of the top cladding (from 1.45 to 1.46) at a wavelength of 1.3 µm for a 900 nm wide strip waveguide, a single-slot waveguide and the multiple-slot waveguide. Refractive indices of silica and silicon nitride are 1.45 and 1.95, respectively.

Fig. 3.
Fig. 3.

(a) A schematic top view of the ring resonator based on multiple-slot waveguides. (b) and (c) Scanning electron microscope (SEM) images of a silicon nitride multiple-slot waveguide ring resonator before silicon oxide top cladding deposition.

Fig. 4.
Fig. 4.

Measured normalized transmission (solid line) of a 90 µm radius multiple-slot waveguide ring resonator for quasi-TE (a, b) and quasi-TM (c, d) polarizations. The dashed line (b, d) presents the Lorentzian fitting for both polarizations. The gap d is 500 nm.

Tables (1)

Tables Icon

Table 1. The mean FSR and the measured group indices around 1275 nm of multiple-slot ring resonators with 70 µm, 90 µm, and 110 µm radii. The estimated uncertainty of group index is of 0.2.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

n g ( λ ) λ 0 2 2 π · ( FSR ) · R
Q = λ 0 Δ λ 3 d B ,
I t = I 0 a 2 + t 2 2 a t cos ( ϕ ) 1 + a 2 t 2 2 a t cos ( ϕ )

Metrics