Abstract

Using a selective hole closure technique, individual hollow channels in silica-air photonic crystal fibers are filled with pure Ge by pumping in molten material at high pressure. The smallest channels filled so far are 600 nm in diameter, which is 10× smaller than in previous work. Electrical conductivity and micro-Raman measurements indicate that the resulting cm-long wires have a high degree of crystallinity. Optical transmission spectra are measured in a sample with a single wire placed adjacent to the core of an endlessly single-mode photonic crystal fiber. This renders the fiber birefringent, as well as causing strongly polarization-dependent transmission losses, with extinction ratios as high as 30 dB in the visible. In the IR, anti-crossings between the glass-core mode and resonances on the high index Ge wire create a series of clear dips in the spectrum transmitted through the fiber. The measurements agree closely with the results of finite-element simulations in which the wavelength dependence of the dielectric constants is taken fully into account. A toy model based on a multilayer structure is used to help interpret the results. Finally, the temperature dependence of the anti-crossing wavelengths is measured, the preliminary results suggesting that the structure might form the basis of a compact optical thermometer. Since Ge provides electrical conductance together with low-loss guidance in the mid-IR, Ge-filled PCF seems likely to lead to new kinds of in-fiber detector and sensor, as well as having potential uses in ultra-low-threshold nonlinear optical devices.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. St.J. Russell, "Photonic-crystal fibers," IEEE J. Lightwave Technol. 24, 4729-4749 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=JLT-24-12-4729.
    [CrossRef]
  2. T. A. Birks, J. C. Knight, and P. St.J. Russell, "Endlessly single-mode photonic crystal fiber," Opt. Lett. 22, 961-963 (1997), http://www.opticsinfobase.org/abstract.cfm?URI=ol-22-13-961.
    [CrossRef] [PubMed]
  3. S. G. Leon-Saval, T. A. Birks, W. J. Wadsworth, P. St.J. Russell, and M. W. Mason, "Supercontinuum generation in submicron fibre waveguides," Opt. Express 12, 2864-2869 (2004), http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-13-2864.
    [CrossRef] [PubMed]
  4. G. Kakarantzas, T. A. Birks, and P. St.J. Russell, "Structural long-period gratings in photonic crystal fibers," Opt. Lett. 27, 1013-1015 (2002), http://www.opticsinfobase.org/abstract.cfm?URI=ol-27-12-1013.
    [CrossRef]
  5. P. S. Westbrook, B. J. Eggleton, R. S. Windeler, A. Hale, T. A. Strasser, and G. L. Burdge, "Cladding-mode resonances in hybrid polymer-silica microstructured optical fiber gratings," IEEE Photon. Technol. Lett. 12, 495-497 (2000). doi: 10.1109/68.841264
    [CrossRef]
  6. T. R. Wolinski, S. Ertman, P. Lesiak, A. W. Domanski, A. Czapla, R. Dabrowski, E. Nowinowski-Kruszelnicki, and J. Wojcik, "Photonic liquid crystal fibers - a new challenge for fiber optics and liquid crystals photonics," Opto-Electron. Rev. 14, 329-334 (2006).
    [CrossRef]
  7. X. Zhang, R. Wang, F. M. Cox, B. T. Kuhlmey, and M. C. J. Large, "Selective coating of holes in microstructured optical fiber and its application to in-fiber absorptive polarizers," Opt. Express 15, 16270-16278 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-24-16270.
    [CrossRef] [PubMed]
  8. J. Hou, D. Bird, A. George, S. Maier, B. T. Kuhlmey, and J. C. Knight, "Metallic mode confinement in microstructured fibres," Opt. Express 16, 5983-5990 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-9-5983.
    [CrossRef] [PubMed]
  9. D. J. Won, M. O. Ramirez, H. Kang, V. Gopalan, N. F. Baril, J. Calkins, J. V. Badding, and P. J. A. Sazio, "All-optical modulation of laser light in amorphous silicon-filled microstructured optical fibers," Appl. Phys. Lett. 91, 161112 (2007), http://link.aip.org/link/?APPLAB/91/161112/1.
    [CrossRef]
  10. M. A. Schmidt, L. N. P. Sempere, H. K. Tyagi, C. G. Poulton, and P. St.J. Russell, "Waveguiding and plasmon resonances in two-dimensional photonic lattices of gold and silver nanowires," Phys. Rev. B 77, 033417 (2008), http://link.aps.org/abstract/PRB/v77/e033417.
    [CrossRef]
  11. H. W. Lee, M. A. Schmidt, H. K. Tyagi, L. N. Prill Sempere, and P. St.J. Russell, "Polarization-dependent coupling to plasmon modes on submicron gold wire in photonic crystal fiber," Appl. Phys. Lett. 93, 111102 (2008), http://link.aip.org/link/?APPLAB/93/111102/1.
  12. M. A. Schmidt, H. K. Tyagi, L. N. Prill Sempere, and P. St.J. Russell, "Polarization properties of PCF with Ge-nanowire," in CLEO (Optical Society of America, San Jose, 2008), http://www.opticsinfobase.org/abstract.cfm?URI=CLEO-2008-CFO4.
  13. E. M. Conwell, "Properties of silicon and germanium," PROC. of the I.R.E. 40, 1327-1337 (1952).
    [CrossRef]
  14. J. Y. W. Seto, "The electrical properties of polycrystalline silicon films," J. Appl. Phys. 46, 5247-5254 (1975), http://link.aip.org/link/?JAPIAU/46/5247/1.
    [CrossRef]
  15. C. E. Finlayson, A. Amezcua-Correa, P. J. A. Sazio, N. F. Baril, and J. V. Badding, "Electrical and Raman characterization of silicon and germanium-filled microstructured optical fibers," Appl. Phys. Lett. 90, 132110 (2007), http://link.aip.org/link/?APPLAB/90/132110/1.
    [CrossRef]
  16. J. H. ParkerJr., D. W. Feldman, and M. Ashkin, "Raman scattering by silicon and germanium," Phys. Rev. 155, 712-714 (1967), http://link.aps.org/abstract/PR/v155/p712.
    [CrossRef]
  17. J. S. Lannin, N. Maley, and S. T. Kshirsagar, "Raman scattering and short range order in amorphous germanium," Solid State Commun. 53, 939-942 (1985). doi: 10.1016/0038-1098(85)90464-8
    [CrossRef]
  18. N. Maley and J. S. Lannin, "Raman coupling-parameter variation in amorphous germanium," Phys. Rev. B 35, 2456-2459 (1987), http://link.aps.org/abstract/PRB/v35/p2456.
    [CrossRef]
  19. H. R. Philipp and E. A. Taft, "Optical constants of germanium in the region 1 to 10 eV," Phys. Rev. 113, 1002-1005 (1959), http://link.aps.org/abstract/PR/v113/p1002.
    [CrossRef]
  20. G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, San Diego, 2007).
  21. J. D. Jackson, Classical Electrodynamics (John Wiley & Sons, New York, 1998).
  22. L. Vina, S. Logothetidis, and M. Cardona, "Temperature dependence of the dielectric function of germanium," Phys. Rev. B 30, 1979-1991 (1984), http://link.aps.org/abstract/PRB/v30/p1979.
    [CrossRef]
  23. G. K. Teal and J. B. Little, "Growth of Ge single crystals," Phys. Rev. 78, 647 (1950).
  24. J. Jung, H. Nam, B. H. Lee, J. O. Byun, and N. S Kim, "Fiber Bragg grating temperature sensor with controllable sensitivity," Appl. Opt. 38, 2752-2754 (1999), http://www.opticsinfobase.org/abstract.cfm?URI=ao-38-13-2752.
    [CrossRef]
  25. V. Bhatia and A. M. Vengsarkar, "Optical fiber long-period grating sensors," Opt. Lett. 21, 692-694 (1996), http://www.opticsinfobase.org/abstract.cfm?URI=ol-21-9-692.
    [CrossRef] [PubMed]
  26. G. Rego, O. Okhotnikov, E. Dianov, and V. Sulimov, "High-temperature stability of long-period fiber gratings produced using an electric arc," J. Lightwave Technol. 19, 1574-1579 (2001), http://www.opticsinfobase.org/abstract.cfm?URI=JLT-19-10-1574.
    [CrossRef]
  27. S. W. James and R. P. Tatam, "Optical fibre long-period grating sensors: characteristics and applications," Meas. Sci. Technol. 14, R49-R61 (2003). doi: 10.1088/0957-0233/14/5/201
    [CrossRef]
  28. D. Noordegraaf, L. Scolari, J. Lægsgaard, L. Rindorf, and T. T. Alkeskjold, "Electrically and mechanically induced long period gratings in liquid crystal photonic bandgap fibers," Opt. Express 15, 7901-7912 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-13-7901.
    [CrossRef] [PubMed]
  29. P. Steinvurzel, E. D. Moore, E. C. Mägi, and B. J. Eggleton, "Tuning properties of long period gratings in photonic bandgap fibers," Opt. Lett. 31, 2103-2105 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=ol-31-14-2103.
    [CrossRef] [PubMed]

2008 (3)

M. A. Schmidt, L. N. P. Sempere, H. K. Tyagi, C. G. Poulton, and P. St.J. Russell, "Waveguiding and plasmon resonances in two-dimensional photonic lattices of gold and silver nanowires," Phys. Rev. B 77, 033417 (2008), http://link.aps.org/abstract/PRB/v77/e033417.
[CrossRef]

H. W. Lee, M. A. Schmidt, H. K. Tyagi, L. N. Prill Sempere, and P. St.J. Russell, "Polarization-dependent coupling to plasmon modes on submicron gold wire in photonic crystal fiber," Appl. Phys. Lett. 93, 111102 (2008), http://link.aip.org/link/?APPLAB/93/111102/1.

J. Hou, D. Bird, A. George, S. Maier, B. T. Kuhlmey, and J. C. Knight, "Metallic mode confinement in microstructured fibres," Opt. Express 16, 5983-5990 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-9-5983.
[CrossRef] [PubMed]

2007 (4)

D. Noordegraaf, L. Scolari, J. Lægsgaard, L. Rindorf, and T. T. Alkeskjold, "Electrically and mechanically induced long period gratings in liquid crystal photonic bandgap fibers," Opt. Express 15, 7901-7912 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-13-7901.
[CrossRef] [PubMed]

X. Zhang, R. Wang, F. M. Cox, B. T. Kuhlmey, and M. C. J. Large, "Selective coating of holes in microstructured optical fiber and its application to in-fiber absorptive polarizers," Opt. Express 15, 16270-16278 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-24-16270.
[CrossRef] [PubMed]

D. J. Won, M. O. Ramirez, H. Kang, V. Gopalan, N. F. Baril, J. Calkins, J. V. Badding, and P. J. A. Sazio, "All-optical modulation of laser light in amorphous silicon-filled microstructured optical fibers," Appl. Phys. Lett. 91, 161112 (2007), http://link.aip.org/link/?APPLAB/91/161112/1.
[CrossRef]

C. E. Finlayson, A. Amezcua-Correa, P. J. A. Sazio, N. F. Baril, and J. V. Badding, "Electrical and Raman characterization of silicon and germanium-filled microstructured optical fibers," Appl. Phys. Lett. 90, 132110 (2007), http://link.aip.org/link/?APPLAB/90/132110/1.
[CrossRef]

2006 (2)

T. R. Wolinski, S. Ertman, P. Lesiak, A. W. Domanski, A. Czapla, R. Dabrowski, E. Nowinowski-Kruszelnicki, and J. Wojcik, "Photonic liquid crystal fibers - a new challenge for fiber optics and liquid crystals photonics," Opto-Electron. Rev. 14, 329-334 (2006).
[CrossRef]

P. Steinvurzel, E. D. Moore, E. C. Mägi, and B. J. Eggleton, "Tuning properties of long period gratings in photonic bandgap fibers," Opt. Lett. 31, 2103-2105 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=ol-31-14-2103.
[CrossRef] [PubMed]

2004 (1)

2003 (1)

S. W. James and R. P. Tatam, "Optical fibre long-period grating sensors: characteristics and applications," Meas. Sci. Technol. 14, R49-R61 (2003). doi: 10.1088/0957-0233/14/5/201
[CrossRef]

2002 (1)

2001 (1)

2000 (1)

P. S. Westbrook, B. J. Eggleton, R. S. Windeler, A. Hale, T. A. Strasser, and G. L. Burdge, "Cladding-mode resonances in hybrid polymer-silica microstructured optical fiber gratings," IEEE Photon. Technol. Lett. 12, 495-497 (2000). doi: 10.1109/68.841264
[CrossRef]

1999 (1)

1997 (1)

1996 (1)

1987 (1)

N. Maley and J. S. Lannin, "Raman coupling-parameter variation in amorphous germanium," Phys. Rev. B 35, 2456-2459 (1987), http://link.aps.org/abstract/PRB/v35/p2456.
[CrossRef]

1985 (1)

J. S. Lannin, N. Maley, and S. T. Kshirsagar, "Raman scattering and short range order in amorphous germanium," Solid State Commun. 53, 939-942 (1985). doi: 10.1016/0038-1098(85)90464-8
[CrossRef]

1984 (1)

L. Vina, S. Logothetidis, and M. Cardona, "Temperature dependence of the dielectric function of germanium," Phys. Rev. B 30, 1979-1991 (1984), http://link.aps.org/abstract/PRB/v30/p1979.
[CrossRef]

1975 (1)

J. Y. W. Seto, "The electrical properties of polycrystalline silicon films," J. Appl. Phys. 46, 5247-5254 (1975), http://link.aip.org/link/?JAPIAU/46/5247/1.
[CrossRef]

1967 (1)

J. H. ParkerJr., D. W. Feldman, and M. Ashkin, "Raman scattering by silicon and germanium," Phys. Rev. 155, 712-714 (1967), http://link.aps.org/abstract/PR/v155/p712.
[CrossRef]

1959 (1)

H. R. Philipp and E. A. Taft, "Optical constants of germanium in the region 1 to 10 eV," Phys. Rev. 113, 1002-1005 (1959), http://link.aps.org/abstract/PR/v113/p1002.
[CrossRef]

1952 (1)

E. M. Conwell, "Properties of silicon and germanium," PROC. of the I.R.E. 40, 1327-1337 (1952).
[CrossRef]

1950 (1)

G. K. Teal and J. B. Little, "Growth of Ge single crystals," Phys. Rev. 78, 647 (1950).

Alkeskjold, T. T.

Amezcua-Correa, A.

C. E. Finlayson, A. Amezcua-Correa, P. J. A. Sazio, N. F. Baril, and J. V. Badding, "Electrical and Raman characterization of silicon and germanium-filled microstructured optical fibers," Appl. Phys. Lett. 90, 132110 (2007), http://link.aip.org/link/?APPLAB/90/132110/1.
[CrossRef]

Ashkin, M.

J. H. ParkerJr., D. W. Feldman, and M. Ashkin, "Raman scattering by silicon and germanium," Phys. Rev. 155, 712-714 (1967), http://link.aps.org/abstract/PR/v155/p712.
[CrossRef]

Badding, J. V.

C. E. Finlayson, A. Amezcua-Correa, P. J. A. Sazio, N. F. Baril, and J. V. Badding, "Electrical and Raman characterization of silicon and germanium-filled microstructured optical fibers," Appl. Phys. Lett. 90, 132110 (2007), http://link.aip.org/link/?APPLAB/90/132110/1.
[CrossRef]

D. J. Won, M. O. Ramirez, H. Kang, V. Gopalan, N. F. Baril, J. Calkins, J. V. Badding, and P. J. A. Sazio, "All-optical modulation of laser light in amorphous silicon-filled microstructured optical fibers," Appl. Phys. Lett. 91, 161112 (2007), http://link.aip.org/link/?APPLAB/91/161112/1.
[CrossRef]

Baril, N. F.

D. J. Won, M. O. Ramirez, H. Kang, V. Gopalan, N. F. Baril, J. Calkins, J. V. Badding, and P. J. A. Sazio, "All-optical modulation of laser light in amorphous silicon-filled microstructured optical fibers," Appl. Phys. Lett. 91, 161112 (2007), http://link.aip.org/link/?APPLAB/91/161112/1.
[CrossRef]

C. E. Finlayson, A. Amezcua-Correa, P. J. A. Sazio, N. F. Baril, and J. V. Badding, "Electrical and Raman characterization of silicon and germanium-filled microstructured optical fibers," Appl. Phys. Lett. 90, 132110 (2007), http://link.aip.org/link/?APPLAB/90/132110/1.
[CrossRef]

Bhatia, V.

Bird, D.

Birks, T. A.

Burdge, G. L.

P. S. Westbrook, B. J. Eggleton, R. S. Windeler, A. Hale, T. A. Strasser, and G. L. Burdge, "Cladding-mode resonances in hybrid polymer-silica microstructured optical fiber gratings," IEEE Photon. Technol. Lett. 12, 495-497 (2000). doi: 10.1109/68.841264
[CrossRef]

Byun, J. O.

Calkins, J.

D. J. Won, M. O. Ramirez, H. Kang, V. Gopalan, N. F. Baril, J. Calkins, J. V. Badding, and P. J. A. Sazio, "All-optical modulation of laser light in amorphous silicon-filled microstructured optical fibers," Appl. Phys. Lett. 91, 161112 (2007), http://link.aip.org/link/?APPLAB/91/161112/1.
[CrossRef]

Cardona, M.

L. Vina, S. Logothetidis, and M. Cardona, "Temperature dependence of the dielectric function of germanium," Phys. Rev. B 30, 1979-1991 (1984), http://link.aps.org/abstract/PRB/v30/p1979.
[CrossRef]

Conwell, E. M.

E. M. Conwell, "Properties of silicon and germanium," PROC. of the I.R.E. 40, 1327-1337 (1952).
[CrossRef]

Cox, F. M.

Czapla, A.

T. R. Wolinski, S. Ertman, P. Lesiak, A. W. Domanski, A. Czapla, R. Dabrowski, E. Nowinowski-Kruszelnicki, and J. Wojcik, "Photonic liquid crystal fibers - a new challenge for fiber optics and liquid crystals photonics," Opto-Electron. Rev. 14, 329-334 (2006).
[CrossRef]

Dabrowski, R.

T. R. Wolinski, S. Ertman, P. Lesiak, A. W. Domanski, A. Czapla, R. Dabrowski, E. Nowinowski-Kruszelnicki, and J. Wojcik, "Photonic liquid crystal fibers - a new challenge for fiber optics and liquid crystals photonics," Opto-Electron. Rev. 14, 329-334 (2006).
[CrossRef]

Dianov, E.

Domanski, A. W.

T. R. Wolinski, S. Ertman, P. Lesiak, A. W. Domanski, A. Czapla, R. Dabrowski, E. Nowinowski-Kruszelnicki, and J. Wojcik, "Photonic liquid crystal fibers - a new challenge for fiber optics and liquid crystals photonics," Opto-Electron. Rev. 14, 329-334 (2006).
[CrossRef]

Eggleton, B. J.

P. Steinvurzel, E. D. Moore, E. C. Mägi, and B. J. Eggleton, "Tuning properties of long period gratings in photonic bandgap fibers," Opt. Lett. 31, 2103-2105 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=ol-31-14-2103.
[CrossRef] [PubMed]

P. S. Westbrook, B. J. Eggleton, R. S. Windeler, A. Hale, T. A. Strasser, and G. L. Burdge, "Cladding-mode resonances in hybrid polymer-silica microstructured optical fiber gratings," IEEE Photon. Technol. Lett. 12, 495-497 (2000). doi: 10.1109/68.841264
[CrossRef]

Ertman, S.

T. R. Wolinski, S. Ertman, P. Lesiak, A. W. Domanski, A. Czapla, R. Dabrowski, E. Nowinowski-Kruszelnicki, and J. Wojcik, "Photonic liquid crystal fibers - a new challenge for fiber optics and liquid crystals photonics," Opto-Electron. Rev. 14, 329-334 (2006).
[CrossRef]

Feldman, D. W.

J. H. ParkerJr., D. W. Feldman, and M. Ashkin, "Raman scattering by silicon and germanium," Phys. Rev. 155, 712-714 (1967), http://link.aps.org/abstract/PR/v155/p712.
[CrossRef]

Finlayson, C. E.

C. E. Finlayson, A. Amezcua-Correa, P. J. A. Sazio, N. F. Baril, and J. V. Badding, "Electrical and Raman characterization of silicon and germanium-filled microstructured optical fibers," Appl. Phys. Lett. 90, 132110 (2007), http://link.aip.org/link/?APPLAB/90/132110/1.
[CrossRef]

George, A.

Gopalan, V.

D. J. Won, M. O. Ramirez, H. Kang, V. Gopalan, N. F. Baril, J. Calkins, J. V. Badding, and P. J. A. Sazio, "All-optical modulation of laser light in amorphous silicon-filled microstructured optical fibers," Appl. Phys. Lett. 91, 161112 (2007), http://link.aip.org/link/?APPLAB/91/161112/1.
[CrossRef]

Hale, A.

P. S. Westbrook, B. J. Eggleton, R. S. Windeler, A. Hale, T. A. Strasser, and G. L. Burdge, "Cladding-mode resonances in hybrid polymer-silica microstructured optical fiber gratings," IEEE Photon. Technol. Lett. 12, 495-497 (2000). doi: 10.1109/68.841264
[CrossRef]

Hou, J.

James, S. W.

S. W. James and R. P. Tatam, "Optical fibre long-period grating sensors: characteristics and applications," Meas. Sci. Technol. 14, R49-R61 (2003). doi: 10.1088/0957-0233/14/5/201
[CrossRef]

Jung, J.

Kakarantzas, G.

Kang, H.

D. J. Won, M. O. Ramirez, H. Kang, V. Gopalan, N. F. Baril, J. Calkins, J. V. Badding, and P. J. A. Sazio, "All-optical modulation of laser light in amorphous silicon-filled microstructured optical fibers," Appl. Phys. Lett. 91, 161112 (2007), http://link.aip.org/link/?APPLAB/91/161112/1.
[CrossRef]

Kim, N. S

Knight, J. C.

Kshirsagar, S. T.

J. S. Lannin, N. Maley, and S. T. Kshirsagar, "Raman scattering and short range order in amorphous germanium," Solid State Commun. 53, 939-942 (1985). doi: 10.1016/0038-1098(85)90464-8
[CrossRef]

Kuhlmey, B. T.

Lægsgaard, J.

Lannin, J. S.

N. Maley and J. S. Lannin, "Raman coupling-parameter variation in amorphous germanium," Phys. Rev. B 35, 2456-2459 (1987), http://link.aps.org/abstract/PRB/v35/p2456.
[CrossRef]

J. S. Lannin, N. Maley, and S. T. Kshirsagar, "Raman scattering and short range order in amorphous germanium," Solid State Commun. 53, 939-942 (1985). doi: 10.1016/0038-1098(85)90464-8
[CrossRef]

Large, M. C. J.

Lee, B. H.

Lee, H. W.

H. W. Lee, M. A. Schmidt, H. K. Tyagi, L. N. Prill Sempere, and P. St.J. Russell, "Polarization-dependent coupling to plasmon modes on submicron gold wire in photonic crystal fiber," Appl. Phys. Lett. 93, 111102 (2008), http://link.aip.org/link/?APPLAB/93/111102/1.

Leon-Saval, S. G.

Lesiak, P.

T. R. Wolinski, S. Ertman, P. Lesiak, A. W. Domanski, A. Czapla, R. Dabrowski, E. Nowinowski-Kruszelnicki, and J. Wojcik, "Photonic liquid crystal fibers - a new challenge for fiber optics and liquid crystals photonics," Opto-Electron. Rev. 14, 329-334 (2006).
[CrossRef]

Little, J. B.

G. K. Teal and J. B. Little, "Growth of Ge single crystals," Phys. Rev. 78, 647 (1950).

Logothetidis, S.

L. Vina, S. Logothetidis, and M. Cardona, "Temperature dependence of the dielectric function of germanium," Phys. Rev. B 30, 1979-1991 (1984), http://link.aps.org/abstract/PRB/v30/p1979.
[CrossRef]

Mägi, E. C.

Maier, S.

Maley, N.

N. Maley and J. S. Lannin, "Raman coupling-parameter variation in amorphous germanium," Phys. Rev. B 35, 2456-2459 (1987), http://link.aps.org/abstract/PRB/v35/p2456.
[CrossRef]

J. S. Lannin, N. Maley, and S. T. Kshirsagar, "Raman scattering and short range order in amorphous germanium," Solid State Commun. 53, 939-942 (1985). doi: 10.1016/0038-1098(85)90464-8
[CrossRef]

Mason, M. W.

Moore, E. D.

Nam, H.

Noordegraaf, D.

Nowinowski-Kruszelnicki, E.

T. R. Wolinski, S. Ertman, P. Lesiak, A. W. Domanski, A. Czapla, R. Dabrowski, E. Nowinowski-Kruszelnicki, and J. Wojcik, "Photonic liquid crystal fibers - a new challenge for fiber optics and liquid crystals photonics," Opto-Electron. Rev. 14, 329-334 (2006).
[CrossRef]

Okhotnikov, O.

Parker, J. H.

J. H. ParkerJr., D. W. Feldman, and M. Ashkin, "Raman scattering by silicon and germanium," Phys. Rev. 155, 712-714 (1967), http://link.aps.org/abstract/PR/v155/p712.
[CrossRef]

Philipp, H. R.

H. R. Philipp and E. A. Taft, "Optical constants of germanium in the region 1 to 10 eV," Phys. Rev. 113, 1002-1005 (1959), http://link.aps.org/abstract/PR/v113/p1002.
[CrossRef]

Poulton, C. G.

M. A. Schmidt, L. N. P. Sempere, H. K. Tyagi, C. G. Poulton, and P. St.J. Russell, "Waveguiding and plasmon resonances in two-dimensional photonic lattices of gold and silver nanowires," Phys. Rev. B 77, 033417 (2008), http://link.aps.org/abstract/PRB/v77/e033417.
[CrossRef]

Prill Sempere, L. N.

H. W. Lee, M. A. Schmidt, H. K. Tyagi, L. N. Prill Sempere, and P. St.J. Russell, "Polarization-dependent coupling to plasmon modes on submicron gold wire in photonic crystal fiber," Appl. Phys. Lett. 93, 111102 (2008), http://link.aip.org/link/?APPLAB/93/111102/1.

Ramirez, M. O.

D. J. Won, M. O. Ramirez, H. Kang, V. Gopalan, N. F. Baril, J. Calkins, J. V. Badding, and P. J. A. Sazio, "All-optical modulation of laser light in amorphous silicon-filled microstructured optical fibers," Appl. Phys. Lett. 91, 161112 (2007), http://link.aip.org/link/?APPLAB/91/161112/1.
[CrossRef]

Rego, G.

Rindorf, L.

Russell, P. St.J.

Sazio, P. J. A.

D. J. Won, M. O. Ramirez, H. Kang, V. Gopalan, N. F. Baril, J. Calkins, J. V. Badding, and P. J. A. Sazio, "All-optical modulation of laser light in amorphous silicon-filled microstructured optical fibers," Appl. Phys. Lett. 91, 161112 (2007), http://link.aip.org/link/?APPLAB/91/161112/1.
[CrossRef]

C. E. Finlayson, A. Amezcua-Correa, P. J. A. Sazio, N. F. Baril, and J. V. Badding, "Electrical and Raman characterization of silicon and germanium-filled microstructured optical fibers," Appl. Phys. Lett. 90, 132110 (2007), http://link.aip.org/link/?APPLAB/90/132110/1.
[CrossRef]

Schmidt, M. A.

M. A. Schmidt, L. N. P. Sempere, H. K. Tyagi, C. G. Poulton, and P. St.J. Russell, "Waveguiding and plasmon resonances in two-dimensional photonic lattices of gold and silver nanowires," Phys. Rev. B 77, 033417 (2008), http://link.aps.org/abstract/PRB/v77/e033417.
[CrossRef]

H. W. Lee, M. A. Schmidt, H. K. Tyagi, L. N. Prill Sempere, and P. St.J. Russell, "Polarization-dependent coupling to plasmon modes on submicron gold wire in photonic crystal fiber," Appl. Phys. Lett. 93, 111102 (2008), http://link.aip.org/link/?APPLAB/93/111102/1.

Scolari, L.

Sempere, L. N. P.

M. A. Schmidt, L. N. P. Sempere, H. K. Tyagi, C. G. Poulton, and P. St.J. Russell, "Waveguiding and plasmon resonances in two-dimensional photonic lattices of gold and silver nanowires," Phys. Rev. B 77, 033417 (2008), http://link.aps.org/abstract/PRB/v77/e033417.
[CrossRef]

Seto, J. Y. W.

J. Y. W. Seto, "The electrical properties of polycrystalline silicon films," J. Appl. Phys. 46, 5247-5254 (1975), http://link.aip.org/link/?JAPIAU/46/5247/1.
[CrossRef]

St, P.

H. W. Lee, M. A. Schmidt, H. K. Tyagi, L. N. Prill Sempere, and P. St.J. Russell, "Polarization-dependent coupling to plasmon modes on submicron gold wire in photonic crystal fiber," Appl. Phys. Lett. 93, 111102 (2008), http://link.aip.org/link/?APPLAB/93/111102/1.

Steinvurzel, P.

Strasser, T. A.

P. S. Westbrook, B. J. Eggleton, R. S. Windeler, A. Hale, T. A. Strasser, and G. L. Burdge, "Cladding-mode resonances in hybrid polymer-silica microstructured optical fiber gratings," IEEE Photon. Technol. Lett. 12, 495-497 (2000). doi: 10.1109/68.841264
[CrossRef]

Sulimov, V.

Taft, E. A.

H. R. Philipp and E. A. Taft, "Optical constants of germanium in the region 1 to 10 eV," Phys. Rev. 113, 1002-1005 (1959), http://link.aps.org/abstract/PR/v113/p1002.
[CrossRef]

Tatam, R. P.

S. W. James and R. P. Tatam, "Optical fibre long-period grating sensors: characteristics and applications," Meas. Sci. Technol. 14, R49-R61 (2003). doi: 10.1088/0957-0233/14/5/201
[CrossRef]

Teal, G. K.

G. K. Teal and J. B. Little, "Growth of Ge single crystals," Phys. Rev. 78, 647 (1950).

Tyagi, H. K.

H. W. Lee, M. A. Schmidt, H. K. Tyagi, L. N. Prill Sempere, and P. St.J. Russell, "Polarization-dependent coupling to plasmon modes on submicron gold wire in photonic crystal fiber," Appl. Phys. Lett. 93, 111102 (2008), http://link.aip.org/link/?APPLAB/93/111102/1.

M. A. Schmidt, L. N. P. Sempere, H. K. Tyagi, C. G. Poulton, and P. St.J. Russell, "Waveguiding and plasmon resonances in two-dimensional photonic lattices of gold and silver nanowires," Phys. Rev. B 77, 033417 (2008), http://link.aps.org/abstract/PRB/v77/e033417.
[CrossRef]

Vengsarkar, A. M.

Vina, L.

L. Vina, S. Logothetidis, and M. Cardona, "Temperature dependence of the dielectric function of germanium," Phys. Rev. B 30, 1979-1991 (1984), http://link.aps.org/abstract/PRB/v30/p1979.
[CrossRef]

Wadsworth, W. J.

Wang, R.

Westbrook, P. S.

P. S. Westbrook, B. J. Eggleton, R. S. Windeler, A. Hale, T. A. Strasser, and G. L. Burdge, "Cladding-mode resonances in hybrid polymer-silica microstructured optical fiber gratings," IEEE Photon. Technol. Lett. 12, 495-497 (2000). doi: 10.1109/68.841264
[CrossRef]

Windeler, R. S.

P. S. Westbrook, B. J. Eggleton, R. S. Windeler, A. Hale, T. A. Strasser, and G. L. Burdge, "Cladding-mode resonances in hybrid polymer-silica microstructured optical fiber gratings," IEEE Photon. Technol. Lett. 12, 495-497 (2000). doi: 10.1109/68.841264
[CrossRef]

Wojcik, J.

T. R. Wolinski, S. Ertman, P. Lesiak, A. W. Domanski, A. Czapla, R. Dabrowski, E. Nowinowski-Kruszelnicki, and J. Wojcik, "Photonic liquid crystal fibers - a new challenge for fiber optics and liquid crystals photonics," Opto-Electron. Rev. 14, 329-334 (2006).
[CrossRef]

Wolinski, T. R.

T. R. Wolinski, S. Ertman, P. Lesiak, A. W. Domanski, A. Czapla, R. Dabrowski, E. Nowinowski-Kruszelnicki, and J. Wojcik, "Photonic liquid crystal fibers - a new challenge for fiber optics and liquid crystals photonics," Opto-Electron. Rev. 14, 329-334 (2006).
[CrossRef]

Won, D. J.

D. J. Won, M. O. Ramirez, H. Kang, V. Gopalan, N. F. Baril, J. Calkins, J. V. Badding, and P. J. A. Sazio, "All-optical modulation of laser light in amorphous silicon-filled microstructured optical fibers," Appl. Phys. Lett. 91, 161112 (2007), http://link.aip.org/link/?APPLAB/91/161112/1.
[CrossRef]

Zhang, X.

Appl. Opt. (1)

Appl. Phys. Lett. (3)

D. J. Won, M. O. Ramirez, H. Kang, V. Gopalan, N. F. Baril, J. Calkins, J. V. Badding, and P. J. A. Sazio, "All-optical modulation of laser light in amorphous silicon-filled microstructured optical fibers," Appl. Phys. Lett. 91, 161112 (2007), http://link.aip.org/link/?APPLAB/91/161112/1.
[CrossRef]

H. W. Lee, M. A. Schmidt, H. K. Tyagi, L. N. Prill Sempere, and P. St.J. Russell, "Polarization-dependent coupling to plasmon modes on submicron gold wire in photonic crystal fiber," Appl. Phys. Lett. 93, 111102 (2008), http://link.aip.org/link/?APPLAB/93/111102/1.

C. E. Finlayson, A. Amezcua-Correa, P. J. A. Sazio, N. F. Baril, and J. V. Badding, "Electrical and Raman characterization of silicon and germanium-filled microstructured optical fibers," Appl. Phys. Lett. 90, 132110 (2007), http://link.aip.org/link/?APPLAB/90/132110/1.
[CrossRef]

E. (1)

E. M. Conwell, "Properties of silicon and germanium," PROC. of the I.R.E. 40, 1327-1337 (1952).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

P. S. Westbrook, B. J. Eggleton, R. S. Windeler, A. Hale, T. A. Strasser, and G. L. Burdge, "Cladding-mode resonances in hybrid polymer-silica microstructured optical fiber gratings," IEEE Photon. Technol. Lett. 12, 495-497 (2000). doi: 10.1109/68.841264
[CrossRef]

J. Appl. Phys. (1)

J. Y. W. Seto, "The electrical properties of polycrystalline silicon films," J. Appl. Phys. 46, 5247-5254 (1975), http://link.aip.org/link/?JAPIAU/46/5247/1.
[CrossRef]

J. Lightwave Technol. (1)

Meas. Sci. Technol. (1)

S. W. James and R. P. Tatam, "Optical fibre long-period grating sensors: characteristics and applications," Meas. Sci. Technol. 14, R49-R61 (2003). doi: 10.1088/0957-0233/14/5/201
[CrossRef]

Opt. Express (4)

Opt. Lett. (4)

Opto-Electron. Rev. (1)

T. R. Wolinski, S. Ertman, P. Lesiak, A. W. Domanski, A. Czapla, R. Dabrowski, E. Nowinowski-Kruszelnicki, and J. Wojcik, "Photonic liquid crystal fibers - a new challenge for fiber optics and liquid crystals photonics," Opto-Electron. Rev. 14, 329-334 (2006).
[CrossRef]

Phys. Rev. (3)

H. R. Philipp and E. A. Taft, "Optical constants of germanium in the region 1 to 10 eV," Phys. Rev. 113, 1002-1005 (1959), http://link.aps.org/abstract/PR/v113/p1002.
[CrossRef]

J. H. ParkerJr., D. W. Feldman, and M. Ashkin, "Raman scattering by silicon and germanium," Phys. Rev. 155, 712-714 (1967), http://link.aps.org/abstract/PR/v155/p712.
[CrossRef]

G. K. Teal and J. B. Little, "Growth of Ge single crystals," Phys. Rev. 78, 647 (1950).

Phys. Rev. B (3)

M. A. Schmidt, L. N. P. Sempere, H. K. Tyagi, C. G. Poulton, and P. St.J. Russell, "Waveguiding and plasmon resonances in two-dimensional photonic lattices of gold and silver nanowires," Phys. Rev. B 77, 033417 (2008), http://link.aps.org/abstract/PRB/v77/e033417.
[CrossRef]

N. Maley and J. S. Lannin, "Raman coupling-parameter variation in amorphous germanium," Phys. Rev. B 35, 2456-2459 (1987), http://link.aps.org/abstract/PRB/v35/p2456.
[CrossRef]

L. Vina, S. Logothetidis, and M. Cardona, "Temperature dependence of the dielectric function of germanium," Phys. Rev. B 30, 1979-1991 (1984), http://link.aps.org/abstract/PRB/v30/p1979.
[CrossRef]

Solid State Commun. (1)

J. S. Lannin, N. Maley, and S. T. Kshirsagar, "Raman scattering and short range order in amorphous germanium," Solid State Commun. 53, 939-942 (1985). doi: 10.1016/0038-1098(85)90464-8
[CrossRef]

Other (4)

M. A. Schmidt, H. K. Tyagi, L. N. Prill Sempere, and P. St.J. Russell, "Polarization properties of PCF with Ge-nanowire," in CLEO (Optical Society of America, San Jose, 2008), http://www.opticsinfobase.org/abstract.cfm?URI=CLEO-2008-CFO4.

G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, San Diego, 2007).

J. D. Jackson, Classical Electrodynamics (John Wiley & Sons, New York, 1998).

P. St.J. Russell, "Photonic-crystal fibers," IEEE J. Lightwave Technol. 24, 4729-4749 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=JLT-24-12-4729.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

(a) Scanning electron micrograph (SEM) of a PCF in which two channels 600 nm in diameter (at each end of the rectangular core) have been filled with Ge. (b) SEM of an ESM-PCF with a single Ge-wire adjacent to its glass core (hole spacing 2.90 µm, hole diameter 1.7 µm).

Fig. 2.
Fig. 2.

Micro-Raman spectrum taken through the side of a capillary containing a Ge wire of diameter 1.9 µm.

Fig. 3.
Fig. 3.

Schematic diagram of optical measurement setup (L: Nd-YAG microchip laser; SCF: 20 cm long endlessly-single mode fiber for supercontinuum generation; MO: 40× microscope objective; MO1: 20× microscope objective; PL: broad-band polarizer; M: mirrors; OSA: optical spectrum analyzer; MS: microscope slide with index-matching oil to strip off cladding modes).

Fig. 4.
Fig. 4.

Experimental (a) and modeled (b) transmission spectra for x- and y-polarization (Tx and Ty ) in a PCF with a single Ge wire (diameter 1.7 µm; length 0.8 mm) positioned adjacent to the glass core. The inset in (a) is a CCD image of the transmitted mode pattern for y-polarization. In the simulations, the fundamental mode of the glass core was selected from the numerical solutions. A calculated example of this mode at wavelength 550 nm is depicted in the inset of (b), showing the axial component of the Poynting vector (y-polarization).

Fig. 5.
Fig. 5.

Ratio (in dB) between minimum (x-pol.) and maximum (y-pol.) transmission as a function of wavelength. The inset depicts the transmission versus analyzer angle at a fixed wavelength (λ 0=950 nm). Sample length 1.7 mm.

Fig. 6.
Fig. 6.

Loss of a PCF with a single Ge wire (length 0.8 mm) adjacent to the core. The red curves are simulations (fundamental glass-core mode) and the black are experiments. The labels on the loss peaks refer to the resonances on the Ge wire that phase-match to the glass-core mode. (a) x-polarization. (b) y-polarization. The three encircled points correspond to the modes whose Poynting vector distributions are shown in Fig. 7.

Fig. 7.
Fig. 7.

Axial Poynting vector distributions in vicinity of Ge-wire (a-c) in PCF, calculated using finite-element modelling and (d-f) for Ge wire embedded in silica, calculated by directly solving Maxwell’s equations for Mie resonances on the wire. The wire radius in both cases is R=0.85 µm. The calculations refer to the three points marked by small blue circles in Fig. 6: (a) and (d) are at wavelength 1110 nm for y-polarization, resonance order EH16; (b) and (e) are at wavelength 1201 nm for x-polarization, resonance order TM05; (c) and (f) are at wavelength 1397 nm for x-polarization, resonance order HE24. In (d-f), the fields outside the wire (since the resonance is unbound, these grow in amplitude) have been removed from the plot so as to highlight the internal field patterns.

Fig. 8.
Fig. 8.

(a) Loss in dB/mm of the fundamental TE and TM guided modes in a silica layer 4 µm thick, placed adjacent to a Ge layer 1 µm thick, sandwiched between transparent cladding regions of index 1.35. The full dispersion of Ge and silica is included. The main features are qualitatively very similar to those seen for Ge-filled PCF: loss peaks at wavelengths beyond 900 nm, much higher loss for the TM mode, and a gradual reduction in average loss at shorter wavelengths. (b) Modulus squared of the electric field for the four modes marked A, B, C and D in (a). The presence of a resonance in the Ge layer causes the loss to peak strongly (B and D). In between resonances, the loss falls below its average value. At wavelengths below 900 nm, the loss in the Ge is so high that resonances cannot form, resulting in an absence of strong loss peaks.

Fig. 9.
Fig. 9.

Measured relative spectral shift of the position of three of the resonance peaks in Fig. 6(b), plotted versus temperature, for y-polarization. The slopes of the fitted linear curves are shown in units of nm/K.

Metrics