Abstract

This paper addresses the problem of a photonic crystal (PhC) superprism design for coarse wavelength division multiplexing (CWDM) application. The proposed solution consists in using a PhC structure that presents an efficient balance between the wavelength dispersion and the beam divergence. It is shown that a bidimensional rhombohedral lattice PhC displays both a high beam collimation and an important wavelength dependant angular dispersion. We report the design, fabrication and experimental demonstration of a 4-channel optical demultiplexer with a spectral spacing of 25 nm and a cross-talk level of better than -16 dB using a 2800 µm2 PhC region. The minimum of insertion losses of the demultiplexer is less than 2 dB. The obtained results present an important milestone toward PhC devices for practical applications.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J.-M. Lourtioz, Photonic Crystals - Towards Nanoscale Photonic Devices (Springer, 2005).
  2. H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, "Superprism phenomena in photonic crystals," Phys. Rev. B 58, 10096-10099 (1998).
    [CrossRef]
  3. T. Baba and M. Nakamura, "Photonic Crystal Light Deflection Devices Using the Superprism Effect," IEEE J. Quantum Electron. 38, 909-914 (2002).
    [CrossRef]
  4. A. Lupu, E. Cassan, S. Laval, L. El Melhaoui, P. Lyan, and J. M. Fedeli, "Experimental evidence for superprism phenomena in SOI photonic crystals," Opt. Express 12, 5690-5696 (2004).
    [CrossRef] [PubMed]
  5. B. Momeni and A. Adibi, "Adiabatic matching stage for coupling of light to extended Bloch modes of photonic crystals," Appl. Phys. Lett. 87, 171104 (2005).
    [CrossRef]
  6. J. Witzens, M. Hochberg, T. Baehr-Jones, and A. Scherer, "Mode matching interface for efficient coupling of light into planar photonic crystals," Phys. Rev E 69, 046609 (2004).
    [CrossRef]
  7. T. Baba and D. Ohsaki, "Interfaces of photonic crystals for high efficiency light transmission," Jpn. J. Appl. Phys. 40, 5920-5924 (2001).
    [CrossRef]
  8. S.-G. Lee, J.-s. Choi, J.-E. Kim, H. Y. Park, and C.-S. Kee, "Reflection minimization at two-dimensional photonic crystal interfaces," Opt. Express. 16, 4270-4277 (2008).
    [CrossRef] [PubMed]
  9. T. Matsumoto and T. Baba, "Photonic crystal k-vector superprism," J. Lightwave Technol. 22, 917-922 (2004).
    [CrossRef]
  10. C. Luo, M. Solja�?i�?, and J. D. Joannopoulos, "Superprism effect based on phase velocities," Opt. Lett. 29, 745-747 (2004).
    [CrossRef] [PubMed]
  11. T. Matsumoto, S. Fujita, and T. Baba, "Wavelength demultiplexer consisting of Photonic crystal superprism and superlens," Opt. Express 13, 10768-10776 (2005).
    [CrossRef] [PubMed]
  12. B. Momeni and A. Adibi, "Preconditioned superprism-based photonic crystal demultiplexers: analysis and design," Appl. Opt. 45, 8466-8476 (2006).
    [CrossRef] [PubMed]
  13. B. Momeni, J. Huang, M. Soltani, M. Askari, S. Mohammadi, M. Rakhshandehroo, and A. Adibi, "Compact wavelength demultiplexing using focusing negative index photonic crystal superprisms," Opt. Express 14, 2413-2422 (2006).
    [CrossRef] [PubMed]
  14. T. Baba and T. Matsumoto, "Resolution of photonic crystal superprism," Appl. Phys. Lett. 81, 2325-2327 (2002).
    [CrossRef]
  15. J. Witzens, M. Loncar, and A. Scherer, "Self-collimation in planar photonic crystals," J. Sel. Top. Quantum Electron. 8, 1246-1257 (2002).
    [CrossRef]
  16. S. G. Johnson and J. D. Joannopoulos, "Block-iterative frequency-domain methods for Maxwell's equations in a planewave basis," Opt. Express 8, 173-190 (2001).
    [CrossRef] [PubMed]
  17. M. J. Steel, R. Zoli, C. Grillet, R. C. McPhedran, C. Martijin de Sterke, A. Norton, P. Bassi, and B. J. Eggleton, "Analytic properties of photonic crystal superprism parameters," Phys. Rev. E 71, 056608 (2005).

2008 (1)

S.-G. Lee, J.-s. Choi, J.-E. Kim, H. Y. Park, and C.-S. Kee, "Reflection minimization at two-dimensional photonic crystal interfaces," Opt. Express. 16, 4270-4277 (2008).
[CrossRef] [PubMed]

2006 (2)

2005 (3)

T. Matsumoto, S. Fujita, and T. Baba, "Wavelength demultiplexer consisting of Photonic crystal superprism and superlens," Opt. Express 13, 10768-10776 (2005).
[CrossRef] [PubMed]

B. Momeni and A. Adibi, "Adiabatic matching stage for coupling of light to extended Bloch modes of photonic crystals," Appl. Phys. Lett. 87, 171104 (2005).
[CrossRef]

M. J. Steel, R. Zoli, C. Grillet, R. C. McPhedran, C. Martijin de Sterke, A. Norton, P. Bassi, and B. J. Eggleton, "Analytic properties of photonic crystal superprism parameters," Phys. Rev. E 71, 056608 (2005).

2004 (4)

2002 (3)

T. Baba and M. Nakamura, "Photonic Crystal Light Deflection Devices Using the Superprism Effect," IEEE J. Quantum Electron. 38, 909-914 (2002).
[CrossRef]

T. Baba and T. Matsumoto, "Resolution of photonic crystal superprism," Appl. Phys. Lett. 81, 2325-2327 (2002).
[CrossRef]

J. Witzens, M. Loncar, and A. Scherer, "Self-collimation in planar photonic crystals," J. Sel. Top. Quantum Electron. 8, 1246-1257 (2002).
[CrossRef]

2001 (2)

S. G. Johnson and J. D. Joannopoulos, "Block-iterative frequency-domain methods for Maxwell's equations in a planewave basis," Opt. Express 8, 173-190 (2001).
[CrossRef] [PubMed]

T. Baba and D. Ohsaki, "Interfaces of photonic crystals for high efficiency light transmission," Jpn. J. Appl. Phys. 40, 5920-5924 (2001).
[CrossRef]

1998 (1)

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, "Superprism phenomena in photonic crystals," Phys. Rev. B 58, 10096-10099 (1998).
[CrossRef]

Adibi, A.

Askari, M.

Baba, T.

T. Matsumoto, S. Fujita, and T. Baba, "Wavelength demultiplexer consisting of Photonic crystal superprism and superlens," Opt. Express 13, 10768-10776 (2005).
[CrossRef] [PubMed]

T. Matsumoto and T. Baba, "Photonic crystal k-vector superprism," J. Lightwave Technol. 22, 917-922 (2004).
[CrossRef]

T. Baba and M. Nakamura, "Photonic Crystal Light Deflection Devices Using the Superprism Effect," IEEE J. Quantum Electron. 38, 909-914 (2002).
[CrossRef]

T. Baba and T. Matsumoto, "Resolution of photonic crystal superprism," Appl. Phys. Lett. 81, 2325-2327 (2002).
[CrossRef]

T. Baba and D. Ohsaki, "Interfaces of photonic crystals for high efficiency light transmission," Jpn. J. Appl. Phys. 40, 5920-5924 (2001).
[CrossRef]

Baehr-Jones, T.

J. Witzens, M. Hochberg, T. Baehr-Jones, and A. Scherer, "Mode matching interface for efficient coupling of light into planar photonic crystals," Phys. Rev E 69, 046609 (2004).
[CrossRef]

Bassi, P.

M. J. Steel, R. Zoli, C. Grillet, R. C. McPhedran, C. Martijin de Sterke, A. Norton, P. Bassi, and B. J. Eggleton, "Analytic properties of photonic crystal superprism parameters," Phys. Rev. E 71, 056608 (2005).

Cassan, E.

Choi, J.-s.

S.-G. Lee, J.-s. Choi, J.-E. Kim, H. Y. Park, and C.-S. Kee, "Reflection minimization at two-dimensional photonic crystal interfaces," Opt. Express. 16, 4270-4277 (2008).
[CrossRef] [PubMed]

Eggleton, B. J.

M. J. Steel, R. Zoli, C. Grillet, R. C. McPhedran, C. Martijin de Sterke, A. Norton, P. Bassi, and B. J. Eggleton, "Analytic properties of photonic crystal superprism parameters," Phys. Rev. E 71, 056608 (2005).

El Melhaoui, L.

Fedeli, J. M.

Fujita, S.

Grillet, C.

M. J. Steel, R. Zoli, C. Grillet, R. C. McPhedran, C. Martijin de Sterke, A. Norton, P. Bassi, and B. J. Eggleton, "Analytic properties of photonic crystal superprism parameters," Phys. Rev. E 71, 056608 (2005).

Hochberg, M.

J. Witzens, M. Hochberg, T. Baehr-Jones, and A. Scherer, "Mode matching interface for efficient coupling of light into planar photonic crystals," Phys. Rev E 69, 046609 (2004).
[CrossRef]

Huang, J.

Joannopoulos, J. D.

Johnson, S. G.

Kawakami, S.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, "Superprism phenomena in photonic crystals," Phys. Rev. B 58, 10096-10099 (1998).
[CrossRef]

Kawashima, T.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, "Superprism phenomena in photonic crystals," Phys. Rev. B 58, 10096-10099 (1998).
[CrossRef]

Kee, C.-S.

S.-G. Lee, J.-s. Choi, J.-E. Kim, H. Y. Park, and C.-S. Kee, "Reflection minimization at two-dimensional photonic crystal interfaces," Opt. Express. 16, 4270-4277 (2008).
[CrossRef] [PubMed]

Kim, J.-E.

S.-G. Lee, J.-s. Choi, J.-E. Kim, H. Y. Park, and C.-S. Kee, "Reflection minimization at two-dimensional photonic crystal interfaces," Opt. Express. 16, 4270-4277 (2008).
[CrossRef] [PubMed]

Kosaka, H.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, "Superprism phenomena in photonic crystals," Phys. Rev. B 58, 10096-10099 (1998).
[CrossRef]

Laval, S.

Lee, S.-G.

S.-G. Lee, J.-s. Choi, J.-E. Kim, H. Y. Park, and C.-S. Kee, "Reflection minimization at two-dimensional photonic crystal interfaces," Opt. Express. 16, 4270-4277 (2008).
[CrossRef] [PubMed]

Loncar, M.

J. Witzens, M. Loncar, and A. Scherer, "Self-collimation in planar photonic crystals," J. Sel. Top. Quantum Electron. 8, 1246-1257 (2002).
[CrossRef]

Luo, C.

Lupu, A.

Lyan, P.

Martijin de Sterke, C.

M. J. Steel, R. Zoli, C. Grillet, R. C. McPhedran, C. Martijin de Sterke, A. Norton, P. Bassi, and B. J. Eggleton, "Analytic properties of photonic crystal superprism parameters," Phys. Rev. E 71, 056608 (2005).

Matsumoto, T.

McPhedran, R. C.

M. J. Steel, R. Zoli, C. Grillet, R. C. McPhedran, C. Martijin de Sterke, A. Norton, P. Bassi, and B. J. Eggleton, "Analytic properties of photonic crystal superprism parameters," Phys. Rev. E 71, 056608 (2005).

Mohammadi, S.

Momeni, B.

Nakamura, M.

T. Baba and M. Nakamura, "Photonic Crystal Light Deflection Devices Using the Superprism Effect," IEEE J. Quantum Electron. 38, 909-914 (2002).
[CrossRef]

Norton, A.

M. J. Steel, R. Zoli, C. Grillet, R. C. McPhedran, C. Martijin de Sterke, A. Norton, P. Bassi, and B. J. Eggleton, "Analytic properties of photonic crystal superprism parameters," Phys. Rev. E 71, 056608 (2005).

Notomi, M.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, "Superprism phenomena in photonic crystals," Phys. Rev. B 58, 10096-10099 (1998).
[CrossRef]

Ohsaki, D.

T. Baba and D. Ohsaki, "Interfaces of photonic crystals for high efficiency light transmission," Jpn. J. Appl. Phys. 40, 5920-5924 (2001).
[CrossRef]

Park, H. Y.

S.-G. Lee, J.-s. Choi, J.-E. Kim, H. Y. Park, and C.-S. Kee, "Reflection minimization at two-dimensional photonic crystal interfaces," Opt. Express. 16, 4270-4277 (2008).
[CrossRef] [PubMed]

Rakhshandehroo, M.

Sato, T.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, "Superprism phenomena in photonic crystals," Phys. Rev. B 58, 10096-10099 (1998).
[CrossRef]

Scherer, A.

J. Witzens, M. Hochberg, T. Baehr-Jones, and A. Scherer, "Mode matching interface for efficient coupling of light into planar photonic crystals," Phys. Rev E 69, 046609 (2004).
[CrossRef]

J. Witzens, M. Loncar, and A. Scherer, "Self-collimation in planar photonic crystals," J. Sel. Top. Quantum Electron. 8, 1246-1257 (2002).
[CrossRef]

Solja??i??, M.

Soltani, M.

Steel, M. J.

M. J. Steel, R. Zoli, C. Grillet, R. C. McPhedran, C. Martijin de Sterke, A. Norton, P. Bassi, and B. J. Eggleton, "Analytic properties of photonic crystal superprism parameters," Phys. Rev. E 71, 056608 (2005).

Tamamura, T.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, "Superprism phenomena in photonic crystals," Phys. Rev. B 58, 10096-10099 (1998).
[CrossRef]

Tomita, A.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, "Superprism phenomena in photonic crystals," Phys. Rev. B 58, 10096-10099 (1998).
[CrossRef]

Witzens, J.

J. Witzens, M. Hochberg, T. Baehr-Jones, and A. Scherer, "Mode matching interface for efficient coupling of light into planar photonic crystals," Phys. Rev E 69, 046609 (2004).
[CrossRef]

J. Witzens, M. Loncar, and A. Scherer, "Self-collimation in planar photonic crystals," J. Sel. Top. Quantum Electron. 8, 1246-1257 (2002).
[CrossRef]

Zoli, R.

M. J. Steel, R. Zoli, C. Grillet, R. C. McPhedran, C. Martijin de Sterke, A. Norton, P. Bassi, and B. J. Eggleton, "Analytic properties of photonic crystal superprism parameters," Phys. Rev. E 71, 056608 (2005).

Appl. Opt. (1)

Appl. Phys. Lett. (2)

B. Momeni and A. Adibi, "Adiabatic matching stage for coupling of light to extended Bloch modes of photonic crystals," Appl. Phys. Lett. 87, 171104 (2005).
[CrossRef]

T. Baba and T. Matsumoto, "Resolution of photonic crystal superprism," Appl. Phys. Lett. 81, 2325-2327 (2002).
[CrossRef]

IEEE J. Quantum Electron. (1)

T. Baba and M. Nakamura, "Photonic Crystal Light Deflection Devices Using the Superprism Effect," IEEE J. Quantum Electron. 38, 909-914 (2002).
[CrossRef]

J. Lightwave Technol. (1)

J. Sel. Top. Quantum Electron. (1)

J. Witzens, M. Loncar, and A. Scherer, "Self-collimation in planar photonic crystals," J. Sel. Top. Quantum Electron. 8, 1246-1257 (2002).
[CrossRef]

Jpn. J. Appl. Phys. (1)

T. Baba and D. Ohsaki, "Interfaces of photonic crystals for high efficiency light transmission," Jpn. J. Appl. Phys. 40, 5920-5924 (2001).
[CrossRef]

Opt. Express (4)

Opt. Express. (1)

S.-G. Lee, J.-s. Choi, J.-E. Kim, H. Y. Park, and C.-S. Kee, "Reflection minimization at two-dimensional photonic crystal interfaces," Opt. Express. 16, 4270-4277 (2008).
[CrossRef] [PubMed]

Opt. Lett. (1)

Phys. Rev E (1)

J. Witzens, M. Hochberg, T. Baehr-Jones, and A. Scherer, "Mode matching interface for efficient coupling of light into planar photonic crystals," Phys. Rev E 69, 046609 (2004).
[CrossRef]

Phys. Rev. B (1)

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, "Superprism phenomena in photonic crystals," Phys. Rev. B 58, 10096-10099 (1998).
[CrossRef]

Phys. Rev. E (1)

M. J. Steel, R. Zoli, C. Grillet, R. C. McPhedran, C. Martijin de Sterke, A. Norton, P. Bassi, and B. J. Eggleton, "Analytic properties of photonic crystal superprism parameters," Phys. Rev. E 71, 056608 (2005).

Other (1)

J.-M. Lourtioz, Photonic Crystals - Towards Nanoscale Photonic Devices (Springer, 2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(a). Variation of the group velocity direction with the wavelength in the vicinity of a sharp equi-frequency curve corner. (b) Spread-out of the group-velocity directions for a beam of tangential wave vector width Δk‖.

Fig. 2.
Fig. 2.

(a). Rhombohedral lattice PhC structure (b) Equi-frequency-curves of the first quasi TE modes. Regions of band structure with different properties are marked in: blue for low beam divergence (|p|< 2); red for strong superprism effect (|q|>35); green where blue and red regions overlap; gray for regions that cannot be excited from the input slab waveguide.

Fig. 3.
Fig. 3.

(a). q and (b) p factors for the first quasi TE band. The bold solid curve is the EIAP for an incident angle θin=-50°. (c) Refraction angle (dashed line) and 3D-FDTD PhC insertion power. (d) p and q (dashed line) factors along the EIAP at θin=-50°.

Fig. 4.
Fig. 4.

SEM view of the fabricated demultiplexing structure. Details of the PhC structure are shown on the insets.

Fig. 5.
Fig. 5.

(a). 2D-FDTD transmission results for the four output channels normalized with respect to the input power. (b) Experimental transmission of the four output channels normalized with respect to the maximum of transmitted power.

Metrics