Abstract

We present a new method for performing electro-optical three-dimensional (3-D) object recognition under incoherent white-light illumination. Perspective projections of the 3-D scene are acquired from multiple points of view and then processed into a single complex two-dimensional modified Fresnel hologram of the scene. This hologram is processed with a single filter which is matched to a single object, so that all identical objects in the scene yield similar correlation peaks in the 3-D space with almost no dependency on the distances of the objects from the acquisition plane. The new method is demonstrated by experiments.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Bamler and J. Hofer-Alfeis, "Three- and four dimensional filter operations by coherent optics," Opt. Acta. 29, 747-757 (1982).
    [CrossRef]
  2. J. Rosen, "Three-dimensional joint transform correlator," Appl. Opt. 37, 7538-7544 (1998).
    [CrossRef]
  3. T. C. Poon and T. Kim, "Optical image recognition of three dimensional objects," Appl. Opt. 38, 370-381 (1999).
    [CrossRef]
  4. J. J. Esteve-Taboada, D. Mas, and J. Garcia, "Three dimensional object recognition by Fourier transform profilometry," Appl. Opt. 38, 4760-4765 (1999).
    [CrossRef]
  5. B. Javidi, R. Ponce-Díaz, and S. -H. Hong, "Three-dimensional recognition of occluded objects by using computational integral imaging," Opt. Lett. 31, 1106-1108 (2006).
    [CrossRef] [PubMed]
  6. J.-S. Park, D.-C. Hwang, D.-H. Shin, and E.-S. Kim, "Resolution-enhanced three-dimensional image correlator using computationally reconstructed integral images," Opt. Commun. 26, 72-79 (2007).
    [CrossRef]
  7. D.-H. Shin and H. Yoo, "Scale-variant magnification for computational integral imaging and its application to 3D object correlator," Opt. Express 16, 8855-8867 (2008).
    [CrossRef] [PubMed]
  8. Y. Li and J. Rosen, "Object recognition using three-dimensional optical quasi-correlation," J. Opt. Soc. Am. A 19, 1755-1762 (2002).
    [CrossRef]
  9. N. T. Shaked, J. Rosen, and A. Stern, "Integral holography: white-light single-shot hologram acquisition," Opt. Express 15, 5754-5760 (2007).
    [CrossRef] [PubMed]
  10. N. T. Shaked, B. Katz, and J. Rosen, "Fluorescence multicolor hologram recorded by using a macrolens array," Opt. Lett. 33, 1461-1463 (2008).
    [CrossRef] [PubMed]
  11. N. T. Shaked and J. Rosen, "Modified Fresnel computer-generated hologram directly recorded by multiple-viewpoint projections," Appl. Opt. 47, D21-D27 (2008).
    [CrossRef] [PubMed]
  12. N. T. Shaked and J. Rosen, "Multiple-viewpoint projection holograms synthesized by spatially-incoherent correlation with broad functions," J. Opt. Soc. Am. A 25, 2129-2138 (2008).
    [CrossRef]
  13. J. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, New York, 1996), Chap. 8.

2008 (4)

2007 (2)

N. T. Shaked, J. Rosen, and A. Stern, "Integral holography: white-light single-shot hologram acquisition," Opt. Express 15, 5754-5760 (2007).
[CrossRef] [PubMed]

J.-S. Park, D.-C. Hwang, D.-H. Shin, and E.-S. Kim, "Resolution-enhanced three-dimensional image correlator using computationally reconstructed integral images," Opt. Commun. 26, 72-79 (2007).
[CrossRef]

2006 (1)

2002 (1)

1999 (2)

1998 (1)

1982 (1)

R. Bamler and J. Hofer-Alfeis, "Three- and four dimensional filter operations by coherent optics," Opt. Acta. 29, 747-757 (1982).
[CrossRef]

Bamler, R.

R. Bamler and J. Hofer-Alfeis, "Three- and four dimensional filter operations by coherent optics," Opt. Acta. 29, 747-757 (1982).
[CrossRef]

Esteve-Taboada, J. J.

Garcia, J.

Hofer-Alfeis, J.

R. Bamler and J. Hofer-Alfeis, "Three- and four dimensional filter operations by coherent optics," Opt. Acta. 29, 747-757 (1982).
[CrossRef]

Hong, S. -H.

Hwang, D.-C.

J.-S. Park, D.-C. Hwang, D.-H. Shin, and E.-S. Kim, "Resolution-enhanced three-dimensional image correlator using computationally reconstructed integral images," Opt. Commun. 26, 72-79 (2007).
[CrossRef]

Javidi, B.

Katz, B.

Kim, E.-S.

J.-S. Park, D.-C. Hwang, D.-H. Shin, and E.-S. Kim, "Resolution-enhanced three-dimensional image correlator using computationally reconstructed integral images," Opt. Commun. 26, 72-79 (2007).
[CrossRef]

Kim, T.

Li, Y.

Mas, D.

Park, J.-S.

J.-S. Park, D.-C. Hwang, D.-H. Shin, and E.-S. Kim, "Resolution-enhanced three-dimensional image correlator using computationally reconstructed integral images," Opt. Commun. 26, 72-79 (2007).
[CrossRef]

Ponce-Díaz, R.

Poon, T. C.

Rosen, J.

Shaked, N. T.

Shin, D.-H.

D.-H. Shin and H. Yoo, "Scale-variant magnification for computational integral imaging and its application to 3D object correlator," Opt. Express 16, 8855-8867 (2008).
[CrossRef] [PubMed]

J.-S. Park, D.-C. Hwang, D.-H. Shin, and E.-S. Kim, "Resolution-enhanced three-dimensional image correlator using computationally reconstructed integral images," Opt. Commun. 26, 72-79 (2007).
[CrossRef]

Stern, A.

Yoo, H.

Appl. Opt. (4)

J. Opt. Soc. Am. A (2)

Opt. Acta. (1)

R. Bamler and J. Hofer-Alfeis, "Three- and four dimensional filter operations by coherent optics," Opt. Acta. 29, 747-757 (1982).
[CrossRef]

Opt. Commun. (1)

J.-S. Park, D.-C. Hwang, D.-H. Shin, and E.-S. Kim, "Resolution-enhanced three-dimensional image correlator using computationally reconstructed integral images," Opt. Commun. 26, 72-79 (2007).
[CrossRef]

Opt. Express (2)

Opt. Lett. (2)

Other (1)

J. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, New York, 1996), Chap. 8.

Supplementary Material (2)

» Media 1: AVI (4246 KB)     
» Media 2: AVI (4036 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Schematics of the 3-D object recognition method.

Fig. 2.
Fig. 2.

Nine out of the 200×200 projections used to generate the DIMFH of the 3-D scene.

Fig. 3.
Fig. 3.

(a) The resulting DIMFH magnitude; (b) The resulting DIMFH phase; (c) The inverse Fourier transform of the phase-only filter used in the correlation process (the correlator ’s PSF).

Fig. 4.
Fig. 4.

Best-in-focus reconstructed planes of the hologram shown in Figs. 3(a) and (b): (a) For the close tiger; (b) For the goat; (c) For the distant tiger.

Fig. 5.
Fig. 5.

(a)-(c) The correlation planes corresponding to the reconstruction distances used in Figs. 4(a)-(c), respectively, obtained by the proposed method; (d)-(f) Similar correlation planes obtained by the old method (based on a hologram which does not have a constant magnification). (A.U.=arbitrary units.)

Fig. 6.
Fig. 6.

The correlation peaks along the optical axis of the 3-D correlation space for each of the three objects: (a) In the proposed method (Media 1); (b) In the old method ( Media 2]); The best-in-focus distance points for each of the objects are circled.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

H ( m , n ) = P m , n ( x p , y p ) exp [ j 2 π b ( x p 2 + y p 2 ) ] d x p d y p ,
s d ( m , n ) = H ( m , n ) * Q d ( m , n ) ,
Q d ( m , n ) = exp [ j 2 π γ ( m 2 + n 2 ) Δ p 2 d 2 ] ,
C d ( m , n ) = H ( m , n ) f ( m , n ) * Q d ( m , n ) ,

Metrics