Abstract

The Acousto-Optic Tunable Filter (AOTF) is a high-speed full-field monochromator which generates two spectrally filtered light beams with ordinary and extraordinary polarization state. The angle of diffracted light in an AOTF changes according to the scanning of wavelength, which causes an image shift on a CCD plane. An analytic design of a prism system to compensate for the angular-shift error is proposed in this paper. Analysis of light paths in a prism and experimental results verify a proposed compensation method. Experimental results agreed with simulation results based on the suggested prism model. Angular-shift errors of ordinary and extraordinary rays are simultaneously minimized at optimal conditions with the designed prism.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. W. Kim and G. H Kim, "Thickness-profile measurement of transparent thin-film layers by white-light scanning interferometry," Appl. Opt. 38, 5968-73 (1999)
    [CrossRef]
  2. D. S. Kim and S. H. Kim, "Measurement of the thickness profile of a transparent thin film deposited upon a pattern structure with an acousto-optic tunable filter," Opt. Lett. 27, 1893-1895 (2002).
    [CrossRef]
  3. H. Akiyama, O. Sasaki, and T. Suzuki, "Sinusoidal wavelength-scanning interferometer using an acousto-optic tunable filter for measurement of thickness and surface profile of a thin film," Opt. Express 13, 10066-10074 (2005).
    [CrossRef] [PubMed]
  4. G. Georgiev, D. A. Glenar, and J. J. Hillman, "Spectral characterization of acousto-optic filters used in imaging spectroscopy," Appl. Opt. 41, 209-217 (2002).
    [CrossRef] [PubMed]
  5. P. A. Gass, and J. R. Sambles, "Accurate design of a noncollinear acousto-optic tunable filter," Opt. Lett. 16, 429-431 (1991).
    [CrossRef] [PubMed]
  6. B. Xue, K. Xu, and H. Yamamoto, "Discusstion to the equivalent point realized by the two polarized beams in AOTF system," Opt. Express 4, 139-146 (1999).
    [CrossRef] [PubMed]
  7. A. Yamamoto, C. C. Kuo, K. Sunouchi, S. Wada, I. Yamaguchi, and H. Tashiro, "Surface Shape Measurement by Wavelength Scanning Interferometry using an Electronically Tuned Ti:Sapphire Laser," Opt. Rev. 8, 59-63 (2001).
    [CrossRef]
  8. T. Yano and A. Watanabe, "Acoustooptic TeO2 tunable filter using far-off-axis anisotropic Bragg diffraction," Appl. Opt. 15, 2250-2258 (1976).
    [CrossRef] [PubMed]
  9. E. S. Wachman, W. H. Niu, and D. L. Farkas, "AOTF microscope for imaging with increased speed and spectral versatility," Biophys. J. 73, 1215-1222 (1997).
    [CrossRef] [PubMed]
  10. D. A. Glenar, J. J. Hillman, B. Saif, and J. Bergstralh, "Acousto-optic imaging spectro- polarimetry for remote sensing," Appl. Opt. 33, 7412-7424 (1994).
    [CrossRef] [PubMed]
  11. E. Hecht, Optics (Addison Wesley, 2002) pp. 187-188.
  12. E. Hecht, Optics (Addison Wesley, 2002) pp. 111-122.
  13. S. K. Dubey, D. S. Mehta, A. Anand, and C. Shakher, "Simultaneous topography and tomography of latent fingerprints using full-field swept-source optical coherence tomography," J. Opt. A: Pure Appl. Opt. 10, 8 (2008).
    [CrossRef]

2008 (1)

S. K. Dubey, D. S. Mehta, A. Anand, and C. Shakher, "Simultaneous topography and tomography of latent fingerprints using full-field swept-source optical coherence tomography," J. Opt. A: Pure Appl. Opt. 10, 8 (2008).
[CrossRef]

2005 (1)

2002 (2)

2001 (1)

A. Yamamoto, C. C. Kuo, K. Sunouchi, S. Wada, I. Yamaguchi, and H. Tashiro, "Surface Shape Measurement by Wavelength Scanning Interferometry using an Electronically Tuned Ti:Sapphire Laser," Opt. Rev. 8, 59-63 (2001).
[CrossRef]

1999 (2)

1997 (1)

E. S. Wachman, W. H. Niu, and D. L. Farkas, "AOTF microscope for imaging with increased speed and spectral versatility," Biophys. J. 73, 1215-1222 (1997).
[CrossRef] [PubMed]

1994 (1)

1991 (1)

1976 (1)

Akiyama, H.

Anand, A.

S. K. Dubey, D. S. Mehta, A. Anand, and C. Shakher, "Simultaneous topography and tomography of latent fingerprints using full-field swept-source optical coherence tomography," J. Opt. A: Pure Appl. Opt. 10, 8 (2008).
[CrossRef]

Bergstralh, J.

Dubey, S. K.

S. K. Dubey, D. S. Mehta, A. Anand, and C. Shakher, "Simultaneous topography and tomography of latent fingerprints using full-field swept-source optical coherence tomography," J. Opt. A: Pure Appl. Opt. 10, 8 (2008).
[CrossRef]

Farkas, D. L.

E. S. Wachman, W. H. Niu, and D. L. Farkas, "AOTF microscope for imaging with increased speed and spectral versatility," Biophys. J. 73, 1215-1222 (1997).
[CrossRef] [PubMed]

Gass, P. A.

Georgiev, G.

Glenar, D. A.

Hillman, J. J.

Kim, D. S.

Kim, G. H

Kim, S. H.

Kim, S. W.

Kuo, C. C.

A. Yamamoto, C. C. Kuo, K. Sunouchi, S. Wada, I. Yamaguchi, and H. Tashiro, "Surface Shape Measurement by Wavelength Scanning Interferometry using an Electronically Tuned Ti:Sapphire Laser," Opt. Rev. 8, 59-63 (2001).
[CrossRef]

Mehta, D. S.

S. K. Dubey, D. S. Mehta, A. Anand, and C. Shakher, "Simultaneous topography and tomography of latent fingerprints using full-field swept-source optical coherence tomography," J. Opt. A: Pure Appl. Opt. 10, 8 (2008).
[CrossRef]

Niu, W. H.

E. S. Wachman, W. H. Niu, and D. L. Farkas, "AOTF microscope for imaging with increased speed and spectral versatility," Biophys. J. 73, 1215-1222 (1997).
[CrossRef] [PubMed]

Saif, B.

Sambles, J. R.

Sasaki, O.

Shakher, C.

S. K. Dubey, D. S. Mehta, A. Anand, and C. Shakher, "Simultaneous topography and tomography of latent fingerprints using full-field swept-source optical coherence tomography," J. Opt. A: Pure Appl. Opt. 10, 8 (2008).
[CrossRef]

Sunouchi, K.

A. Yamamoto, C. C. Kuo, K. Sunouchi, S. Wada, I. Yamaguchi, and H. Tashiro, "Surface Shape Measurement by Wavelength Scanning Interferometry using an Electronically Tuned Ti:Sapphire Laser," Opt. Rev. 8, 59-63 (2001).
[CrossRef]

Suzuki, T.

Tashiro, H.

A. Yamamoto, C. C. Kuo, K. Sunouchi, S. Wada, I. Yamaguchi, and H. Tashiro, "Surface Shape Measurement by Wavelength Scanning Interferometry using an Electronically Tuned Ti:Sapphire Laser," Opt. Rev. 8, 59-63 (2001).
[CrossRef]

Wachman, E. S.

E. S. Wachman, W. H. Niu, and D. L. Farkas, "AOTF microscope for imaging with increased speed and spectral versatility," Biophys. J. 73, 1215-1222 (1997).
[CrossRef] [PubMed]

Wada, S.

A. Yamamoto, C. C. Kuo, K. Sunouchi, S. Wada, I. Yamaguchi, and H. Tashiro, "Surface Shape Measurement by Wavelength Scanning Interferometry using an Electronically Tuned Ti:Sapphire Laser," Opt. Rev. 8, 59-63 (2001).
[CrossRef]

Watanabe, A.

Xu, K.

Xue, B.

Yamaguchi, I.

A. Yamamoto, C. C. Kuo, K. Sunouchi, S. Wada, I. Yamaguchi, and H. Tashiro, "Surface Shape Measurement by Wavelength Scanning Interferometry using an Electronically Tuned Ti:Sapphire Laser," Opt. Rev. 8, 59-63 (2001).
[CrossRef]

Yamamoto, A.

A. Yamamoto, C. C. Kuo, K. Sunouchi, S. Wada, I. Yamaguchi, and H. Tashiro, "Surface Shape Measurement by Wavelength Scanning Interferometry using an Electronically Tuned Ti:Sapphire Laser," Opt. Rev. 8, 59-63 (2001).
[CrossRef]

Yamamoto, H.

Yano, T.

Appl. Opt. (4)

Biophys. J. (1)

E. S. Wachman, W. H. Niu, and D. L. Farkas, "AOTF microscope for imaging with increased speed and spectral versatility," Biophys. J. 73, 1215-1222 (1997).
[CrossRef] [PubMed]

J. Opt. A: Pure Appl. Opt. (1)

S. K. Dubey, D. S. Mehta, A. Anand, and C. Shakher, "Simultaneous topography and tomography of latent fingerprints using full-field swept-source optical coherence tomography," J. Opt. A: Pure Appl. Opt. 10, 8 (2008).
[CrossRef]

Opt. Express (2)

Opt. Lett. (2)

Opt. Rev. (1)

A. Yamamoto, C. C. Kuo, K. Sunouchi, S. Wada, I. Yamaguchi, and H. Tashiro, "Surface Shape Measurement by Wavelength Scanning Interferometry using an Electronically Tuned Ti:Sapphire Laser," Opt. Rev. 8, 59-63 (2001).
[CrossRef]

Other (2)

E. Hecht, Optics (Addison Wesley, 2002) pp. 187-188.

E. Hecht, Optics (Addison Wesley, 2002) pp. 111-122.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1.

Geometry of a dispersing prism

Fig. 2.
Fig. 2.

The proposed prism compensation system

Fig. 3.
Fig. 3.

Geometrical analysis of the prism system

Fig. 4.
Fig. 4.

Geometrical analysis of the prism with tilting angle.

Fig. 5.
Fig. 5.

Experimental setup to measure the diffraction angle.

Fig. 6.
Fig. 6.

Variation of diffraction angle according to driving frequency of the AOTF

Fig. 7.
Fig. 7.

Image-shift of extraordinary ray captured by the CCD

Fig. 8.
Fig. 8.

Simulation result of angle deviation according to prism tilting angles.

Fig. 9.
Fig. 9.

Experimental setup with proposed prism for compensation.

Fig. 10.
Fig. 10.

Design of a specific prism (A=46.57°, B=46.62°, H=20mm, S=37.717mm, T=20mm, Material: BK7).

Fig. 11.
Fig. 11.

Compensated images in the CCD with a designed prism

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

δ = ( i 1 i 1 ' ) + ( i 2 ' i 2 )
i 2 = sin 1 ( n · sin i 2 ) = sin 1 [ n · sin ( x i 1 ) ]
= sin 1 [ ( sin x ) ( n 2 sin 2 i 1 ) 1 2 sin i 1 cos x ]
δ = i 1 + sin 1 [ ( sin x ) ( n 2 sin 2 i 1 ) 1 2 sin i 1 cos x ] x
Δ θ d ( λ ) = Δ n b ( λ ) sin 2 θ i tan ( θ i θ a )
i 1 = θ + A
i 2 = sin 1 [ n sin ( A sin 1 { 1 n sin ( θ + A ) } ) ]
i 2 = sin 1 [ n sin ( B sin 1 { 1 n sin ( θ + B ) } ) ]
i 1 = θ + A α
i 2 = sin 1 [ n sin ( A sin 1 { 1 n sin ( θ + A α ) } ) ]
i 2 = sin 1 [ n sin ( B sin 1 { 1 n sin ( θ + B + α ) } ) ]

Metrics