Abstract

We report on the fabrication and characterization of silicon photonic crystal waveguides completely embedded in silica. These waveguides offer a robust alternative to air-membranes and are fully compatible with monolithic integration. Despite the reduced refractive index contrast compared to the air-membranes, these waveguides offer a considerable operating range of ≈10 nm in the 1550 nm window. While the reduced index contrast weakens the perturbations due to surface roughness, we measure losses of 35±3dB/cm compared to 12±3 dB/cm for nominally identical air-membranes. Numerical analysis reveals that the difference in loss results from the different mode distribution and group index of the respective waveguide modes. Radius disorder is used as a fitting parameter in the numerical simulations with the best fits found for disorder levels of 1.4–1.7 nm RMS, which attest to the high quality of our structures.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Kuramochi, M. Notomi, S. Hughes, A. Shinya, T. Watanabe, and L. Ramunno, "Disorder-induced scattering loss of line-defect waveguides in photonic crystal slabs," Phys. Rev. B. 72, 161318 (2005).
    [CrossRef]
  2. L. O'Faolain, X. Yuan, D. McIntyre, S. Thoms, H. Chong, R. M. De la Rue, and T. F. Krauss, "Low-loss propagation in photonic crystal waveguides," Electron. Lett. 42,1454-1455 (2006).
    [CrossRef]
  3. .M. Notomi, T. Tanabe, A. Shinya, E. Kuramochi, H. Taniyama, S. Mitsugi, and M. Morita, "Nonlinear and adiabatic control of high-Q photonic-crystal nanocavities," Opt. Express 15, 17458-17481 (2008).
    [CrossRef]
  4. M. Settle, M. Salib, A. Michaeli, and T. F. Krauss, "Low loss silicon on insulator photonic crystal waveguides made by 193nm optical lithography," Opt. Express 14, 2440-2445 (2006).
    [CrossRef] [PubMed]
  5. Y. Tanaka, T. Asano, R. Hatsuta, and S. Noda, "Analysis of a line-defect waveguide on a silicon-on-insulator two-dimensional photonic-crystal slab," J. Lightwave. Technol. 22, 2787-2792 (2004).
    [CrossRef]
  6. M. Notomi, A. Shinya, S. Mitsugi, E. Kuramochi, and H. Ryu, "Waveguides, resonators and their coupled elements in photonic crystal slabs," Opt. Express 12, 1551-1561 (2004).
    [CrossRef] [PubMed]
  7. D. Gerace and L. C. Andreani, "Low-loss guided modes in photonic crystal waveguides," Opt. Express 13, 4939-4951 (2005).
    [CrossRef] [PubMed]
  8. See http://www.nanophotonics.eu.
  9. C-C. Yang and W-C Chen, "The structures and properties of hydrogen silsesquioxane (HSQ) films produced by thermal curing," J. Mater. Chem. 12, 1138-1141 (2002).
    [CrossRef]
  10. Y. A. Vlasov and S. J. McNab, "Losses in single-mode silicon-on-insulator strip waveguides and bends," Opt. Express 12, 1622-1631 (2004).
    [CrossRef] [PubMed]
  11. L. C. Andreani and D. Gerace, "Light-matter interaction in photonic crystal slabs," Phys. Status. Solidi B 244, 3528-3539 (2007).
    [CrossRef]
  12. L. O�??Faolain, T. P. White, D. O�??Brien, X. Yuan, M. D. Settle, and T. F. Krauss, "Dependence of extrinsic loss on group velocity in photonic crystal waveguides," Opt. Express 15, 13129-13138 (2007).
    [CrossRef] [PubMed]
  13. D. Gerace and L. C. Andreani, "Disorder-induced losses in photonic crystal waveguides with line defects," Opt. Lett. 29, 1897-1899 (2004).
    [CrossRef] [PubMed]
  14. M. Notomi, A. Shinya, K. Yamada, J. Takahashi, C. Takahashi, and I. Yokahama, "Structural tuning of guiding modes of line-defect waveguides of silicon-on-insulator photonic crystal slabs," IEEE J. Quantum Electron. 38, 736-742 (2000).
    [CrossRef]

2008 (1)

2007 (2)

2006 (2)

M. Settle, M. Salib, A. Michaeli, and T. F. Krauss, "Low loss silicon on insulator photonic crystal waveguides made by 193nm optical lithography," Opt. Express 14, 2440-2445 (2006).
[CrossRef] [PubMed]

L. O'Faolain, X. Yuan, D. McIntyre, S. Thoms, H. Chong, R. M. De la Rue, and T. F. Krauss, "Low-loss propagation in photonic crystal waveguides," Electron. Lett. 42,1454-1455 (2006).
[CrossRef]

2005 (2)

E. Kuramochi, M. Notomi, S. Hughes, A. Shinya, T. Watanabe, and L. Ramunno, "Disorder-induced scattering loss of line-defect waveguides in photonic crystal slabs," Phys. Rev. B. 72, 161318 (2005).
[CrossRef]

D. Gerace and L. C. Andreani, "Low-loss guided modes in photonic crystal waveguides," Opt. Express 13, 4939-4951 (2005).
[CrossRef] [PubMed]

2004 (4)

2002 (1)

C-C. Yang and W-C Chen, "The structures and properties of hydrogen silsesquioxane (HSQ) films produced by thermal curing," J. Mater. Chem. 12, 1138-1141 (2002).
[CrossRef]

2000 (1)

M. Notomi, A. Shinya, K. Yamada, J. Takahashi, C. Takahashi, and I. Yokahama, "Structural tuning of guiding modes of line-defect waveguides of silicon-on-insulator photonic crystal slabs," IEEE J. Quantum Electron. 38, 736-742 (2000).
[CrossRef]

Andreani, L. C.

Asano, T.

Y. Tanaka, T. Asano, R. Hatsuta, and S. Noda, "Analysis of a line-defect waveguide on a silicon-on-insulator two-dimensional photonic-crystal slab," J. Lightwave. Technol. 22, 2787-2792 (2004).
[CrossRef]

Chen, W-C

C-C. Yang and W-C Chen, "The structures and properties of hydrogen silsesquioxane (HSQ) films produced by thermal curing," J. Mater. Chem. 12, 1138-1141 (2002).
[CrossRef]

Chong, H.

L. O'Faolain, X. Yuan, D. McIntyre, S. Thoms, H. Chong, R. M. De la Rue, and T. F. Krauss, "Low-loss propagation in photonic crystal waveguides," Electron. Lett. 42,1454-1455 (2006).
[CrossRef]

De la Rue, R. M.

L. O'Faolain, X. Yuan, D. McIntyre, S. Thoms, H. Chong, R. M. De la Rue, and T. F. Krauss, "Low-loss propagation in photonic crystal waveguides," Electron. Lett. 42,1454-1455 (2006).
[CrossRef]

Gerace, D.

Hatsuta, R.

Y. Tanaka, T. Asano, R. Hatsuta, and S. Noda, "Analysis of a line-defect waveguide on a silicon-on-insulator two-dimensional photonic-crystal slab," J. Lightwave. Technol. 22, 2787-2792 (2004).
[CrossRef]

Hughes, S.

E. Kuramochi, M. Notomi, S. Hughes, A. Shinya, T. Watanabe, and L. Ramunno, "Disorder-induced scattering loss of line-defect waveguides in photonic crystal slabs," Phys. Rev. B. 72, 161318 (2005).
[CrossRef]

Krauss, T. F.

Kuramochi, E.

McIntyre, D.

L. O'Faolain, X. Yuan, D. McIntyre, S. Thoms, H. Chong, R. M. De la Rue, and T. F. Krauss, "Low-loss propagation in photonic crystal waveguides," Electron. Lett. 42,1454-1455 (2006).
[CrossRef]

McNab, S. J.

Michaeli, A.

Mitsugi, S.

Morita, M.

Noda, S.

Y. Tanaka, T. Asano, R. Hatsuta, and S. Noda, "Analysis of a line-defect waveguide on a silicon-on-insulator two-dimensional photonic-crystal slab," J. Lightwave. Technol. 22, 2787-2792 (2004).
[CrossRef]

Notomi, M.

.M. Notomi, T. Tanabe, A. Shinya, E. Kuramochi, H. Taniyama, S. Mitsugi, and M. Morita, "Nonlinear and adiabatic control of high-Q photonic-crystal nanocavities," Opt. Express 15, 17458-17481 (2008).
[CrossRef]

E. Kuramochi, M. Notomi, S. Hughes, A. Shinya, T. Watanabe, and L. Ramunno, "Disorder-induced scattering loss of line-defect waveguides in photonic crystal slabs," Phys. Rev. B. 72, 161318 (2005).
[CrossRef]

M. Notomi, A. Shinya, S. Mitsugi, E. Kuramochi, and H. Ryu, "Waveguides, resonators and their coupled elements in photonic crystal slabs," Opt. Express 12, 1551-1561 (2004).
[CrossRef] [PubMed]

M. Notomi, A. Shinya, K. Yamada, J. Takahashi, C. Takahashi, and I. Yokahama, "Structural tuning of guiding modes of line-defect waveguides of silicon-on-insulator photonic crystal slabs," IEEE J. Quantum Electron. 38, 736-742 (2000).
[CrossRef]

O???Brien, D.

O???Faolain, L.

O'Faolain, L.

L. O'Faolain, X. Yuan, D. McIntyre, S. Thoms, H. Chong, R. M. De la Rue, and T. F. Krauss, "Low-loss propagation in photonic crystal waveguides," Electron. Lett. 42,1454-1455 (2006).
[CrossRef]

Ramunno, L.

E. Kuramochi, M. Notomi, S. Hughes, A. Shinya, T. Watanabe, and L. Ramunno, "Disorder-induced scattering loss of line-defect waveguides in photonic crystal slabs," Phys. Rev. B. 72, 161318 (2005).
[CrossRef]

Ryu, H.

Salib, M.

Settle, M.

Settle, M. D.

Shinya, A.

.M. Notomi, T. Tanabe, A. Shinya, E. Kuramochi, H. Taniyama, S. Mitsugi, and M. Morita, "Nonlinear and adiabatic control of high-Q photonic-crystal nanocavities," Opt. Express 15, 17458-17481 (2008).
[CrossRef]

E. Kuramochi, M. Notomi, S. Hughes, A. Shinya, T. Watanabe, and L. Ramunno, "Disorder-induced scattering loss of line-defect waveguides in photonic crystal slabs," Phys. Rev. B. 72, 161318 (2005).
[CrossRef]

M. Notomi, A. Shinya, S. Mitsugi, E. Kuramochi, and H. Ryu, "Waveguides, resonators and their coupled elements in photonic crystal slabs," Opt. Express 12, 1551-1561 (2004).
[CrossRef] [PubMed]

M. Notomi, A. Shinya, K. Yamada, J. Takahashi, C. Takahashi, and I. Yokahama, "Structural tuning of guiding modes of line-defect waveguides of silicon-on-insulator photonic crystal slabs," IEEE J. Quantum Electron. 38, 736-742 (2000).
[CrossRef]

Takahashi, C.

M. Notomi, A. Shinya, K. Yamada, J. Takahashi, C. Takahashi, and I. Yokahama, "Structural tuning of guiding modes of line-defect waveguides of silicon-on-insulator photonic crystal slabs," IEEE J. Quantum Electron. 38, 736-742 (2000).
[CrossRef]

Takahashi, J.

M. Notomi, A. Shinya, K. Yamada, J. Takahashi, C. Takahashi, and I. Yokahama, "Structural tuning of guiding modes of line-defect waveguides of silicon-on-insulator photonic crystal slabs," IEEE J. Quantum Electron. 38, 736-742 (2000).
[CrossRef]

Tanabe, T.

Tanaka, Y.

Y. Tanaka, T. Asano, R. Hatsuta, and S. Noda, "Analysis of a line-defect waveguide on a silicon-on-insulator two-dimensional photonic-crystal slab," J. Lightwave. Technol. 22, 2787-2792 (2004).
[CrossRef]

Taniyama, H.

Thoms, S.

L. O'Faolain, X. Yuan, D. McIntyre, S. Thoms, H. Chong, R. M. De la Rue, and T. F. Krauss, "Low-loss propagation in photonic crystal waveguides," Electron. Lett. 42,1454-1455 (2006).
[CrossRef]

Vlasov, Y. A.

Watanabe, T.

E. Kuramochi, M. Notomi, S. Hughes, A. Shinya, T. Watanabe, and L. Ramunno, "Disorder-induced scattering loss of line-defect waveguides in photonic crystal slabs," Phys. Rev. B. 72, 161318 (2005).
[CrossRef]

White, T. P.

Yamada, K.

M. Notomi, A. Shinya, K. Yamada, J. Takahashi, C. Takahashi, and I. Yokahama, "Structural tuning of guiding modes of line-defect waveguides of silicon-on-insulator photonic crystal slabs," IEEE J. Quantum Electron. 38, 736-742 (2000).
[CrossRef]

Yang, C-C.

C-C. Yang and W-C Chen, "The structures and properties of hydrogen silsesquioxane (HSQ) films produced by thermal curing," J. Mater. Chem. 12, 1138-1141 (2002).
[CrossRef]

Yokahama, I.

M. Notomi, A. Shinya, K. Yamada, J. Takahashi, C. Takahashi, and I. Yokahama, "Structural tuning of guiding modes of line-defect waveguides of silicon-on-insulator photonic crystal slabs," IEEE J. Quantum Electron. 38, 736-742 (2000).
[CrossRef]

Yuan, X.

L. O�??Faolain, T. P. White, D. O�??Brien, X. Yuan, M. D. Settle, and T. F. Krauss, "Dependence of extrinsic loss on group velocity in photonic crystal waveguides," Opt. Express 15, 13129-13138 (2007).
[CrossRef] [PubMed]

L. O'Faolain, X. Yuan, D. McIntyre, S. Thoms, H. Chong, R. M. De la Rue, and T. F. Krauss, "Low-loss propagation in photonic crystal waveguides," Electron. Lett. 42,1454-1455 (2006).
[CrossRef]

Electron. Lett. (1)

L. O'Faolain, X. Yuan, D. McIntyre, S. Thoms, H. Chong, R. M. De la Rue, and T. F. Krauss, "Low-loss propagation in photonic crystal waveguides," Electron. Lett. 42,1454-1455 (2006).
[CrossRef]

IEEE J. Quantum Electron. (1)

M. Notomi, A. Shinya, K. Yamada, J. Takahashi, C. Takahashi, and I. Yokahama, "Structural tuning of guiding modes of line-defect waveguides of silicon-on-insulator photonic crystal slabs," IEEE J. Quantum Electron. 38, 736-742 (2000).
[CrossRef]

J. Lightwave. Technol. (1)

Y. Tanaka, T. Asano, R. Hatsuta, and S. Noda, "Analysis of a line-defect waveguide on a silicon-on-insulator two-dimensional photonic-crystal slab," J. Lightwave. Technol. 22, 2787-2792 (2004).
[CrossRef]

J. Mater. Chem. (1)

C-C. Yang and W-C Chen, "The structures and properties of hydrogen silsesquioxane (HSQ) films produced by thermal curing," J. Mater. Chem. 12, 1138-1141 (2002).
[CrossRef]

Opt. Express (6)

Opt. Lett. (1)

Phys. Rev. B. (1)

E. Kuramochi, M. Notomi, S. Hughes, A. Shinya, T. Watanabe, and L. Ramunno, "Disorder-induced scattering loss of line-defect waveguides in photonic crystal slabs," Phys. Rev. B. 72, 161318 (2005).
[CrossRef]

Phys. Status. Solidi B (1)

L. C. Andreani and D. Gerace, "Light-matter interaction in photonic crystal slabs," Phys. Status. Solidi B 244, 3528-3539 (2007).
[CrossRef]

Other (1)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(a) Scanning electron micrograph (SEM) of a W1 waveguide (without the oxide cladding) and the tapered access waveguide. (b) SEM showing a cross-section of an oxide-clad PhC. The flowable oxide (FOx) layer is clearly visible in the holes and above the Si layer.

Fig. 2.
Fig. 2.

Dispersion curves of the W1 PhC waveguides calculated using the GME method with the parameters given in the text. (a) Air membrane. (b) Oxide-clad. Solid (dashed) lines refer to the even (odd) defect mode, respectively. The shading indicates the region above the lightline for (a) air and (b) silica cladding.

Fig. 3.
Fig. 3.

Propagation loss spectra for (a) air membrane PhC waveguides and (b) oxide-clad PhC waveguides. Solid curve and shaded region: measured loss and experimental uncertainty respectively. The arrows indicate the minimum loss wavelengths. Dashed curves: loss spectra calculated using the GME method for a radius disorder of Δr=1.7 nm in (a) and 1.4 nm in (b).

Fig. 4.
Fig. 4.

(a) Cutback loss measurements for the membrane and oxide-clad PhC waveguides at the minimum loss wavelengths of 1557 nm and 1536 nm respectively as indicated in Fig. 3. As described in the text, the data is corrected to account for the loss in the access waveguides. (b) Experimental (solid curves) and simulated (dashed curves) propagation loss plotted as a function of the group index calculated from the dispersion curves in Fig. 2. The experimental uncertainties shown in Fig. 3 have been omitted for clarity.

Fig. 5.
Fig. 5.

Electric field intensity |E|2 of the fundamental waveguide mode in (a) air-membrane and (b) oxide-clad PhC waveguides at the lowest loss wavelengths. The bottom figures in (a) and (b) show the mode profile in the centre of the Si slab, and the top and middle figures show mode cross-sections through the slab indicated by the red dashed-dotted lines. The solid red curves show the field intensity along the centerline of each figure. The white arrows indicate the increase in field intensity on the boundary of the second row of holes of the oxide-clad waveguides.

Metrics