Abstract

Optically assisted transfection is emerging as a powerful and versatile method for the delivery of foreign therapeutic agents to cells at will. In particular the use of ultrashort pulse lasers has proved an important route to transiently permeating the cell membrane through a multiphoton process. Though optical transfection has been gaining wider usage to date, all incarnations of this technique have employed free space light beams. In this paper we demonstrate the first system to use fibre delivery for the optical transfection of cells. We engineer a standard optical fibre to generate an axicon tip with an enhanced intensity of the remote output field that delivers ultrashort (~ 800 fs) pulses without requiring the fibre to be placed in very close proximity to the cell sample. A theoretical model is also developed in order to predict the light propagation from axicon tipped and bare fibres, in both air and water environments. The model proves to be in good agreement with the experimental findings and can be used to establish the optimum fibre parameters for successful cellular transfection. We readily obtain efficiencies of up to 57 % which are comparable with free space transfection. This advance paves the way for optical transfection of tissue samples and endoscopic embodiments of this technique.

© 2008 Optical Society of America

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Paterson, B. Agate, M. Comrie, R. Ferguson, T. K. Lake, J. E. Morris, A. E. Carruthers, C. T. A. Brown, W. Sibbett, P. E. Bryant, F. Gunn-Moore, A. C. Riches, and K. Dholakia, "Photoporation and cell transfection using a violet diode laser," Opt. Express 13, 595-600 (2005).
    [CrossRef]
  2. U. K. Tirlapur and K. Konig, "Targeted transfection by femtosecond laser," Nature 418, 290-291 (2002).
    [CrossRef]
  3. A. Vogel, J. Noack, G. Huttman, and G. Paltauf, "Mechanisms of femtosecond laser nanosurgery of cells and tissues," Appl. Phys. B 81, 1015-1047 (2005).
    [CrossRef]
  4. D. Stevenson, B. Agate, X. Tsampoula, P. Fischer, C. T. A. Brown, W. Sibbett, A. Riches, F. Gunn-Moore, and K. Dholakia, "Femtosecond optical transfection of cells: viability and efficiency," Opt. Express 14, 7125-7133 (2006).
    [CrossRef]
  5. J. Baumgart, W. Bintig, A. Ngezahayo, S. Willenbrock, H. Murua Escobar, W. Ertmer, H. Lubatschowski, and A. Heisterkamp, "Quantified femtosecond laser based opto-perforation of living GFSHR-17 and MTH53 a cells," Opt. Express 16, 3021-3031 (2008).
    [CrossRef]
  6. V. Kohli, J. P. Acker, and A. Y. Elezzabi, "Reversible permeabilization using high-intensity femtosecond laser pulses: Applications to biopreservation," Biotechnol. Bioeng. 92, 889-899 (2005).
    [CrossRef]
  7. V. Kohli, V. Robles, M. L. Cancela, J. P. Acker, A. J. Waskiewicz, and A. Y. Elezzabi, "An alternative method for delivering exogenous material into developing zebrafish embryos," Biotechnol. Bioeng. 98, 1230-1241 (2007).
    [CrossRef]
  8. X. Tsampoula, V. Garces-Chavez, M. Comrie, D. J. Stevenson, B. Agate, C. T. A. Brown, F. Gunn-Moore, and K. Dholakia, "Femtosecond cellular transfection using a nondiffracting light beam," Appl. Phys. Lett. 91, 053902 (2007).
    [CrossRef]
  9. S. K. Eah, W. Jhe, and Y. Arakawa, "Nearly diffraction-limited focusing of a fiber axicon microlens," Rev. Sci. Instrum. 74, 4969-4971 (2003).
    [CrossRef]
  10. G. Knoner, A. Ratnapala, T. A. Nieminen, C. J. Vale, N. R. Heckenberg, and H. Rubinsztein-Dunlop, "Optical force field mapping in microdevices," Lab on a Chip 6, 1545-1547 (2006).
    [CrossRef]
  11. Z. H. Liu, C. K. Guo, J. Yang, and L. B. Yuan, "Tapered fiber optical tweezers for microscopic particle trapping: fabrication and application," Opt. Express 14, 12510-12516 (2006).
    [CrossRef]
  12. T. Cizmar, Optical traps generated by non-traditional beams, (Masaryk University, Brno, 2006), pp. 127, Phd thesis.
  13. F. Hache, T. J. Driscoll, M. Cavallari, and G. M. Gale, "Measurement of ultrashort pulse durations by interferometric autocorrelation: Influence of various parameters," Appl. Opt. 35, 3230-3236 (1996).

2008

2007

V. Kohli, V. Robles, M. L. Cancela, J. P. Acker, A. J. Waskiewicz, and A. Y. Elezzabi, "An alternative method for delivering exogenous material into developing zebrafish embryos," Biotechnol. Bioeng. 98, 1230-1241 (2007).
[CrossRef]

X. Tsampoula, V. Garces-Chavez, M. Comrie, D. J. Stevenson, B. Agate, C. T. A. Brown, F. Gunn-Moore, and K. Dholakia, "Femtosecond cellular transfection using a nondiffracting light beam," Appl. Phys. Lett. 91, 053902 (2007).
[CrossRef]

2006

2005

L. Paterson, B. Agate, M. Comrie, R. Ferguson, T. K. Lake, J. E. Morris, A. E. Carruthers, C. T. A. Brown, W. Sibbett, P. E. Bryant, F. Gunn-Moore, A. C. Riches, and K. Dholakia, "Photoporation and cell transfection using a violet diode laser," Opt. Express 13, 595-600 (2005).
[CrossRef]

A. Vogel, J. Noack, G. Huttman, and G. Paltauf, "Mechanisms of femtosecond laser nanosurgery of cells and tissues," Appl. Phys. B 81, 1015-1047 (2005).
[CrossRef]

V. Kohli, J. P. Acker, and A. Y. Elezzabi, "Reversible permeabilization using high-intensity femtosecond laser pulses: Applications to biopreservation," Biotechnol. Bioeng. 92, 889-899 (2005).
[CrossRef]

2003

S. K. Eah, W. Jhe, and Y. Arakawa, "Nearly diffraction-limited focusing of a fiber axicon microlens," Rev. Sci. Instrum. 74, 4969-4971 (2003).
[CrossRef]

2002

U. K. Tirlapur and K. Konig, "Targeted transfection by femtosecond laser," Nature 418, 290-291 (2002).
[CrossRef]

1996

Acker, J. P.

V. Kohli, V. Robles, M. L. Cancela, J. P. Acker, A. J. Waskiewicz, and A. Y. Elezzabi, "An alternative method for delivering exogenous material into developing zebrafish embryos," Biotechnol. Bioeng. 98, 1230-1241 (2007).
[CrossRef]

V. Kohli, J. P. Acker, and A. Y. Elezzabi, "Reversible permeabilization using high-intensity femtosecond laser pulses: Applications to biopreservation," Biotechnol. Bioeng. 92, 889-899 (2005).
[CrossRef]

Agate, B.

Arakawa, Y.

S. K. Eah, W. Jhe, and Y. Arakawa, "Nearly diffraction-limited focusing of a fiber axicon microlens," Rev. Sci. Instrum. 74, 4969-4971 (2003).
[CrossRef]

Baumgart, J.

Bintig, W.

Brown, C. T. A.

Bryant, P. E.

Cancela, M. L.

V. Kohli, V. Robles, M. L. Cancela, J. P. Acker, A. J. Waskiewicz, and A. Y. Elezzabi, "An alternative method for delivering exogenous material into developing zebrafish embryos," Biotechnol. Bioeng. 98, 1230-1241 (2007).
[CrossRef]

Carruthers, A. E.

Cavallari, M.

Comrie, M.

X. Tsampoula, V. Garces-Chavez, M. Comrie, D. J. Stevenson, B. Agate, C. T. A. Brown, F. Gunn-Moore, and K. Dholakia, "Femtosecond cellular transfection using a nondiffracting light beam," Appl. Phys. Lett. 91, 053902 (2007).
[CrossRef]

L. Paterson, B. Agate, M. Comrie, R. Ferguson, T. K. Lake, J. E. Morris, A. E. Carruthers, C. T. A. Brown, W. Sibbett, P. E. Bryant, F. Gunn-Moore, A. C. Riches, and K. Dholakia, "Photoporation and cell transfection using a violet diode laser," Opt. Express 13, 595-600 (2005).
[CrossRef]

Dholakia, K.

Driscoll, T. J.

Eah, S. K.

S. K. Eah, W. Jhe, and Y. Arakawa, "Nearly diffraction-limited focusing of a fiber axicon microlens," Rev. Sci. Instrum. 74, 4969-4971 (2003).
[CrossRef]

Elezzabi, A. Y.

V. Kohli, V. Robles, M. L. Cancela, J. P. Acker, A. J. Waskiewicz, and A. Y. Elezzabi, "An alternative method for delivering exogenous material into developing zebrafish embryos," Biotechnol. Bioeng. 98, 1230-1241 (2007).
[CrossRef]

V. Kohli, J. P. Acker, and A. Y. Elezzabi, "Reversible permeabilization using high-intensity femtosecond laser pulses: Applications to biopreservation," Biotechnol. Bioeng. 92, 889-899 (2005).
[CrossRef]

Ertmer, W.

Ferguson, R.

Fischer, P.

Gale, G. M.

Garces-Chavez, V.

X. Tsampoula, V. Garces-Chavez, M. Comrie, D. J. Stevenson, B. Agate, C. T. A. Brown, F. Gunn-Moore, and K. Dholakia, "Femtosecond cellular transfection using a nondiffracting light beam," Appl. Phys. Lett. 91, 053902 (2007).
[CrossRef]

Gunn-Moore, F.

Guo, C. K.

Hache, F.

Heckenberg, N. R.

G. Knoner, A. Ratnapala, T. A. Nieminen, C. J. Vale, N. R. Heckenberg, and H. Rubinsztein-Dunlop, "Optical force field mapping in microdevices," Lab on a Chip 6, 1545-1547 (2006).
[CrossRef]

Heisterkamp, A.

Huttman, G.

A. Vogel, J. Noack, G. Huttman, and G. Paltauf, "Mechanisms of femtosecond laser nanosurgery of cells and tissues," Appl. Phys. B 81, 1015-1047 (2005).
[CrossRef]

Jhe, W.

S. K. Eah, W. Jhe, and Y. Arakawa, "Nearly diffraction-limited focusing of a fiber axicon microlens," Rev. Sci. Instrum. 74, 4969-4971 (2003).
[CrossRef]

Knoner, G.

G. Knoner, A. Ratnapala, T. A. Nieminen, C. J. Vale, N. R. Heckenberg, and H. Rubinsztein-Dunlop, "Optical force field mapping in microdevices," Lab on a Chip 6, 1545-1547 (2006).
[CrossRef]

Kohli, V.

V. Kohli, V. Robles, M. L. Cancela, J. P. Acker, A. J. Waskiewicz, and A. Y. Elezzabi, "An alternative method for delivering exogenous material into developing zebrafish embryos," Biotechnol. Bioeng. 98, 1230-1241 (2007).
[CrossRef]

V. Kohli, J. P. Acker, and A. Y. Elezzabi, "Reversible permeabilization using high-intensity femtosecond laser pulses: Applications to biopreservation," Biotechnol. Bioeng. 92, 889-899 (2005).
[CrossRef]

Konig, K.

U. K. Tirlapur and K. Konig, "Targeted transfection by femtosecond laser," Nature 418, 290-291 (2002).
[CrossRef]

Lake, T. K.

Liu, Z. H.

Lubatschowski, H.

Morris, J. E.

Murua Escobar, H.

Ngezahayo, A.

Nieminen, T. A.

G. Knoner, A. Ratnapala, T. A. Nieminen, C. J. Vale, N. R. Heckenberg, and H. Rubinsztein-Dunlop, "Optical force field mapping in microdevices," Lab on a Chip 6, 1545-1547 (2006).
[CrossRef]

Noack, J.

A. Vogel, J. Noack, G. Huttman, and G. Paltauf, "Mechanisms of femtosecond laser nanosurgery of cells and tissues," Appl. Phys. B 81, 1015-1047 (2005).
[CrossRef]

Paltauf, G.

A. Vogel, J. Noack, G. Huttman, and G. Paltauf, "Mechanisms of femtosecond laser nanosurgery of cells and tissues," Appl. Phys. B 81, 1015-1047 (2005).
[CrossRef]

Paterson, L.

Ratnapala, A.

G. Knoner, A. Ratnapala, T. A. Nieminen, C. J. Vale, N. R. Heckenberg, and H. Rubinsztein-Dunlop, "Optical force field mapping in microdevices," Lab on a Chip 6, 1545-1547 (2006).
[CrossRef]

Riches, A.

Riches, A. C.

Robles, V.

V. Kohli, V. Robles, M. L. Cancela, J. P. Acker, A. J. Waskiewicz, and A. Y. Elezzabi, "An alternative method for delivering exogenous material into developing zebrafish embryos," Biotechnol. Bioeng. 98, 1230-1241 (2007).
[CrossRef]

Rubinsztein-Dunlop, H.

G. Knoner, A. Ratnapala, T. A. Nieminen, C. J. Vale, N. R. Heckenberg, and H. Rubinsztein-Dunlop, "Optical force field mapping in microdevices," Lab on a Chip 6, 1545-1547 (2006).
[CrossRef]

Sibbett, W.

Stevenson, D.

Stevenson, D. J.

X. Tsampoula, V. Garces-Chavez, M. Comrie, D. J. Stevenson, B. Agate, C. T. A. Brown, F. Gunn-Moore, and K. Dholakia, "Femtosecond cellular transfection using a nondiffracting light beam," Appl. Phys. Lett. 91, 053902 (2007).
[CrossRef]

Tirlapur, U. K.

U. K. Tirlapur and K. Konig, "Targeted transfection by femtosecond laser," Nature 418, 290-291 (2002).
[CrossRef]

Tsampoula, X.

X. Tsampoula, V. Garces-Chavez, M. Comrie, D. J. Stevenson, B. Agate, C. T. A. Brown, F. Gunn-Moore, and K. Dholakia, "Femtosecond cellular transfection using a nondiffracting light beam," Appl. Phys. Lett. 91, 053902 (2007).
[CrossRef]

D. Stevenson, B. Agate, X. Tsampoula, P. Fischer, C. T. A. Brown, W. Sibbett, A. Riches, F. Gunn-Moore, and K. Dholakia, "Femtosecond optical transfection of cells: viability and efficiency," Opt. Express 14, 7125-7133 (2006).
[CrossRef]

Vale, C. J.

G. Knoner, A. Ratnapala, T. A. Nieminen, C. J. Vale, N. R. Heckenberg, and H. Rubinsztein-Dunlop, "Optical force field mapping in microdevices," Lab on a Chip 6, 1545-1547 (2006).
[CrossRef]

Vogel, A.

A. Vogel, J. Noack, G. Huttman, and G. Paltauf, "Mechanisms of femtosecond laser nanosurgery of cells and tissues," Appl. Phys. B 81, 1015-1047 (2005).
[CrossRef]

Waskiewicz, A. J.

V. Kohli, V. Robles, M. L. Cancela, J. P. Acker, A. J. Waskiewicz, and A. Y. Elezzabi, "An alternative method for delivering exogenous material into developing zebrafish embryos," Biotechnol. Bioeng. 98, 1230-1241 (2007).
[CrossRef]

Willenbrock, S.

Yang, J.

Yuan, L. B.

Appl. Opt.

Appl. Phys. B

A. Vogel, J. Noack, G. Huttman, and G. Paltauf, "Mechanisms of femtosecond laser nanosurgery of cells and tissues," Appl. Phys. B 81, 1015-1047 (2005).
[CrossRef]

Appl. Phys. Lett.

X. Tsampoula, V. Garces-Chavez, M. Comrie, D. J. Stevenson, B. Agate, C. T. A. Brown, F. Gunn-Moore, and K. Dholakia, "Femtosecond cellular transfection using a nondiffracting light beam," Appl. Phys. Lett. 91, 053902 (2007).
[CrossRef]

Biotechnol. Bioeng.

V. Kohli, J. P. Acker, and A. Y. Elezzabi, "Reversible permeabilization using high-intensity femtosecond laser pulses: Applications to biopreservation," Biotechnol. Bioeng. 92, 889-899 (2005).
[CrossRef]

V. Kohli, V. Robles, M. L. Cancela, J. P. Acker, A. J. Waskiewicz, and A. Y. Elezzabi, "An alternative method for delivering exogenous material into developing zebrafish embryos," Biotechnol. Bioeng. 98, 1230-1241 (2007).
[CrossRef]

Lab on a Chip

G. Knoner, A. Ratnapala, T. A. Nieminen, C. J. Vale, N. R. Heckenberg, and H. Rubinsztein-Dunlop, "Optical force field mapping in microdevices," Lab on a Chip 6, 1545-1547 (2006).
[CrossRef]

Nature

U. K. Tirlapur and K. Konig, "Targeted transfection by femtosecond laser," Nature 418, 290-291 (2002).
[CrossRef]

Opt. Express

Rev. Sci. Instrum.

S. K. Eah, W. Jhe, and Y. Arakawa, "Nearly diffraction-limited focusing of a fiber axicon microlens," Rev. Sci. Instrum. 74, 4969-4971 (2003).
[CrossRef]

Other

T. Cizmar, Optical traps generated by non-traditional beams, (Masaryk University, Brno, 2006), pp. 127, Phd thesis.

Supplementary Material (1)

» Media 1: MPG (2916 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics