Abstract

The optical cell rotator (OCR) is a modified dual-beam laser trap for the holding and controlled rotation of suspended dielectric microparticles, such as cells. In contrast to optical tweezers, OCR uses two counter-propagating divergent laser beams, which are shaped and delivered by optical fibers. The rotation of a trapped specimen is carried out by the rotation of a dual-mode fiber, emitting an asymmetric laser beam. Experiments were performed on human erythrocytes, promyelocytic leukemia cells (HL60), and cell clusters (MCF-7). Since OCR permits the rotation of cells around an axis perpendicular to the optical axis of any microscope and is fully decoupled from imaging optics, it could be a suitable and expedient tool for tomographic microscopy.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Ashkin, "Acceleration and Trapping of Particles by Radiation Pressure," Phys. Rev. Lett.  24, 156-159 (1970). http://prola.aps.org/abstract/PRL/v24/i4/p156_ 1.
    [CrossRef]
  2. H. Zhang, and K. Liu, "Optical tweezers for single cells," J. R. Soc. Interface 5, 671-690 (2008). http://journals.royalsociety.org/index/9804324253112122.pdf/.
    [CrossRef] [PubMed]
  3. K. Dholakia and P. Reece, "Optical manipulation takes hold," Nano Today 1, 18-27 (2006). http://dx.doi.org/10.1016/S1748-0132(06)70019-6.
    [CrossRef]
  4. R. A. Beth, "Mechanical Detection and Measurement of the Angular Momentum of Light," Phys. Rev.  50, 115-125 (1936). http://prola.aps.org/abstract/PR/v50/i2/p115_1.
    [CrossRef]
  5. M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, "Optical alignment and spinning of laser-trapped microscopic particles," Nature 394, 348 (1998). http://arxiv.org/abs/physics/0308113.
    [CrossRef]
  6. H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, "Direct Observation of Transfer of Angular Momentum to Absorptive Particles from a Laser Beam with a Phase Singularity," Phys. Rev. Lett.  75, 826-829 (1995). http://prola.aps.org/abstract/PRL/v75/i5/p826_ 1.
    [CrossRef] [PubMed]
  7. L. Allen, S. M. Barnett, and M. J. Padgett, Optical Angular Momentum, (Institute of Physics Publishing, Bristol, 2003). http://stacks.iop.org/1464-4266/6/365.
    [CrossRef]
  8. S. Sato, M. Ishigure, and H. Inaba, "Optical trapping and rotational manipulation of microscopic particles and biological cells using higher-order mode Nd: YAG laserbeams," Electron. Lett. 27, 1831-1832 (1991).
    [CrossRef]
  9. R. Dasgupta, S. Mohanty, and P. Gupta, "Controlled rotation of biological microscopic objects using optical line tweezers," Biotechnol. Lett. 25, 1625-1628 (2003). http://www.springerlink.com/index/T20RW4Q4J7587VX1.pdf.
    [CrossRef] [PubMed]
  10. A. O??Neil and M. Padgett, "Rotational control within optical tweezers by use of a rotating aperture," Opt. Lett. 27, 743-745 (2002). http://ol.osa.org/abstract.cfm?URI=ol-27-9-743.
    [CrossRef]
  11. L. Paterson, M. P. MacDonald, J. Arlt, W. Sibbett, P. E. Bryant, and K. Dholakia, "Controlled Rotation of Optically Trapped Microscopic Particles," Science 292, 912-914 (2001). http://www.sciencemag.org/cgi/content/abstract/292/5518/912.
    [CrossRef] [PubMed]
  12. V. Bingelyte, J. Leach, J. Courtial, and M. Padgett, "Optically controlled three-dimensional rotation of microscopic objects," Appl. Phys. Lett. 82, 829-831 (2003). http://link.aip.org/li nk/ ?APPLAB/82 /82 9/1.
    [CrossRef]
  13. P. Shaw, D. Agard, Y. Hiraoka, and J. Sedat, "Tilted view reconstruction in optical microscopy. Threedimensional reconstruction of Drosophila melanogaster embryo nuclei." Biophys. J. 55, 101-110 (1989). http: //www.biophysj.org/cgi/reprint/55/1/101.
    [CrossRef] [PubMed]
  14. R. Heintzmann and C. Cremer, "Axial tomographic confocal fluorescence microscopy," J. Microsc. 206, 7-23 (2002). http://www3.interscience.wiley.com/journal/118942885/abstract.
    [CrossRef] [PubMed]
  15. J. Huisken, J. Swoger, F. Del Bene, J. Wittbrodt, and E. Stelzer, "Optical Sectioning Deep Inside Live Embryos by Selective Plane Illumination Microscopy," Science 305, 1007-1009 (2004). http://www.sciencemag.org/cgi/content/abstract/305/5686/1007.
    [CrossRef] [PubMed]
  16. M. Fauver, E. Seibel, J. R. Rahn, M. Meyer, F. Patten, T. Neumann, and A. Nelson, "Three-dimensional imaging of single isolated cell nuclei using optical projection tomography," Opt. Express 13, 4210-4223 (2005).
    [CrossRef] [PubMed]
  17. J. Swoger, P. Verveer, K. Greger, J. Huisken, and E. H. K. Stelzer, "Multi-view image fusion improves resolution in three-dimensional microscopy," Opt. Express 15, 8029-8042 (2007).
    [CrossRef] [PubMed]
  18. A. Constable, J. Kim, J. Mervis, F. Zarinetchi, and M. Prentiss, "Demonstration of a fiber-optical light-force trap," Opt. Lett 18, 1867-1869 (1993). http://ol.osa.org/abstract.cfm?uri=ol-18-21-1867.
    [CrossRef] [PubMed]
  19. J. Guck, R. Ananthakrishnan, T. J. Moon, C. C. Cunningham, and J. Kas, "Optical Deformability of Soft Biological Dielectrics," Phys. Rev. Lett.  84, 5451-5454 (2000). http://prola.aps.org/abstract/PRL/v84/i23/p5451 1.
    [CrossRef] [PubMed]
  20. J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Kas, "The optical stretcher: A novel laser tool to micromanipulate cells." Biophys. J. 81, 767-784 (2001). http://www.biophysj.org/cgi/content/full/81/2/767.
    [CrossRef] [PubMed]
  21. D. Gloge, "Weakly guiding fibers," Appl. Opt 10, 2252-2258 (1971). http://oe.osa.org/ViewMedia.cfm?id=73014&seq=0.
    [CrossRef] [PubMed]
  22. D. Gloge, "Dispersion in weakly guiding fibers," Appl. Opt 10, 2442 (1971). http://ao.osa.org/ViewMedia.cfm?id=72974&seq=0.
    [CrossRef] [PubMed]
  23. A. Safaai-Jazi and J. McKeeman, "Synthesis of intensity patterns in few-mode optical fibers," J. Lightwave Technol.  9, 1047-1052 (1991). http://ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=85799.
    [CrossRef]
  24. S. C. Grover, A. G. Skirtach, R. C. Gauthier, and C. P. Grover, "Automated single-cell sorting system based on optical trapping." J. Biomed. Opt. 6, 14-22 (2001). http://dx.doi.org/10.1117/1.1333676.
    [CrossRef] [PubMed]
  25. K. Franze, J. Grosche, S. N. Skatchkov, S. Schinkinger, C. Foja, D. Schild, O. Uckermann, K. Travis, A. Reichenbach, and J. Guck, "Muller cells are living optical fibers in the vertebrate retina." Proc. Natl. Acad. Sci. USA 104, 8287-8292 (2007). http://dx.doi.org/10.1073/pnas.0611180104.
    [CrossRef] [PubMed]
  26. A. Brunsting and P. F. Mullaney, "Differential light scattering from spherical mammalian cells." Biophys. J. 14, 439-453 (1974).
    [CrossRef] [PubMed]
  27. R. Drezek, M. Guillaud, T. Collier, I. Boiko, A. Malpica, C. Macaulay, M. Follen, and R. Richards-Kortum, "Light scattering from cervical cells throughout neoplastic progression: influence of nuclear morphology, DNA content, and chromatin texture." J. Biomed. Opt. 8, 7-16 (2003). http://dx.doi.org/10.1117/1.1528950.
    [CrossRef] [PubMed]
  28. F. Charriere, N. Pavillon, T. Colomb, C. Depeursinge, T. J. Heger, E. A. D. Mitchell, P. Marquet, and B. Rappaz, "Living specimen tomography by digital holographic microscopy: morphometry of testate amoeba," Opt. Express 14, 7005-7013 (2006).
    [CrossRef] [PubMed]
  29. O. Renaud, J. Vina, Y. Yu, C. Machu, A. Trouve, H. Van der Voort, B. Chalmond, and S. Shorte, "High-resolution 3-D imaging of living cells in suspension using confocal axial tomography." Biotechnol. J. 3, 53-62 (2008). http://dx.doi.org/10.1002/biot.200700188.
    [CrossRef]
  30. E. R. Dufresne, G. C. Spalding, M. T. Dearing, S. A. Sheets, and D. G. Grier, "Computer-generated holographic optical tweezer arrays," Rev. Sci. Inst. 72, 1810-1816 (2001).
    [CrossRef]
  31. G. Whyte, G. Gibson, J. Leach, M. Padgett, D. Robert, and M. Miles, "An optical trapped microhand for manipulating micron-sized objects," Opt. Express 14, 12,497-12,502 (2006).
    [CrossRef]
  32. K. Konig, H. Liang, M. W. Berns, and B. J. Tromberg, "Cell damage in near-infrared multimode optical traps as a result of multiphoton absorption," Opt. Lett. 21, 1090 (1996). http://ol.osa.org/abstract.cfm?URI=ol-21-14-1090.
    [CrossRef] [PubMed]
  33. M. Kreysing, J. Guck, and J. Kas, "Device and method for contactless manipulation and alignment of sample particles in a measurement volume with the aid of an inhomogeneous electrical alternating field," European patent, EP1935498A1 (2007).

2008 (2)

H. Zhang, and K. Liu, "Optical tweezers for single cells," J. R. Soc. Interface 5, 671-690 (2008). http://journals.royalsociety.org/index/9804324253112122.pdf/.
[CrossRef] [PubMed]

O. Renaud, J. Vina, Y. Yu, C. Machu, A. Trouve, H. Van der Voort, B. Chalmond, and S. Shorte, "High-resolution 3-D imaging of living cells in suspension using confocal axial tomography." Biotechnol. J. 3, 53-62 (2008). http://dx.doi.org/10.1002/biot.200700188.
[CrossRef]

2007 (2)

K. Franze, J. Grosche, S. N. Skatchkov, S. Schinkinger, C. Foja, D. Schild, O. Uckermann, K. Travis, A. Reichenbach, and J. Guck, "Muller cells are living optical fibers in the vertebrate retina." Proc. Natl. Acad. Sci. USA 104, 8287-8292 (2007). http://dx.doi.org/10.1073/pnas.0611180104.
[CrossRef] [PubMed]

J. Swoger, P. Verveer, K. Greger, J. Huisken, and E. H. K. Stelzer, "Multi-view image fusion improves resolution in three-dimensional microscopy," Opt. Express 15, 8029-8042 (2007).
[CrossRef] [PubMed]

2006 (2)

2005 (1)

2004 (1)

J. Huisken, J. Swoger, F. Del Bene, J. Wittbrodt, and E. Stelzer, "Optical Sectioning Deep Inside Live Embryos by Selective Plane Illumination Microscopy," Science 305, 1007-1009 (2004). http://www.sciencemag.org/cgi/content/abstract/305/5686/1007.
[CrossRef] [PubMed]

2003 (2)

R. Dasgupta, S. Mohanty, and P. Gupta, "Controlled rotation of biological microscopic objects using optical line tweezers," Biotechnol. Lett. 25, 1625-1628 (2003). http://www.springerlink.com/index/T20RW4Q4J7587VX1.pdf.
[CrossRef] [PubMed]

R. Drezek, M. Guillaud, T. Collier, I. Boiko, A. Malpica, C. Macaulay, M. Follen, and R. Richards-Kortum, "Light scattering from cervical cells throughout neoplastic progression: influence of nuclear morphology, DNA content, and chromatin texture." J. Biomed. Opt. 8, 7-16 (2003). http://dx.doi.org/10.1117/1.1528950.
[CrossRef] [PubMed]

2002 (2)

A. O??Neil and M. Padgett, "Rotational control within optical tweezers by use of a rotating aperture," Opt. Lett. 27, 743-745 (2002). http://ol.osa.org/abstract.cfm?URI=ol-27-9-743.
[CrossRef]

R. Heintzmann and C. Cremer, "Axial tomographic confocal fluorescence microscopy," J. Microsc. 206, 7-23 (2002). http://www3.interscience.wiley.com/journal/118942885/abstract.
[CrossRef] [PubMed]

2001 (4)

S. C. Grover, A. G. Skirtach, R. C. Gauthier, and C. P. Grover, "Automated single-cell sorting system based on optical trapping." J. Biomed. Opt. 6, 14-22 (2001). http://dx.doi.org/10.1117/1.1333676.
[CrossRef] [PubMed]

E. R. Dufresne, G. C. Spalding, M. T. Dearing, S. A. Sheets, and D. G. Grier, "Computer-generated holographic optical tweezer arrays," Rev. Sci. Inst. 72, 1810-1816 (2001).
[CrossRef]

L. Paterson, M. P. MacDonald, J. Arlt, W. Sibbett, P. E. Bryant, and K. Dholakia, "Controlled Rotation of Optically Trapped Microscopic Particles," Science 292, 912-914 (2001). http://www.sciencemag.org/cgi/content/abstract/292/5518/912.
[CrossRef] [PubMed]

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Kas, "The optical stretcher: A novel laser tool to micromanipulate cells." Biophys. J. 81, 767-784 (2001). http://www.biophysj.org/cgi/content/full/81/2/767.
[CrossRef] [PubMed]

1998 (1)

M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, "Optical alignment and spinning of laser-trapped microscopic particles," Nature 394, 348 (1998). http://arxiv.org/abs/physics/0308113.
[CrossRef]

1996 (1)

1993 (1)

A. Constable, J. Kim, J. Mervis, F. Zarinetchi, and M. Prentiss, "Demonstration of a fiber-optical light-force trap," Opt. Lett 18, 1867-1869 (1993). http://ol.osa.org/abstract.cfm?uri=ol-18-21-1867.
[CrossRef] [PubMed]

1991 (1)

S. Sato, M. Ishigure, and H. Inaba, "Optical trapping and rotational manipulation of microscopic particles and biological cells using higher-order mode Nd: YAG laserbeams," Electron. Lett. 27, 1831-1832 (1991).
[CrossRef]

1989 (1)

P. Shaw, D. Agard, Y. Hiraoka, and J. Sedat, "Tilted view reconstruction in optical microscopy. Threedimensional reconstruction of Drosophila melanogaster embryo nuclei." Biophys. J. 55, 101-110 (1989). http: //www.biophysj.org/cgi/reprint/55/1/101.
[CrossRef] [PubMed]

1974 (1)

A. Brunsting and P. F. Mullaney, "Differential light scattering from spherical mammalian cells." Biophys. J. 14, 439-453 (1974).
[CrossRef] [PubMed]

1971 (2)

D. Gloge, "Weakly guiding fibers," Appl. Opt 10, 2252-2258 (1971). http://oe.osa.org/ViewMedia.cfm?id=73014&seq=0.
[CrossRef] [PubMed]

D. Gloge, "Dispersion in weakly guiding fibers," Appl. Opt 10, 2442 (1971). http://ao.osa.org/ViewMedia.cfm?id=72974&seq=0.
[CrossRef] [PubMed]

Agard, D.

P. Shaw, D. Agard, Y. Hiraoka, and J. Sedat, "Tilted view reconstruction in optical microscopy. Threedimensional reconstruction of Drosophila melanogaster embryo nuclei." Biophys. J. 55, 101-110 (1989). http: //www.biophysj.org/cgi/reprint/55/1/101.
[CrossRef] [PubMed]

Ananthakrishnan, R.

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Kas, "The optical stretcher: A novel laser tool to micromanipulate cells." Biophys. J. 81, 767-784 (2001). http://www.biophysj.org/cgi/content/full/81/2/767.
[CrossRef] [PubMed]

Arlt, J.

L. Paterson, M. P. MacDonald, J. Arlt, W. Sibbett, P. E. Bryant, and K. Dholakia, "Controlled Rotation of Optically Trapped Microscopic Particles," Science 292, 912-914 (2001). http://www.sciencemag.org/cgi/content/abstract/292/5518/912.
[CrossRef] [PubMed]

Berns, M. W.

Boiko, I.

R. Drezek, M. Guillaud, T. Collier, I. Boiko, A. Malpica, C. Macaulay, M. Follen, and R. Richards-Kortum, "Light scattering from cervical cells throughout neoplastic progression: influence of nuclear morphology, DNA content, and chromatin texture." J. Biomed. Opt. 8, 7-16 (2003). http://dx.doi.org/10.1117/1.1528950.
[CrossRef] [PubMed]

Brunsting, A.

A. Brunsting and P. F. Mullaney, "Differential light scattering from spherical mammalian cells." Biophys. J. 14, 439-453 (1974).
[CrossRef] [PubMed]

Bryant, P. E.

L. Paterson, M. P. MacDonald, J. Arlt, W. Sibbett, P. E. Bryant, and K. Dholakia, "Controlled Rotation of Optically Trapped Microscopic Particles," Science 292, 912-914 (2001). http://www.sciencemag.org/cgi/content/abstract/292/5518/912.
[CrossRef] [PubMed]

Chalmond, B.

O. Renaud, J. Vina, Y. Yu, C. Machu, A. Trouve, H. Van der Voort, B. Chalmond, and S. Shorte, "High-resolution 3-D imaging of living cells in suspension using confocal axial tomography." Biotechnol. J. 3, 53-62 (2008). http://dx.doi.org/10.1002/biot.200700188.
[CrossRef]

Charriere, F.

Collier, T.

R. Drezek, M. Guillaud, T. Collier, I. Boiko, A. Malpica, C. Macaulay, M. Follen, and R. Richards-Kortum, "Light scattering from cervical cells throughout neoplastic progression: influence of nuclear morphology, DNA content, and chromatin texture." J. Biomed. Opt. 8, 7-16 (2003). http://dx.doi.org/10.1117/1.1528950.
[CrossRef] [PubMed]

Colomb, T.

Constable, A.

A. Constable, J. Kim, J. Mervis, F. Zarinetchi, and M. Prentiss, "Demonstration of a fiber-optical light-force trap," Opt. Lett 18, 1867-1869 (1993). http://ol.osa.org/abstract.cfm?uri=ol-18-21-1867.
[CrossRef] [PubMed]

Cremer, C.

R. Heintzmann and C. Cremer, "Axial tomographic confocal fluorescence microscopy," J. Microsc. 206, 7-23 (2002). http://www3.interscience.wiley.com/journal/118942885/abstract.
[CrossRef] [PubMed]

Cunningham, C. C.

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Kas, "The optical stretcher: A novel laser tool to micromanipulate cells." Biophys. J. 81, 767-784 (2001). http://www.biophysj.org/cgi/content/full/81/2/767.
[CrossRef] [PubMed]

Dasgupta, R.

R. Dasgupta, S. Mohanty, and P. Gupta, "Controlled rotation of biological microscopic objects using optical line tweezers," Biotechnol. Lett. 25, 1625-1628 (2003). http://www.springerlink.com/index/T20RW4Q4J7587VX1.pdf.
[CrossRef] [PubMed]

Dearing, M. T.

E. R. Dufresne, G. C. Spalding, M. T. Dearing, S. A. Sheets, and D. G. Grier, "Computer-generated holographic optical tweezer arrays," Rev. Sci. Inst. 72, 1810-1816 (2001).
[CrossRef]

Del Bene, F.

J. Huisken, J. Swoger, F. Del Bene, J. Wittbrodt, and E. Stelzer, "Optical Sectioning Deep Inside Live Embryos by Selective Plane Illumination Microscopy," Science 305, 1007-1009 (2004). http://www.sciencemag.org/cgi/content/abstract/305/5686/1007.
[CrossRef] [PubMed]

Depeursinge, C.

Dholakia, K.

L. Paterson, M. P. MacDonald, J. Arlt, W. Sibbett, P. E. Bryant, and K. Dholakia, "Controlled Rotation of Optically Trapped Microscopic Particles," Science 292, 912-914 (2001). http://www.sciencemag.org/cgi/content/abstract/292/5518/912.
[CrossRef] [PubMed]

Drezek, R.

R. Drezek, M. Guillaud, T. Collier, I. Boiko, A. Malpica, C. Macaulay, M. Follen, and R. Richards-Kortum, "Light scattering from cervical cells throughout neoplastic progression: influence of nuclear morphology, DNA content, and chromatin texture." J. Biomed. Opt. 8, 7-16 (2003). http://dx.doi.org/10.1117/1.1528950.
[CrossRef] [PubMed]

Dufresne, E. R.

E. R. Dufresne, G. C. Spalding, M. T. Dearing, S. A. Sheets, and D. G. Grier, "Computer-generated holographic optical tweezer arrays," Rev. Sci. Inst. 72, 1810-1816 (2001).
[CrossRef]

Fauver, M.

Foja, C.

K. Franze, J. Grosche, S. N. Skatchkov, S. Schinkinger, C. Foja, D. Schild, O. Uckermann, K. Travis, A. Reichenbach, and J. Guck, "Muller cells are living optical fibers in the vertebrate retina." Proc. Natl. Acad. Sci. USA 104, 8287-8292 (2007). http://dx.doi.org/10.1073/pnas.0611180104.
[CrossRef] [PubMed]

Follen, M.

R. Drezek, M. Guillaud, T. Collier, I. Boiko, A. Malpica, C. Macaulay, M. Follen, and R. Richards-Kortum, "Light scattering from cervical cells throughout neoplastic progression: influence of nuclear morphology, DNA content, and chromatin texture." J. Biomed. Opt. 8, 7-16 (2003). http://dx.doi.org/10.1117/1.1528950.
[CrossRef] [PubMed]

Franze, K.

K. Franze, J. Grosche, S. N. Skatchkov, S. Schinkinger, C. Foja, D. Schild, O. Uckermann, K. Travis, A. Reichenbach, and J. Guck, "Muller cells are living optical fibers in the vertebrate retina." Proc. Natl. Acad. Sci. USA 104, 8287-8292 (2007). http://dx.doi.org/10.1073/pnas.0611180104.
[CrossRef] [PubMed]

Friese, M. E. J.

M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, "Optical alignment and spinning of laser-trapped microscopic particles," Nature 394, 348 (1998). http://arxiv.org/abs/physics/0308113.
[CrossRef]

Gauthier, R. C.

S. C. Grover, A. G. Skirtach, R. C. Gauthier, and C. P. Grover, "Automated single-cell sorting system based on optical trapping." J. Biomed. Opt. 6, 14-22 (2001). http://dx.doi.org/10.1117/1.1333676.
[CrossRef] [PubMed]

Gibson, G.

G. Whyte, G. Gibson, J. Leach, M. Padgett, D. Robert, and M. Miles, "An optical trapped microhand for manipulating micron-sized objects," Opt. Express 14, 12,497-12,502 (2006).
[CrossRef]

Gloge, D.

D. Gloge, "Dispersion in weakly guiding fibers," Appl. Opt 10, 2442 (1971). http://ao.osa.org/ViewMedia.cfm?id=72974&seq=0.
[CrossRef] [PubMed]

D. Gloge, "Weakly guiding fibers," Appl. Opt 10, 2252-2258 (1971). http://oe.osa.org/ViewMedia.cfm?id=73014&seq=0.
[CrossRef] [PubMed]

Greger, K.

Grier, D. G.

E. R. Dufresne, G. C. Spalding, M. T. Dearing, S. A. Sheets, and D. G. Grier, "Computer-generated holographic optical tweezer arrays," Rev. Sci. Inst. 72, 1810-1816 (2001).
[CrossRef]

Grosche, J.

K. Franze, J. Grosche, S. N. Skatchkov, S. Schinkinger, C. Foja, D. Schild, O. Uckermann, K. Travis, A. Reichenbach, and J. Guck, "Muller cells are living optical fibers in the vertebrate retina." Proc. Natl. Acad. Sci. USA 104, 8287-8292 (2007). http://dx.doi.org/10.1073/pnas.0611180104.
[CrossRef] [PubMed]

Grover, C. P.

S. C. Grover, A. G. Skirtach, R. C. Gauthier, and C. P. Grover, "Automated single-cell sorting system based on optical trapping." J. Biomed. Opt. 6, 14-22 (2001). http://dx.doi.org/10.1117/1.1333676.
[CrossRef] [PubMed]

Grover, S. C.

S. C. Grover, A. G. Skirtach, R. C. Gauthier, and C. P. Grover, "Automated single-cell sorting system based on optical trapping." J. Biomed. Opt. 6, 14-22 (2001). http://dx.doi.org/10.1117/1.1333676.
[CrossRef] [PubMed]

Guck, J.

K. Franze, J. Grosche, S. N. Skatchkov, S. Schinkinger, C. Foja, D. Schild, O. Uckermann, K. Travis, A. Reichenbach, and J. Guck, "Muller cells are living optical fibers in the vertebrate retina." Proc. Natl. Acad. Sci. USA 104, 8287-8292 (2007). http://dx.doi.org/10.1073/pnas.0611180104.
[CrossRef] [PubMed]

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Kas, "The optical stretcher: A novel laser tool to micromanipulate cells." Biophys. J. 81, 767-784 (2001). http://www.biophysj.org/cgi/content/full/81/2/767.
[CrossRef] [PubMed]

Guillaud, M.

R. Drezek, M. Guillaud, T. Collier, I. Boiko, A. Malpica, C. Macaulay, M. Follen, and R. Richards-Kortum, "Light scattering from cervical cells throughout neoplastic progression: influence of nuclear morphology, DNA content, and chromatin texture." J. Biomed. Opt. 8, 7-16 (2003). http://dx.doi.org/10.1117/1.1528950.
[CrossRef] [PubMed]

Gupta, P.

R. Dasgupta, S. Mohanty, and P. Gupta, "Controlled rotation of biological microscopic objects using optical line tweezers," Biotechnol. Lett. 25, 1625-1628 (2003). http://www.springerlink.com/index/T20RW4Q4J7587VX1.pdf.
[CrossRef] [PubMed]

Heckenberg, N. R.

M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, "Optical alignment and spinning of laser-trapped microscopic particles," Nature 394, 348 (1998). http://arxiv.org/abs/physics/0308113.
[CrossRef]

Heger, T. J.

Heintzmann, R.

R. Heintzmann and C. Cremer, "Axial tomographic confocal fluorescence microscopy," J. Microsc. 206, 7-23 (2002). http://www3.interscience.wiley.com/journal/118942885/abstract.
[CrossRef] [PubMed]

Hiraoka, Y.

P. Shaw, D. Agard, Y. Hiraoka, and J. Sedat, "Tilted view reconstruction in optical microscopy. Threedimensional reconstruction of Drosophila melanogaster embryo nuclei." Biophys. J. 55, 101-110 (1989). http: //www.biophysj.org/cgi/reprint/55/1/101.
[CrossRef] [PubMed]

Huisken, J.

J. Swoger, P. Verveer, K. Greger, J. Huisken, and E. H. K. Stelzer, "Multi-view image fusion improves resolution in three-dimensional microscopy," Opt. Express 15, 8029-8042 (2007).
[CrossRef] [PubMed]

J. Huisken, J. Swoger, F. Del Bene, J. Wittbrodt, and E. Stelzer, "Optical Sectioning Deep Inside Live Embryos by Selective Plane Illumination Microscopy," Science 305, 1007-1009 (2004). http://www.sciencemag.org/cgi/content/abstract/305/5686/1007.
[CrossRef] [PubMed]

Inaba, H.

S. Sato, M. Ishigure, and H. Inaba, "Optical trapping and rotational manipulation of microscopic particles and biological cells using higher-order mode Nd: YAG laserbeams," Electron. Lett. 27, 1831-1832 (1991).
[CrossRef]

Ishigure, M.

S. Sato, M. Ishigure, and H. Inaba, "Optical trapping and rotational manipulation of microscopic particles and biological cells using higher-order mode Nd: YAG laserbeams," Electron. Lett. 27, 1831-1832 (1991).
[CrossRef]

Kas, J.

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Kas, "The optical stretcher: A novel laser tool to micromanipulate cells." Biophys. J. 81, 767-784 (2001). http://www.biophysj.org/cgi/content/full/81/2/767.
[CrossRef] [PubMed]

Kim, J.

A. Constable, J. Kim, J. Mervis, F. Zarinetchi, and M. Prentiss, "Demonstration of a fiber-optical light-force trap," Opt. Lett 18, 1867-1869 (1993). http://ol.osa.org/abstract.cfm?uri=ol-18-21-1867.
[CrossRef] [PubMed]

Konig, K.

Leach, J.

G. Whyte, G. Gibson, J. Leach, M. Padgett, D. Robert, and M. Miles, "An optical trapped microhand for manipulating micron-sized objects," Opt. Express 14, 12,497-12,502 (2006).
[CrossRef]

Liang, H.

Liu, K.

H. Zhang, and K. Liu, "Optical tweezers for single cells," J. R. Soc. Interface 5, 671-690 (2008). http://journals.royalsociety.org/index/9804324253112122.pdf/.
[CrossRef] [PubMed]

Macaulay, C.

R. Drezek, M. Guillaud, T. Collier, I. Boiko, A. Malpica, C. Macaulay, M. Follen, and R. Richards-Kortum, "Light scattering from cervical cells throughout neoplastic progression: influence of nuclear morphology, DNA content, and chromatin texture." J. Biomed. Opt. 8, 7-16 (2003). http://dx.doi.org/10.1117/1.1528950.
[CrossRef] [PubMed]

MacDonald, M. P.

L. Paterson, M. P. MacDonald, J. Arlt, W. Sibbett, P. E. Bryant, and K. Dholakia, "Controlled Rotation of Optically Trapped Microscopic Particles," Science 292, 912-914 (2001). http://www.sciencemag.org/cgi/content/abstract/292/5518/912.
[CrossRef] [PubMed]

Machu, C.

O. Renaud, J. Vina, Y. Yu, C. Machu, A. Trouve, H. Van der Voort, B. Chalmond, and S. Shorte, "High-resolution 3-D imaging of living cells in suspension using confocal axial tomography." Biotechnol. J. 3, 53-62 (2008). http://dx.doi.org/10.1002/biot.200700188.
[CrossRef]

Mahmood, H.

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Kas, "The optical stretcher: A novel laser tool to micromanipulate cells." Biophys. J. 81, 767-784 (2001). http://www.biophysj.org/cgi/content/full/81/2/767.
[CrossRef] [PubMed]

Malpica, A.

R. Drezek, M. Guillaud, T. Collier, I. Boiko, A. Malpica, C. Macaulay, M. Follen, and R. Richards-Kortum, "Light scattering from cervical cells throughout neoplastic progression: influence of nuclear morphology, DNA content, and chromatin texture." J. Biomed. Opt. 8, 7-16 (2003). http://dx.doi.org/10.1117/1.1528950.
[CrossRef] [PubMed]

Marquet, P.

Mervis, J.

A. Constable, J. Kim, J. Mervis, F. Zarinetchi, and M. Prentiss, "Demonstration of a fiber-optical light-force trap," Opt. Lett 18, 1867-1869 (1993). http://ol.osa.org/abstract.cfm?uri=ol-18-21-1867.
[CrossRef] [PubMed]

Meyer, M.

Miles, M.

G. Whyte, G. Gibson, J. Leach, M. Padgett, D. Robert, and M. Miles, "An optical trapped microhand for manipulating micron-sized objects," Opt. Express 14, 12,497-12,502 (2006).
[CrossRef]

Mitchell, E. A. D.

Mohanty, S.

R. Dasgupta, S. Mohanty, and P. Gupta, "Controlled rotation of biological microscopic objects using optical line tweezers," Biotechnol. Lett. 25, 1625-1628 (2003). http://www.springerlink.com/index/T20RW4Q4J7587VX1.pdf.
[CrossRef] [PubMed]

Moon, T. J.

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Kas, "The optical stretcher: A novel laser tool to micromanipulate cells." Biophys. J. 81, 767-784 (2001). http://www.biophysj.org/cgi/content/full/81/2/767.
[CrossRef] [PubMed]

Mullaney, P. F.

A. Brunsting and P. F. Mullaney, "Differential light scattering from spherical mammalian cells." Biophys. J. 14, 439-453 (1974).
[CrossRef] [PubMed]

Nelson, A.

Neumann, T.

Nieminen, T. A.

M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, "Optical alignment and spinning of laser-trapped microscopic particles," Nature 394, 348 (1998). http://arxiv.org/abs/physics/0308113.
[CrossRef]

O??Neil, A.

Padgett, M.

G. Whyte, G. Gibson, J. Leach, M. Padgett, D. Robert, and M. Miles, "An optical trapped microhand for manipulating micron-sized objects," Opt. Express 14, 12,497-12,502 (2006).
[CrossRef]

A. O??Neil and M. Padgett, "Rotational control within optical tweezers by use of a rotating aperture," Opt. Lett. 27, 743-745 (2002). http://ol.osa.org/abstract.cfm?URI=ol-27-9-743.
[CrossRef]

Paterson, L.

L. Paterson, M. P. MacDonald, J. Arlt, W. Sibbett, P. E. Bryant, and K. Dholakia, "Controlled Rotation of Optically Trapped Microscopic Particles," Science 292, 912-914 (2001). http://www.sciencemag.org/cgi/content/abstract/292/5518/912.
[CrossRef] [PubMed]

Patten, F.

Pavillon, N.

Prentiss, M.

A. Constable, J. Kim, J. Mervis, F. Zarinetchi, and M. Prentiss, "Demonstration of a fiber-optical light-force trap," Opt. Lett 18, 1867-1869 (1993). http://ol.osa.org/abstract.cfm?uri=ol-18-21-1867.
[CrossRef] [PubMed]

Rahn, J. R.

Rappaz, B.

Reichenbach, A.

K. Franze, J. Grosche, S. N. Skatchkov, S. Schinkinger, C. Foja, D. Schild, O. Uckermann, K. Travis, A. Reichenbach, and J. Guck, "Muller cells are living optical fibers in the vertebrate retina." Proc. Natl. Acad. Sci. USA 104, 8287-8292 (2007). http://dx.doi.org/10.1073/pnas.0611180104.
[CrossRef] [PubMed]

Renaud, O.

O. Renaud, J. Vina, Y. Yu, C. Machu, A. Trouve, H. Van der Voort, B. Chalmond, and S. Shorte, "High-resolution 3-D imaging of living cells in suspension using confocal axial tomography." Biotechnol. J. 3, 53-62 (2008). http://dx.doi.org/10.1002/biot.200700188.
[CrossRef]

Richards-Kortum, R.

R. Drezek, M. Guillaud, T. Collier, I. Boiko, A. Malpica, C. Macaulay, M. Follen, and R. Richards-Kortum, "Light scattering from cervical cells throughout neoplastic progression: influence of nuclear morphology, DNA content, and chromatin texture." J. Biomed. Opt. 8, 7-16 (2003). http://dx.doi.org/10.1117/1.1528950.
[CrossRef] [PubMed]

Robert, D.

G. Whyte, G. Gibson, J. Leach, M. Padgett, D. Robert, and M. Miles, "An optical trapped microhand for manipulating micron-sized objects," Opt. Express 14, 12,497-12,502 (2006).
[CrossRef]

Rubinsztein-Dunlop, H.

M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, "Optical alignment and spinning of laser-trapped microscopic particles," Nature 394, 348 (1998). http://arxiv.org/abs/physics/0308113.
[CrossRef]

Sato, S.

S. Sato, M. Ishigure, and H. Inaba, "Optical trapping and rotational manipulation of microscopic particles and biological cells using higher-order mode Nd: YAG laserbeams," Electron. Lett. 27, 1831-1832 (1991).
[CrossRef]

Schild, D.

K. Franze, J. Grosche, S. N. Skatchkov, S. Schinkinger, C. Foja, D. Schild, O. Uckermann, K. Travis, A. Reichenbach, and J. Guck, "Muller cells are living optical fibers in the vertebrate retina." Proc. Natl. Acad. Sci. USA 104, 8287-8292 (2007). http://dx.doi.org/10.1073/pnas.0611180104.
[CrossRef] [PubMed]

Schinkinger, S.

K. Franze, J. Grosche, S. N. Skatchkov, S. Schinkinger, C. Foja, D. Schild, O. Uckermann, K. Travis, A. Reichenbach, and J. Guck, "Muller cells are living optical fibers in the vertebrate retina." Proc. Natl. Acad. Sci. USA 104, 8287-8292 (2007). http://dx.doi.org/10.1073/pnas.0611180104.
[CrossRef] [PubMed]

Sedat, J.

P. Shaw, D. Agard, Y. Hiraoka, and J. Sedat, "Tilted view reconstruction in optical microscopy. Threedimensional reconstruction of Drosophila melanogaster embryo nuclei." Biophys. J. 55, 101-110 (1989). http: //www.biophysj.org/cgi/reprint/55/1/101.
[CrossRef] [PubMed]

Seibel, E.

Shaw, P.

P. Shaw, D. Agard, Y. Hiraoka, and J. Sedat, "Tilted view reconstruction in optical microscopy. Threedimensional reconstruction of Drosophila melanogaster embryo nuclei." Biophys. J. 55, 101-110 (1989). http: //www.biophysj.org/cgi/reprint/55/1/101.
[CrossRef] [PubMed]

Sheets, S. A.

E. R. Dufresne, G. C. Spalding, M. T. Dearing, S. A. Sheets, and D. G. Grier, "Computer-generated holographic optical tweezer arrays," Rev. Sci. Inst. 72, 1810-1816 (2001).
[CrossRef]

Shorte, S.

O. Renaud, J. Vina, Y. Yu, C. Machu, A. Trouve, H. Van der Voort, B. Chalmond, and S. Shorte, "High-resolution 3-D imaging of living cells in suspension using confocal axial tomography." Biotechnol. J. 3, 53-62 (2008). http://dx.doi.org/10.1002/biot.200700188.
[CrossRef]

Sibbett, W.

L. Paterson, M. P. MacDonald, J. Arlt, W. Sibbett, P. E. Bryant, and K. Dholakia, "Controlled Rotation of Optically Trapped Microscopic Particles," Science 292, 912-914 (2001). http://www.sciencemag.org/cgi/content/abstract/292/5518/912.
[CrossRef] [PubMed]

Skatchkov, S. N.

K. Franze, J. Grosche, S. N. Skatchkov, S. Schinkinger, C. Foja, D. Schild, O. Uckermann, K. Travis, A. Reichenbach, and J. Guck, "Muller cells are living optical fibers in the vertebrate retina." Proc. Natl. Acad. Sci. USA 104, 8287-8292 (2007). http://dx.doi.org/10.1073/pnas.0611180104.
[CrossRef] [PubMed]

Skirtach, A. G.

S. C. Grover, A. G. Skirtach, R. C. Gauthier, and C. P. Grover, "Automated single-cell sorting system based on optical trapping." J. Biomed. Opt. 6, 14-22 (2001). http://dx.doi.org/10.1117/1.1333676.
[CrossRef] [PubMed]

Spalding, G. C.

E. R. Dufresne, G. C. Spalding, M. T. Dearing, S. A. Sheets, and D. G. Grier, "Computer-generated holographic optical tweezer arrays," Rev. Sci. Inst. 72, 1810-1816 (2001).
[CrossRef]

Stelzer, E.

J. Huisken, J. Swoger, F. Del Bene, J. Wittbrodt, and E. Stelzer, "Optical Sectioning Deep Inside Live Embryos by Selective Plane Illumination Microscopy," Science 305, 1007-1009 (2004). http://www.sciencemag.org/cgi/content/abstract/305/5686/1007.
[CrossRef] [PubMed]

Stelzer, E. H. K.

Swoger, J.

J. Swoger, P. Verveer, K. Greger, J. Huisken, and E. H. K. Stelzer, "Multi-view image fusion improves resolution in three-dimensional microscopy," Opt. Express 15, 8029-8042 (2007).
[CrossRef] [PubMed]

J. Huisken, J. Swoger, F. Del Bene, J. Wittbrodt, and E. Stelzer, "Optical Sectioning Deep Inside Live Embryos by Selective Plane Illumination Microscopy," Science 305, 1007-1009 (2004). http://www.sciencemag.org/cgi/content/abstract/305/5686/1007.
[CrossRef] [PubMed]

Travis, K.

K. Franze, J. Grosche, S. N. Skatchkov, S. Schinkinger, C. Foja, D. Schild, O. Uckermann, K. Travis, A. Reichenbach, and J. Guck, "Muller cells are living optical fibers in the vertebrate retina." Proc. Natl. Acad. Sci. USA 104, 8287-8292 (2007). http://dx.doi.org/10.1073/pnas.0611180104.
[CrossRef] [PubMed]

Tromberg, B. J.

Trouve, A.

O. Renaud, J. Vina, Y. Yu, C. Machu, A. Trouve, H. Van der Voort, B. Chalmond, and S. Shorte, "High-resolution 3-D imaging of living cells in suspension using confocal axial tomography." Biotechnol. J. 3, 53-62 (2008). http://dx.doi.org/10.1002/biot.200700188.
[CrossRef]

Uckermann, O.

K. Franze, J. Grosche, S. N. Skatchkov, S. Schinkinger, C. Foja, D. Schild, O. Uckermann, K. Travis, A. Reichenbach, and J. Guck, "Muller cells are living optical fibers in the vertebrate retina." Proc. Natl. Acad. Sci. USA 104, 8287-8292 (2007). http://dx.doi.org/10.1073/pnas.0611180104.
[CrossRef] [PubMed]

Van der Voort, H.

O. Renaud, J. Vina, Y. Yu, C. Machu, A. Trouve, H. Van der Voort, B. Chalmond, and S. Shorte, "High-resolution 3-D imaging of living cells in suspension using confocal axial tomography." Biotechnol. J. 3, 53-62 (2008). http://dx.doi.org/10.1002/biot.200700188.
[CrossRef]

Verveer, P.

Vina, J.

O. Renaud, J. Vina, Y. Yu, C. Machu, A. Trouve, H. Van der Voort, B. Chalmond, and S. Shorte, "High-resolution 3-D imaging of living cells in suspension using confocal axial tomography." Biotechnol. J. 3, 53-62 (2008). http://dx.doi.org/10.1002/biot.200700188.
[CrossRef]

Whyte, G.

G. Whyte, G. Gibson, J. Leach, M. Padgett, D. Robert, and M. Miles, "An optical trapped microhand for manipulating micron-sized objects," Opt. Express 14, 12,497-12,502 (2006).
[CrossRef]

Wittbrodt, J.

J. Huisken, J. Swoger, F. Del Bene, J. Wittbrodt, and E. Stelzer, "Optical Sectioning Deep Inside Live Embryos by Selective Plane Illumination Microscopy," Science 305, 1007-1009 (2004). http://www.sciencemag.org/cgi/content/abstract/305/5686/1007.
[CrossRef] [PubMed]

Yu, Y.

O. Renaud, J. Vina, Y. Yu, C. Machu, A. Trouve, H. Van der Voort, B. Chalmond, and S. Shorte, "High-resolution 3-D imaging of living cells in suspension using confocal axial tomography." Biotechnol. J. 3, 53-62 (2008). http://dx.doi.org/10.1002/biot.200700188.
[CrossRef]

Zarinetchi, F.

A. Constable, J. Kim, J. Mervis, F. Zarinetchi, and M. Prentiss, "Demonstration of a fiber-optical light-force trap," Opt. Lett 18, 1867-1869 (1993). http://ol.osa.org/abstract.cfm?uri=ol-18-21-1867.
[CrossRef] [PubMed]

Zhang, H.

H. Zhang, and K. Liu, "Optical tweezers for single cells," J. R. Soc. Interface 5, 671-690 (2008). http://journals.royalsociety.org/index/9804324253112122.pdf/.
[CrossRef] [PubMed]

Appl. Opt (2)

D. Gloge, "Weakly guiding fibers," Appl. Opt 10, 2252-2258 (1971). http://oe.osa.org/ViewMedia.cfm?id=73014&seq=0.
[CrossRef] [PubMed]

D. Gloge, "Dispersion in weakly guiding fibers," Appl. Opt 10, 2442 (1971). http://ao.osa.org/ViewMedia.cfm?id=72974&seq=0.
[CrossRef] [PubMed]

Biophys. J. (3)

A. Brunsting and P. F. Mullaney, "Differential light scattering from spherical mammalian cells." Biophys. J. 14, 439-453 (1974).
[CrossRef] [PubMed]

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Kas, "The optical stretcher: A novel laser tool to micromanipulate cells." Biophys. J. 81, 767-784 (2001). http://www.biophysj.org/cgi/content/full/81/2/767.
[CrossRef] [PubMed]

P. Shaw, D. Agard, Y. Hiraoka, and J. Sedat, "Tilted view reconstruction in optical microscopy. Threedimensional reconstruction of Drosophila melanogaster embryo nuclei." Biophys. J. 55, 101-110 (1989). http: //www.biophysj.org/cgi/reprint/55/1/101.
[CrossRef] [PubMed]

Biotechnol. J. (1)

O. Renaud, J. Vina, Y. Yu, C. Machu, A. Trouve, H. Van der Voort, B. Chalmond, and S. Shorte, "High-resolution 3-D imaging of living cells in suspension using confocal axial tomography." Biotechnol. J. 3, 53-62 (2008). http://dx.doi.org/10.1002/biot.200700188.
[CrossRef]

Biotechnol. Lett. (1)

R. Dasgupta, S. Mohanty, and P. Gupta, "Controlled rotation of biological microscopic objects using optical line tweezers," Biotechnol. Lett. 25, 1625-1628 (2003). http://www.springerlink.com/index/T20RW4Q4J7587VX1.pdf.
[CrossRef] [PubMed]

Electron. Lett. (1)

S. Sato, M. Ishigure, and H. Inaba, "Optical trapping and rotational manipulation of microscopic particles and biological cells using higher-order mode Nd: YAG laserbeams," Electron. Lett. 27, 1831-1832 (1991).
[CrossRef]

J. Biomed. Opt. (2)

R. Drezek, M. Guillaud, T. Collier, I. Boiko, A. Malpica, C. Macaulay, M. Follen, and R. Richards-Kortum, "Light scattering from cervical cells throughout neoplastic progression: influence of nuclear morphology, DNA content, and chromatin texture." J. Biomed. Opt. 8, 7-16 (2003). http://dx.doi.org/10.1117/1.1528950.
[CrossRef] [PubMed]

S. C. Grover, A. G. Skirtach, R. C. Gauthier, and C. P. Grover, "Automated single-cell sorting system based on optical trapping." J. Biomed. Opt. 6, 14-22 (2001). http://dx.doi.org/10.1117/1.1333676.
[CrossRef] [PubMed]

J. Microsc. (1)

R. Heintzmann and C. Cremer, "Axial tomographic confocal fluorescence microscopy," J. Microsc. 206, 7-23 (2002). http://www3.interscience.wiley.com/journal/118942885/abstract.
[CrossRef] [PubMed]

J. R. Soc. Interface (1)

H. Zhang, and K. Liu, "Optical tweezers for single cells," J. R. Soc. Interface 5, 671-690 (2008). http://journals.royalsociety.org/index/9804324253112122.pdf/.
[CrossRef] [PubMed]

Nature (1)

M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, "Optical alignment and spinning of laser-trapped microscopic particles," Nature 394, 348 (1998). http://arxiv.org/abs/physics/0308113.
[CrossRef]

Opt. Express (4)

Opt. Lett (1)

A. Constable, J. Kim, J. Mervis, F. Zarinetchi, and M. Prentiss, "Demonstration of a fiber-optical light-force trap," Opt. Lett 18, 1867-1869 (1993). http://ol.osa.org/abstract.cfm?uri=ol-18-21-1867.
[CrossRef] [PubMed]

Opt. Lett. (2)

Proc. Natl. Acad. Sci. USA (1)

K. Franze, J. Grosche, S. N. Skatchkov, S. Schinkinger, C. Foja, D. Schild, O. Uckermann, K. Travis, A. Reichenbach, and J. Guck, "Muller cells are living optical fibers in the vertebrate retina." Proc. Natl. Acad. Sci. USA 104, 8287-8292 (2007). http://dx.doi.org/10.1073/pnas.0611180104.
[CrossRef] [PubMed]

Rev. Sci. Inst. (1)

E. R. Dufresne, G. C. Spalding, M. T. Dearing, S. A. Sheets, and D. G. Grier, "Computer-generated holographic optical tweezer arrays," Rev. Sci. Inst. 72, 1810-1816 (2001).
[CrossRef]

Science (2)

L. Paterson, M. P. MacDonald, J. Arlt, W. Sibbett, P. E. Bryant, and K. Dholakia, "Controlled Rotation of Optically Trapped Microscopic Particles," Science 292, 912-914 (2001). http://www.sciencemag.org/cgi/content/abstract/292/5518/912.
[CrossRef] [PubMed]

J. Huisken, J. Swoger, F. Del Bene, J. Wittbrodt, and E. Stelzer, "Optical Sectioning Deep Inside Live Embryos by Selective Plane Illumination Microscopy," Science 305, 1007-1009 (2004). http://www.sciencemag.org/cgi/content/abstract/305/5686/1007.
[CrossRef] [PubMed]

Other (9)

A. Ashkin, "Acceleration and Trapping of Particles by Radiation Pressure," Phys. Rev. Lett.  24, 156-159 (1970). http://prola.aps.org/abstract/PRL/v24/i4/p156_ 1.
[CrossRef]

J. Guck, R. Ananthakrishnan, T. J. Moon, C. C. Cunningham, and J. Kas, "Optical Deformability of Soft Biological Dielectrics," Phys. Rev. Lett.  84, 5451-5454 (2000). http://prola.aps.org/abstract/PRL/v84/i23/p5451 1.
[CrossRef] [PubMed]

V. Bingelyte, J. Leach, J. Courtial, and M. Padgett, "Optically controlled three-dimensional rotation of microscopic objects," Appl. Phys. Lett. 82, 829-831 (2003). http://link.aip.org/li nk/ ?APPLAB/82 /82 9/1.
[CrossRef]

H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, "Direct Observation of Transfer of Angular Momentum to Absorptive Particles from a Laser Beam with a Phase Singularity," Phys. Rev. Lett.  75, 826-829 (1995). http://prola.aps.org/abstract/PRL/v75/i5/p826_ 1.
[CrossRef] [PubMed]

L. Allen, S. M. Barnett, and M. J. Padgett, Optical Angular Momentum, (Institute of Physics Publishing, Bristol, 2003). http://stacks.iop.org/1464-4266/6/365.
[CrossRef]

K. Dholakia and P. Reece, "Optical manipulation takes hold," Nano Today 1, 18-27 (2006). http://dx.doi.org/10.1016/S1748-0132(06)70019-6.
[CrossRef]

R. A. Beth, "Mechanical Detection and Measurement of the Angular Momentum of Light," Phys. Rev.  50, 115-125 (1936). http://prola.aps.org/abstract/PR/v50/i2/p115_1.
[CrossRef]

A. Safaai-Jazi and J. McKeeman, "Synthesis of intensity patterns in few-mode optical fibers," J. Lightwave Technol.  9, 1047-1052 (1991). http://ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=85799.
[CrossRef]

M. Kreysing, J. Guck, and J. Kas, "Device and method for contactless manipulation and alignment of sample particles in a measurement volume with the aid of an inhomogeneous electrical alternating field," European patent, EP1935498A1 (2007).

Supplementary Material (2)

» Media 1: MOV (2117 KB)     
» Media 2: MOV (743 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Schematic of the OCR setup. (a) The OCR is mounted on an inverted microscope. SMF, single-mode fiber. (b) Detailed view of the dashed area indicated in (a). SMF1 is mounted in a ceramic ferrule (CF1). SMF2 is spliced with an offset to a dual-mode fiber (DMF) which is mounted in a second ferrule (CF2). Parts shaded in red form one static unit that can be rotated with respect to the rest of the system in a rotation mount (RM). The trapping and rotation of a cell can be imaged through a glass window (slide). (c) Microsopic image of an offset arc fusion splice (OAFS). Scale bar, 50µm.

Fig. 2.
Fig. 2.

Field distributions and coupling efficiencies. (a) LP01 electric field distribution in SMF. Black circle indicates core boundary. (b) LP01 and (c) LP11 electric field distributions in fiber with larger core (DMF). (d) Coupling of SMF field distribution, offset by ρ, into DMF. (e) Calculated efficiencies for the coupling from SMF field distribution to the two DMF modes as a function of the transverse offset ρ.

Fig. 3.
Fig. 3.

(a) Calculated and (b) measured beam intensity profile of a DMF excited at 3.2µm offset.

Fig. 4.
Fig. 4.

Phase contrast images of the optical rotation of a red blood cell in time steps of 200 ms. Images obtained while the dual-mode beam profile was turned by 90 degrees are marked. Scale bar, 10µm (Media 1).

Fig. 5.
Fig. 5.

Phase contrast images of the optical rotation of an HL60 cell in time steps of 320 ms. Images obtained during the rotation of the beam profile are marked. Scale bar, 10 µm (Media 2).

Fig. 6.
Fig. 6.

Optical rotation of a small MCF-7 cell custer inside a microcapillary with rectangular cross section. Scale bar, 10µm.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

E LP 01 = c 01 J 0 ( κ core 01 r ) for r a E LP 01 = c 01 K 0 ( κ clad 01 r ) for r > a
E LP 11 = c 11 J 1 ( κ core 11 r ) cos ( φ ) for r a E LP 11 = c 11 K 1 ( κ clad 11 r ) cos ( φ ) for r > a .
I = ( E LP 01 + E LP 11 ) 2 = E LP 01 2 + E LP 11 2 + 2 E LP 01 E LP 01 cos ( Δ β L ) ,
Δ β = β LP 01 β LP 11 ,

Metrics