Abstract

An emission band with a maximum at 1430 nm and a FWHM of 100 nm was observed in a Bi-doped fiber under core-pumping in the 1340–1370 nm wavelength range. Net gain in 1430–1490 nm and laser action in 1443-1459 nm wavelength range in the Bi-doped aluminosilicate fiber have been demonstrated for the first time to our knowledge.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Desurvire, "Optical communications in 2025," in Proceedings of 31st European Conference on Optical Communication, (Institution of Electrical Engineers, London, 2005), vol. 1, pp. 5-6.
  2. E. M. Dianov, V. V. Dvoyrin, V. M. Mashinsky, A. A. Umnikov, M. V. Yashkov, A. N. Guryanov, "CW bismuth fibre laser," Quantum Electron. 35, 1083-1084 (2005).
    [CrossRef]
  3. V. G. Truong, L. Bigot, A. Lerouge, M. Douay, I. Razdobreev, "Study of thermal stability and luminescence quenching properties of bismuth-doped silicate glasses for fiber laser applications," Appl. Phys. Lett.  92, 041908-1-3 (2008).
    [CrossRef]
  4. E. M. Dianov, S. V. Firstov, V. F. Khopin, A. N. Guryanov, I. A. Bufetov, "Bismuth fibre lasers and amplifiers operating at 1.3 μm," Quantum Electron. 38, 615-617 (2008).
    [CrossRef]
  5. I. A. Bufetov, S. V. Firstov, V. F. Khopin, O. I. Medvedkov, A. N. Guryanov, E. M. Dianov, "Bi-doped fiber lasers and amplifiers for a spectral region of 1300-1470 nm," Opt. Lett. 33, 2227-2229 (2008).
    [CrossRef] [PubMed]
  6. I. Razdobreev, L. Bigot, V. Pureur, A. Favre, G. Bouwmans, and M. Douay, "Efficient all-fiber bismuth-doped laser," Appl. Phys. Lett.  90, 031103-1-3 (2007).
    [CrossRef]
  7. Y. Qiu and Y. Shen, "Investigation on the spectral characteristics of bismuth doped silica fibers," Opt. Mater. (2008), in press.
    [CrossRef]
  8. Y. Fujimoto and M. Nakatsuka, "Infrared Luminescence from Bismuth-Doped Silica Glass," Jpn. J. Appl. Phys. 40, 279-281 (2001).
    [CrossRef]
  9. V. V. Dvoyrin, V. M. Mashinsky, L. I. Bulatov, I. A. Bufetov, A. V. Shubin, M. A. Melkumov, E. F. Kustov, E. M. Dianov, A. A. Umnikov, V. F. Khopin, M. V. Yashkov, and A. N. Guryanov, "Bismuth-doped-glass optical fibers - a new active medium for lasers and amplifiers," Opt. Lett. 31, 2966-2968 (2006).
    [CrossRef] [PubMed]
  10. R. H. Stolen and E. P. Ippen, "Raman Gain in Glass Optical Waveguides," Appl. Phys. Lett. 22, 276-278 (1976).
    [CrossRef]

2008

E. M. Dianov, S. V. Firstov, V. F. Khopin, A. N. Guryanov, I. A. Bufetov, "Bismuth fibre lasers and amplifiers operating at 1.3 μm," Quantum Electron. 38, 615-617 (2008).
[CrossRef]

I. A. Bufetov, S. V. Firstov, V. F. Khopin, O. I. Medvedkov, A. N. Guryanov, E. M. Dianov, "Bi-doped fiber lasers and amplifiers for a spectral region of 1300-1470 nm," Opt. Lett. 33, 2227-2229 (2008).
[CrossRef] [PubMed]

Y. Qiu and Y. Shen, "Investigation on the spectral characteristics of bismuth doped silica fibers," Opt. Mater. (2008), in press.
[CrossRef]

2006

2005

E. M. Dianov, V. V. Dvoyrin, V. M. Mashinsky, A. A. Umnikov, M. V. Yashkov, A. N. Guryanov, "CW bismuth fibre laser," Quantum Electron. 35, 1083-1084 (2005).
[CrossRef]

2001

Y. Fujimoto and M. Nakatsuka, "Infrared Luminescence from Bismuth-Doped Silica Glass," Jpn. J. Appl. Phys. 40, 279-281 (2001).
[CrossRef]

1976

R. H. Stolen and E. P. Ippen, "Raman Gain in Glass Optical Waveguides," Appl. Phys. Lett. 22, 276-278 (1976).
[CrossRef]

Bufetov, I. A.

Bulatov, L. I.

Dianov, E. M.

Dvoyrin, V. V.

Firstov, S. V.

E. M. Dianov, S. V. Firstov, V. F. Khopin, A. N. Guryanov, I. A. Bufetov, "Bismuth fibre lasers and amplifiers operating at 1.3 μm," Quantum Electron. 38, 615-617 (2008).
[CrossRef]

I. A. Bufetov, S. V. Firstov, V. F. Khopin, O. I. Medvedkov, A. N. Guryanov, E. M. Dianov, "Bi-doped fiber lasers and amplifiers for a spectral region of 1300-1470 nm," Opt. Lett. 33, 2227-2229 (2008).
[CrossRef] [PubMed]

Fujimoto, Y.

Y. Fujimoto and M. Nakatsuka, "Infrared Luminescence from Bismuth-Doped Silica Glass," Jpn. J. Appl. Phys. 40, 279-281 (2001).
[CrossRef]

Guryanov, A. N.

Ippen, E. P.

R. H. Stolen and E. P. Ippen, "Raman Gain in Glass Optical Waveguides," Appl. Phys. Lett. 22, 276-278 (1976).
[CrossRef]

Khopin, V. F.

Kustov, E. F.

Mashinsky, V. M.

Medvedkov, O. I.

Melkumov, M. A.

Nakatsuka, M.

Y. Fujimoto and M. Nakatsuka, "Infrared Luminescence from Bismuth-Doped Silica Glass," Jpn. J. Appl. Phys. 40, 279-281 (2001).
[CrossRef]

Qiu, Y.

Y. Qiu and Y. Shen, "Investigation on the spectral characteristics of bismuth doped silica fibers," Opt. Mater. (2008), in press.
[CrossRef]

Shen, Y.

Y. Qiu and Y. Shen, "Investigation on the spectral characteristics of bismuth doped silica fibers," Opt. Mater. (2008), in press.
[CrossRef]

Shubin, A. V.

Stolen, R. H.

R. H. Stolen and E. P. Ippen, "Raman Gain in Glass Optical Waveguides," Appl. Phys. Lett. 22, 276-278 (1976).
[CrossRef]

Umnikov, A. A.

Yashkov, M. V.

Appl. Phys. Lett.

R. H. Stolen and E. P. Ippen, "Raman Gain in Glass Optical Waveguides," Appl. Phys. Lett. 22, 276-278 (1976).
[CrossRef]

Jpn. J. Appl. Phys.

Y. Fujimoto and M. Nakatsuka, "Infrared Luminescence from Bismuth-Doped Silica Glass," Jpn. J. Appl. Phys. 40, 279-281 (2001).
[CrossRef]

Opt. Lett.

Opt. Mater.

Y. Qiu and Y. Shen, "Investigation on the spectral characteristics of bismuth doped silica fibers," Opt. Mater. (2008), in press.
[CrossRef]

Quantum Electron.

E. M. Dianov, V. V. Dvoyrin, V. M. Mashinsky, A. A. Umnikov, M. V. Yashkov, A. N. Guryanov, "CW bismuth fibre laser," Quantum Electron. 35, 1083-1084 (2005).
[CrossRef]

E. M. Dianov, S. V. Firstov, V. F. Khopin, A. N. Guryanov, I. A. Bufetov, "Bismuth fibre lasers and amplifiers operating at 1.3 μm," Quantum Electron. 38, 615-617 (2008).
[CrossRef]

Other

E. Desurvire, "Optical communications in 2025," in Proceedings of 31st European Conference on Optical Communication, (Institution of Electrical Engineers, London, 2005), vol. 1, pp. 5-6.

V. G. Truong, L. Bigot, A. Lerouge, M. Douay, I. Razdobreev, "Study of thermal stability and luminescence quenching properties of bismuth-doped silicate glasses for fiber laser applications," Appl. Phys. Lett.  92, 041908-1-3 (2008).
[CrossRef]

I. Razdobreev, L. Bigot, V. Pureur, A. Favre, G. Bouwmans, and M. Douay, "Efficient all-fiber bismuth-doped laser," Appl. Phys. Lett.  90, 031103-1-3 (2007).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Absorption of the Bi-doped fiber and its emission under excitation at 1372 nm wavelength. OH-groups absorption measured in the Bi-free fiber is also shown for comparison.

Fig. 2.
Fig. 2.

Typical on-off gain spectrum for the piece of the Bi-doped fiber of 10 m length pumped at 1343 nm wavelength and the dependence of its maximum (1435 nm) on the pump power (inset).

Fig. 3.
Fig. 3.

Net gain for the Bi-doped fiber piece of 38 m length pumped at 1343 nm wavelength.

Fig. 4.
Fig. 4.

Spectra of the laser emission: a) 1343 nm pump wavelength, ring cavity, room temperature, b) 1356 nm pump wavelength, ring cavity, room temperature, c) 1356 nm pump wavelength, ring cavity, -90°C, d) 1356 nm pump wavelength, linear cavity, -30°C.

Fig. 5.
Fig. 5.

Output power vs. absorbed pump power for the ring Bi-doped fiber laser pumped at 1356 nm wavelength.

Metrics