Abstract

The first observation of anisotropic diffraction and anisotropic self diffraction in low symmetry photorefractive crystal Sn2P2S6 is reported. From comparison of the diffraction efficiency of isotropic and anisotropic diffraction the ratios of the Pockels tensor components are deduced, including some nondiagonal components that have never been evaluated until now. The particular orientation of the optical indicatrix in Sn2P2S6 (roughly at 45° to z- and x-axes at ambient temperature) has a paradoxical consequence: The efficiency of anisotropic diffraction depends solely on diagonal components of the Pockels tensor, while the efficiency of the isotropic diffraction is considerably affected by nondiagonal components. With already known results and data presented in this article we can state that all 10 nonvanishing Pockels tensor components of the m-symmetry class crystal like Sn2P2S6 do manifest themselves in various types of nonlinear wave mixing.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Grabar, M. Jazbinšek, A. Shumelyuk, Yu.M. Vysochanskii, G. Montemezzani, and P. Günter, "Photorefractive effects in Sn2P2S6," in Photorefractive materials and their applications 2, P. G¨unter, and J.-P. Huignard, eds. (Springer-Verlag, 2007), pp. 327-362.
    [CrossRef]
  2. C. D. Carpentier and R. Nitsche, "Ferroelectricity in Sn2P2S6," Mat. Res. Bull. Pergamon Press, Inc. 9,1097-1100 (1974);
    [CrossRef]
  3. C. D. Carpentier and R. Nitsche, "Vapour growth and crystal data of the tio(seleno)-hypodiphosphates Sn2P2S6, Sn2P2Se6, Pb2P2S6, Pb2P2Se6, and their mixed crystals," Mater. Res. Bull. 9, 401-410 (1974).
    [CrossRef]
  4. A. Shumelyuk, S. Odoulov, O. Oleynik, G. Brost, and A. Grabar, "Spectral sensitivity of nominally undoped photorefractive Sn2P2S6," Appl. Phys. B 88, 79-82 (2007).
    [CrossRef] [PubMed]
  5. R. Mosimann, M. Jazbinšek, G. Montemezzani, A. Grabar, and P. Günter, "High speed photorefraction at telecommunication wavelength 1.55 μm in Sn2 P2S6," Opt. Lett. 32, 3230-3232 (2007).
  6. A. A. Grabar, R. I. Muzhikash, A. D. Kostyuk, and Yu.M. Vysochanskiy, "Investigation of the switching process in the domain structure of ferroelectric Sn2P2S6 by the dynamic holographic method," Sov. Phys. Solid State 33, 1314-1316 (1991).
    [CrossRef]
  7. S. G. Odoulov, A. M. Shumelyuk, U. Hellwig, R. A. Rupp, A. A. Grabar, and I. M. Stoyka, "Photorefraction in tin hypothiodiphosphate in the near infrared," J. Opt. Soc. Am. B 13, 2352-2360 (1996).
    [CrossRef]
  8. D. Haertle, G. Caimi, A. Haldi, G. Montemezzani, P. Günter, A. A. Grabar, I. M. Stoika, and Yu. M. Vysochanskii, "Electro-optical properties of Sn2P2S6," Opt. Commun. 215, 333-343 (2003).
    [CrossRef]
  9. B. I. Sturman, S. G. Odoulov, and M. Yu. Goul�??kov, "Parametric four-wave processes in photorefractive crystals," Phys. Rep. 275, 197-254 (1996).
  10. M. P. Petrov, S. J. Stepanov, and A. V. Khomenko, Photorefractive Crystals in Coherent Optical Systems (Springer-Verlag, Berlin, 1991).
    [CrossRef] [PubMed]
  11. D. Haertle, A. Guarino, J. Hajfler, G. Montemezzani, and P. Günter, "Refractive indices of Sn2P2S6 at visible and infrared wavelengths," Opt. Express 13, 2047-2057 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-6-2047.
    [CrossRef] [PubMed]
  12. Considerable difference of an optical frame and a dielectric frame has been pointed out recently for the other monoclinic crystal used as a laser active medium, Nd:YCOB, in publication Yannick Petit, Benoît Boulanger, Patricia Segonds, Corinne Félix, Bertrand Ménaert, Jullien Zaccaro, and Gérald Aka, "Absorption and fluorescence anisotropies of monoclinic crystals: the case of Nd:YCOB," Opt. Express 16, 7997-8002 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-11-7997.
  13. D. Haertle, "Photorefractive and nonlinear properties of Sn2P2S6," PhD Thesis, ETH No. 16107, Zürich 2005, p.33.
  14. ANSI/IEEE, Std 176 - IEEE Standard on Piezoelectricity, p.242 (IEEE, Inc; 345 East 47th Street, New York, NY 10017, USA, 1987).
  15. G. Dittmar and H. Schäfer, "Die Stuktur des Di-Zinn-Hexathiohypodiphoshatus Sn2P2S6," Zeitschrift f¨ur Naturforschung,  29B, (5-6), 312-317 (1974).
    [CrossRef]
  16. S. Odoulov, "Spatiallty oscillating photovoltaic current in iron-doped lithium iobate crystals," Sov. Phys.: JETP Lett.  35, 10-13 (1984);
  17. S. Odoulov, "Vectorial interactions in photovoltaic media," Ferroelectrics 91, 213-225 (1989).
    [CrossRef]
  18. N. Kukhtarev and S. Odoulov, "Wavefront inversion in anisotropic self-diffraction of laser beams," Sov. Techn. Phys. Lett. 6, 503-504 (1980).
  19. N. V. Kukhtarev, E. Krätzig, H. C. Külich, R. Rupp, and J. Albers, "Anisotropic self diffraction in BaTiO3," Appl. Phys. B 35, 17-21 (1984).
  20. A. Shumelyuk, A. Volkov, A. Selinger, M. Imlau, and S. Odoulov, "Frequency-degenerate nonlinear light scattering in low-symmetry crystals," Opt. Lett. 353, 151-153 (2008).
    [CrossRef]
  21. L. Solymar, D. Webb, and A. Grunnet-Jepsen, The Physics and Applications of Photorefractive Materials, (Clarendon, Oxford, 1996).
  22. A. Shumelyuk, D. Barilov, S. Odoulov, and E. Krätzig, "Anisotropy of the dielectric permittivity of Sn2P2S6 measured with light-induced grating techniques," Appl. Phys. B 76, 417-421 (2003).

2008 (2)

2007 (2)

A. Shumelyuk, S. Odoulov, O. Oleynik, G. Brost, and A. Grabar, "Spectral sensitivity of nominally undoped photorefractive Sn2P2S6," Appl. Phys. B 88, 79-82 (2007).
[CrossRef] [PubMed]

R. Mosimann, M. Jazbinšek, G. Montemezzani, A. Grabar, and P. Günter, "High speed photorefraction at telecommunication wavelength 1.55 μm in Sn2 P2S6," Opt. Lett. 32, 3230-3232 (2007).

2005 (1)

2003 (2)

D. Haertle, G. Caimi, A. Haldi, G. Montemezzani, P. Günter, A. A. Grabar, I. M. Stoika, and Yu. M. Vysochanskii, "Electro-optical properties of Sn2P2S6," Opt. Commun. 215, 333-343 (2003).
[CrossRef]

A. Shumelyuk, D. Barilov, S. Odoulov, and E. Krätzig, "Anisotropy of the dielectric permittivity of Sn2P2S6 measured with light-induced grating techniques," Appl. Phys. B 76, 417-421 (2003).

1996 (2)

B. I. Sturman, S. G. Odoulov, and M. Yu. Goul�??kov, "Parametric four-wave processes in photorefractive crystals," Phys. Rep. 275, 197-254 (1996).

S. G. Odoulov, A. M. Shumelyuk, U. Hellwig, R. A. Rupp, A. A. Grabar, and I. M. Stoyka, "Photorefraction in tin hypothiodiphosphate in the near infrared," J. Opt. Soc. Am. B 13, 2352-2360 (1996).
[CrossRef]

1991 (1)

A. A. Grabar, R. I. Muzhikash, A. D. Kostyuk, and Yu.M. Vysochanskiy, "Investigation of the switching process in the domain structure of ferroelectric Sn2P2S6 by the dynamic holographic method," Sov. Phys. Solid State 33, 1314-1316 (1991).
[CrossRef]

1989 (1)

S. Odoulov, "Vectorial interactions in photovoltaic media," Ferroelectrics 91, 213-225 (1989).
[CrossRef]

1984 (2)

S. Odoulov, "Spatiallty oscillating photovoltaic current in iron-doped lithium iobate crystals," Sov. Phys.: JETP Lett.  35, 10-13 (1984);

N. V. Kukhtarev, E. Krätzig, H. C. Külich, R. Rupp, and J. Albers, "Anisotropic self diffraction in BaTiO3," Appl. Phys. B 35, 17-21 (1984).

1980 (1)

N. Kukhtarev and S. Odoulov, "Wavefront inversion in anisotropic self-diffraction of laser beams," Sov. Techn. Phys. Lett. 6, 503-504 (1980).

1974 (2)

C. D. Carpentier and R. Nitsche, "Ferroelectricity in Sn2P2S6," Mat. Res. Bull. Pergamon Press, Inc. 9,1097-1100 (1974);
[CrossRef]

C. D. Carpentier and R. Nitsche, "Vapour growth and crystal data of the tio(seleno)-hypodiphosphates Sn2P2S6, Sn2P2Se6, Pb2P2S6, Pb2P2Se6, and their mixed crystals," Mater. Res. Bull. 9, 401-410 (1974).
[CrossRef]

Aka, Gérald

Albers, J.

N. V. Kukhtarev, E. Krätzig, H. C. Külich, R. Rupp, and J. Albers, "Anisotropic self diffraction in BaTiO3," Appl. Phys. B 35, 17-21 (1984).

Barilov, D.

A. Shumelyuk, D. Barilov, S. Odoulov, and E. Krätzig, "Anisotropy of the dielectric permittivity of Sn2P2S6 measured with light-induced grating techniques," Appl. Phys. B 76, 417-421 (2003).

Boulanger, Benoît

Brost, G.

A. Shumelyuk, S. Odoulov, O. Oleynik, G. Brost, and A. Grabar, "Spectral sensitivity of nominally undoped photorefractive Sn2P2S6," Appl. Phys. B 88, 79-82 (2007).
[CrossRef] [PubMed]

Caimi, G.

D. Haertle, G. Caimi, A. Haldi, G. Montemezzani, P. Günter, A. A. Grabar, I. M. Stoika, and Yu. M. Vysochanskii, "Electro-optical properties of Sn2P2S6," Opt. Commun. 215, 333-343 (2003).
[CrossRef]

Carpentier, C. D.

C. D. Carpentier and R. Nitsche, "Ferroelectricity in Sn2P2S6," Mat. Res. Bull. Pergamon Press, Inc. 9,1097-1100 (1974);
[CrossRef]

C. D. Carpentier and R. Nitsche, "Vapour growth and crystal data of the tio(seleno)-hypodiphosphates Sn2P2S6, Sn2P2Se6, Pb2P2S6, Pb2P2Se6, and their mixed crystals," Mater. Res. Bull. 9, 401-410 (1974).
[CrossRef]

Dittmar, G.

G. Dittmar and H. Schäfer, "Die Stuktur des Di-Zinn-Hexathiohypodiphoshatus Sn2P2S6," Zeitschrift f¨ur Naturforschung,  29B, (5-6), 312-317 (1974).
[CrossRef]

Félix, Corinne

Goul???kov, M. Yu.

B. I. Sturman, S. G. Odoulov, and M. Yu. Goul�??kov, "Parametric four-wave processes in photorefractive crystals," Phys. Rep. 275, 197-254 (1996).

Grabar, A.

A. Shumelyuk, S. Odoulov, O. Oleynik, G. Brost, and A. Grabar, "Spectral sensitivity of nominally undoped photorefractive Sn2P2S6," Appl. Phys. B 88, 79-82 (2007).
[CrossRef] [PubMed]

R. Mosimann, M. Jazbinšek, G. Montemezzani, A. Grabar, and P. Günter, "High speed photorefraction at telecommunication wavelength 1.55 μm in Sn2 P2S6," Opt. Lett. 32, 3230-3232 (2007).

Grabar, A. A.

D. Haertle, G. Caimi, A. Haldi, G. Montemezzani, P. Günter, A. A. Grabar, I. M. Stoika, and Yu. M. Vysochanskii, "Electro-optical properties of Sn2P2S6," Opt. Commun. 215, 333-343 (2003).
[CrossRef]

S. G. Odoulov, A. M. Shumelyuk, U. Hellwig, R. A. Rupp, A. A. Grabar, and I. M. Stoyka, "Photorefraction in tin hypothiodiphosphate in the near infrared," J. Opt. Soc. Am. B 13, 2352-2360 (1996).
[CrossRef]

A. A. Grabar, R. I. Muzhikash, A. D. Kostyuk, and Yu.M. Vysochanskiy, "Investigation of the switching process in the domain structure of ferroelectric Sn2P2S6 by the dynamic holographic method," Sov. Phys. Solid State 33, 1314-1316 (1991).
[CrossRef]

Guarino, A.

Günter, P.

Haertle, D.

D. Haertle, A. Guarino, J. Hajfler, G. Montemezzani, and P. Günter, "Refractive indices of Sn2P2S6 at visible and infrared wavelengths," Opt. Express 13, 2047-2057 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-6-2047.
[CrossRef] [PubMed]

D. Haertle, G. Caimi, A. Haldi, G. Montemezzani, P. Günter, A. A. Grabar, I. M. Stoika, and Yu. M. Vysochanskii, "Electro-optical properties of Sn2P2S6," Opt. Commun. 215, 333-343 (2003).
[CrossRef]

Hajfler, J.

Haldi, A.

D. Haertle, G. Caimi, A. Haldi, G. Montemezzani, P. Günter, A. A. Grabar, I. M. Stoika, and Yu. M. Vysochanskii, "Electro-optical properties of Sn2P2S6," Opt. Commun. 215, 333-343 (2003).
[CrossRef]

Hellwig, U.

Imlau, M.

A. Shumelyuk, A. Volkov, A. Selinger, M. Imlau, and S. Odoulov, "Frequency-degenerate nonlinear light scattering in low-symmetry crystals," Opt. Lett. 353, 151-153 (2008).
[CrossRef]

Jazbinšek, M.

Kostyuk, A. D.

A. A. Grabar, R. I. Muzhikash, A. D. Kostyuk, and Yu.M. Vysochanskiy, "Investigation of the switching process in the domain structure of ferroelectric Sn2P2S6 by the dynamic holographic method," Sov. Phys. Solid State 33, 1314-1316 (1991).
[CrossRef]

Krätzig, E.

A. Shumelyuk, D. Barilov, S. Odoulov, and E. Krätzig, "Anisotropy of the dielectric permittivity of Sn2P2S6 measured with light-induced grating techniques," Appl. Phys. B 76, 417-421 (2003).

N. V. Kukhtarev, E. Krätzig, H. C. Külich, R. Rupp, and J. Albers, "Anisotropic self diffraction in BaTiO3," Appl. Phys. B 35, 17-21 (1984).

Kukhtarev, N.

N. Kukhtarev and S. Odoulov, "Wavefront inversion in anisotropic self-diffraction of laser beams," Sov. Techn. Phys. Lett. 6, 503-504 (1980).

Kukhtarev, N. V.

N. V. Kukhtarev, E. Krätzig, H. C. Külich, R. Rupp, and J. Albers, "Anisotropic self diffraction in BaTiO3," Appl. Phys. B 35, 17-21 (1984).

Külich, H. C.

N. V. Kukhtarev, E. Krätzig, H. C. Külich, R. Rupp, and J. Albers, "Anisotropic self diffraction in BaTiO3," Appl. Phys. B 35, 17-21 (1984).

Ménaert, Bertrand

Montemezzani, G.

Muzhikash, R. I.

A. A. Grabar, R. I. Muzhikash, A. D. Kostyuk, and Yu.M. Vysochanskiy, "Investigation of the switching process in the domain structure of ferroelectric Sn2P2S6 by the dynamic holographic method," Sov. Phys. Solid State 33, 1314-1316 (1991).
[CrossRef]

Nitsche, R.

C. D. Carpentier and R. Nitsche, "Vapour growth and crystal data of the tio(seleno)-hypodiphosphates Sn2P2S6, Sn2P2Se6, Pb2P2S6, Pb2P2Se6, and their mixed crystals," Mater. Res. Bull. 9, 401-410 (1974).
[CrossRef]

C. D. Carpentier and R. Nitsche, "Ferroelectricity in Sn2P2S6," Mat. Res. Bull. Pergamon Press, Inc. 9,1097-1100 (1974);
[CrossRef]

Odoulov, S.

A. Shumelyuk, A. Volkov, A. Selinger, M. Imlau, and S. Odoulov, "Frequency-degenerate nonlinear light scattering in low-symmetry crystals," Opt. Lett. 353, 151-153 (2008).
[CrossRef]

A. Shumelyuk, S. Odoulov, O. Oleynik, G. Brost, and A. Grabar, "Spectral sensitivity of nominally undoped photorefractive Sn2P2S6," Appl. Phys. B 88, 79-82 (2007).
[CrossRef] [PubMed]

A. Shumelyuk, D. Barilov, S. Odoulov, and E. Krätzig, "Anisotropy of the dielectric permittivity of Sn2P2S6 measured with light-induced grating techniques," Appl. Phys. B 76, 417-421 (2003).

S. Odoulov, "Vectorial interactions in photovoltaic media," Ferroelectrics 91, 213-225 (1989).
[CrossRef]

S. Odoulov, "Spatiallty oscillating photovoltaic current in iron-doped lithium iobate crystals," Sov. Phys.: JETP Lett.  35, 10-13 (1984);

N. Kukhtarev and S. Odoulov, "Wavefront inversion in anisotropic self-diffraction of laser beams," Sov. Techn. Phys. Lett. 6, 503-504 (1980).

Odoulov, S. G.

S. G. Odoulov, A. M. Shumelyuk, U. Hellwig, R. A. Rupp, A. A. Grabar, and I. M. Stoyka, "Photorefraction in tin hypothiodiphosphate in the near infrared," J. Opt. Soc. Am. B 13, 2352-2360 (1996).
[CrossRef]

B. I. Sturman, S. G. Odoulov, and M. Yu. Goul�??kov, "Parametric four-wave processes in photorefractive crystals," Phys. Rep. 275, 197-254 (1996).

Oleynik, O.

A. Shumelyuk, S. Odoulov, O. Oleynik, G. Brost, and A. Grabar, "Spectral sensitivity of nominally undoped photorefractive Sn2P2S6," Appl. Phys. B 88, 79-82 (2007).
[CrossRef] [PubMed]

Petit, Yannick

Roger Mosimann,

Rupp, R.

N. V. Kukhtarev, E. Krätzig, H. C. Külich, R. Rupp, and J. Albers, "Anisotropic self diffraction in BaTiO3," Appl. Phys. B 35, 17-21 (1984).

Rupp, R. A.

Schäfer, H.

G. Dittmar and H. Schäfer, "Die Stuktur des Di-Zinn-Hexathiohypodiphoshatus Sn2P2S6," Zeitschrift f¨ur Naturforschung,  29B, (5-6), 312-317 (1974).
[CrossRef]

Segonds, Patricia

Selinger, A.

A. Shumelyuk, A. Volkov, A. Selinger, M. Imlau, and S. Odoulov, "Frequency-degenerate nonlinear light scattering in low-symmetry crystals," Opt. Lett. 353, 151-153 (2008).
[CrossRef]

Shumelyuk, A.

A. Shumelyuk, A. Volkov, A. Selinger, M. Imlau, and S. Odoulov, "Frequency-degenerate nonlinear light scattering in low-symmetry crystals," Opt. Lett. 353, 151-153 (2008).
[CrossRef]

A. Shumelyuk, S. Odoulov, O. Oleynik, G. Brost, and A. Grabar, "Spectral sensitivity of nominally undoped photorefractive Sn2P2S6," Appl. Phys. B 88, 79-82 (2007).
[CrossRef] [PubMed]

A. Shumelyuk, D. Barilov, S. Odoulov, and E. Krätzig, "Anisotropy of the dielectric permittivity of Sn2P2S6 measured with light-induced grating techniques," Appl. Phys. B 76, 417-421 (2003).

Shumelyuk, A. M.

Stoika, I. M.

D. Haertle, G. Caimi, A. Haldi, G. Montemezzani, P. Günter, A. A. Grabar, I. M. Stoika, and Yu. M. Vysochanskii, "Electro-optical properties of Sn2P2S6," Opt. Commun. 215, 333-343 (2003).
[CrossRef]

Stoyka, I. M.

Sturman, B. I.

B. I. Sturman, S. G. Odoulov, and M. Yu. Goul�??kov, "Parametric four-wave processes in photorefractive crystals," Phys. Rep. 275, 197-254 (1996).

Volkov, A.

A. Shumelyuk, A. Volkov, A. Selinger, M. Imlau, and S. Odoulov, "Frequency-degenerate nonlinear light scattering in low-symmetry crystals," Opt. Lett. 353, 151-153 (2008).
[CrossRef]

Vysochanskii, Yu. M.

D. Haertle, G. Caimi, A. Haldi, G. Montemezzani, P. Günter, A. A. Grabar, I. M. Stoika, and Yu. M. Vysochanskii, "Electro-optical properties of Sn2P2S6," Opt. Commun. 215, 333-343 (2003).
[CrossRef]

Vysochanskiy, Yu.M.

A. A. Grabar, R. I. Muzhikash, A. D. Kostyuk, and Yu.M. Vysochanskiy, "Investigation of the switching process in the domain structure of ferroelectric Sn2P2S6 by the dynamic holographic method," Sov. Phys. Solid State 33, 1314-1316 (1991).
[CrossRef]

Zaccaro, Jullien

Appl. Phys. B (3)

A. Shumelyuk, S. Odoulov, O. Oleynik, G. Brost, and A. Grabar, "Spectral sensitivity of nominally undoped photorefractive Sn2P2S6," Appl. Phys. B 88, 79-82 (2007).
[CrossRef] [PubMed]

N. V. Kukhtarev, E. Krätzig, H. C. Külich, R. Rupp, and J. Albers, "Anisotropic self diffraction in BaTiO3," Appl. Phys. B 35, 17-21 (1984).

A. Shumelyuk, D. Barilov, S. Odoulov, and E. Krätzig, "Anisotropy of the dielectric permittivity of Sn2P2S6 measured with light-induced grating techniques," Appl. Phys. B 76, 417-421 (2003).

Ferroelectrics (1)

S. Odoulov, "Vectorial interactions in photovoltaic media," Ferroelectrics 91, 213-225 (1989).
[CrossRef]

Inc. (1)

C. D. Carpentier and R. Nitsche, "Ferroelectricity in Sn2P2S6," Mat. Res. Bull. Pergamon Press, Inc. 9,1097-1100 (1974);
[CrossRef]

J. Opt. Soc. Am. B (1)

Mater. Res. Bull. (1)

C. D. Carpentier and R. Nitsche, "Vapour growth and crystal data of the tio(seleno)-hypodiphosphates Sn2P2S6, Sn2P2Se6, Pb2P2S6, Pb2P2Se6, and their mixed crystals," Mater. Res. Bull. 9, 401-410 (1974).
[CrossRef]

Opt. Commun. (1)

D. Haertle, G. Caimi, A. Haldi, G. Montemezzani, P. Günter, A. A. Grabar, I. M. Stoika, and Yu. M. Vysochanskii, "Electro-optical properties of Sn2P2S6," Opt. Commun. 215, 333-343 (2003).
[CrossRef]

Opt. Express (2)

Opt. Lett. (2)

R. Mosimann, M. Jazbinšek, G. Montemezzani, A. Grabar, and P. Günter, "High speed photorefraction at telecommunication wavelength 1.55 μm in Sn2 P2S6," Opt. Lett. 32, 3230-3232 (2007).

A. Shumelyuk, A. Volkov, A. Selinger, M. Imlau, and S. Odoulov, "Frequency-degenerate nonlinear light scattering in low-symmetry crystals," Opt. Lett. 353, 151-153 (2008).
[CrossRef]

Phys. Rep. (1)

B. I. Sturman, S. G. Odoulov, and M. Yu. Goul�??kov, "Parametric four-wave processes in photorefractive crystals," Phys. Rep. 275, 197-254 (1996).

Sov. Phys. Solid State (1)

A. A. Grabar, R. I. Muzhikash, A. D. Kostyuk, and Yu.M. Vysochanskiy, "Investigation of the switching process in the domain structure of ferroelectric Sn2P2S6 by the dynamic holographic method," Sov. Phys. Solid State 33, 1314-1316 (1991).
[CrossRef]

Sov. Phys.: JETP Letters (1)

S. Odoulov, "Spatiallty oscillating photovoltaic current in iron-doped lithium iobate crystals," Sov. Phys.: JETP Lett.  35, 10-13 (1984);

Sov. Techn. Phys. Lett. (1)

N. Kukhtarev and S. Odoulov, "Wavefront inversion in anisotropic self-diffraction of laser beams," Sov. Techn. Phys. Lett. 6, 503-504 (1980).

Other (6)

A. Grabar, M. Jazbinšek, A. Shumelyuk, Yu.M. Vysochanskii, G. Montemezzani, and P. Günter, "Photorefractive effects in Sn2P2S6," in Photorefractive materials and their applications 2, P. G¨unter, and J.-P. Huignard, eds. (Springer-Verlag, 2007), pp. 327-362.
[CrossRef]

D. Haertle, "Photorefractive and nonlinear properties of Sn2P2S6," PhD Thesis, ETH No. 16107, Zürich 2005, p.33.

ANSI/IEEE, Std 176 - IEEE Standard on Piezoelectricity, p.242 (IEEE, Inc; 345 East 47th Street, New York, NY 10017, USA, 1987).

G. Dittmar and H. Schäfer, "Die Stuktur des Di-Zinn-Hexathiohypodiphoshatus Sn2P2S6," Zeitschrift f¨ur Naturforschung,  29B, (5-6), 312-317 (1974).
[CrossRef]

M. P. Petrov, S. J. Stepanov, and A. V. Khomenko, Photorefractive Crystals in Coherent Optical Systems (Springer-Verlag, Berlin, 1991).
[CrossRef] [PubMed]

L. Solymar, D. Webb, and A. Grunnet-Jepsen, The Physics and Applications of Photorefractive Materials, (Clarendon, Oxford, 1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Phase matching diagram for isotropic recording and anisotropic diffraction from photorefractive gratings in a birefringent crystal.

Fig. 2.
Fig. 2.

Projection of the optical indicatrix of SPS crystals at ambient conditions to xz-plane. n 1 and n 3 are the refractive indices of eigenwaves for a y-cut sample.

Fig. 3.
Fig. 3.

Experimental arrangement to detect and study the anisotropic diffraction (a) and self diffraction (b). The intensity of the readout beam is modulated at a high frequency (1 kHz) by the electrooptic modulator EOM. The diffracted signal at the same frequency is collected from the detector PD1 and compared with the transmitted intensity collected from the detector PD2 by a lock-in amplifier. Only two identically polarized beams are sent to the sample to observe the self diffraction (b), for any angle between recording waves the sample tilt angle is measured for which the auxiliary beam appears with the orthogonal polarization.

Fig. 4.
Fig. 4.

Readout and diffraction angles versus recording beam angle for recording beams aligned: (a) in the xy-plane of the y-cut sample with Kx-axis and (b) in the zy-plane of the z-cut sample with Kz-axis. The solid lines represent the calculated dependences and dots, squares, triangles, and diamonds are the results of measurements, as explained in the text.

Fig. 5.
Fig. 5.

Dependences of self diffraction angle (a) and sample tilt angle around the z-axis (b) on recording half-angle for an x-cut SPS crystal. Two recording waves impinge upon the sample in xy-plane.

Tables (2)

Tables Icon

Table 1. Comparison of experimentally estimated ratios of Pockels coefficients with those known from Ref.7. In second column the values in numerator and denominator are given in pm/V units.

Tables Icon

Table 2. Experimentally estimated ratios of unknown Pockels coefficients.

Equations (23)

Equations on this page are rendered with MathJax. Learn more.

r ̂ = ( r xxx 0 r xxz r yyx 0 r yyz r zzx 0 r zzz 0 r yzy 0 r xzx 0 r zxz 0 r yxy 0 ) .
K = k 1 s , 1 k 2 s , 1 .
K = k 4 1 k 3 s ,
K = k 5 s k 6 1 .
η ( π 2 d λ 2 k i z k d z ) 2 ( e i · δ ε ̂ · e d ) 2 ,
δ ε ̂ ε ̂ ( r ̂ E ) ε ̂ ,
E sc = K ( k B T e ) 1 1 + K 2 s 2 ,
η ( 1 ) η ( 2 ) = e d ( 1 ) ε ̂ ( r ̂ e E ) ε ̂ e i ( 1 ) / n d ( 1 ) n i ( 1 ) e d ( 2 ) ε ̂ ( r ̂ e E ) ε ̂ e i ( 2 ) / n d ( 2 ) n i ( 2 ) .
η iso 1 = C n 1 3 r xxx + r zzx ( r xxx r zzx ) cos 2 χ 2 r xzx sin 2 χ ,
η iso 3 = C n 3 3 r xxx + r zzx + ( r xxx r zzx ) cos 2 χ + 2 r xzx sin 2 χ ,
η aniso = C n 1 3 n 3 3 ( r xxx r zxx ) sin 2 χ 2 r xzx cos 2 χ .
η isox 1 C n 1 3 r xxx + r zzx 2 r xzx ,
η iso 3 C n 3 3 r xxx + r zzx + 2 r xzx ,
η aniso C n 1 3 n 3 3 r xxx r zzx .
η iso 1 C n 1 3 r xxz + r zzz 2 r zxz ,
η isoz 3 C n 3 3 r xxz + r zzz + 2 r zxz ,
η aniso C n 1 3 n 3 3 r xxz r zzz .
η iso 1 C 1 2 n 2 3 r yyz ,
η iso 2 C 1 2 n p 5 n 1 n 3 r zzz ,
η aniso C n 2 3 n p 5 2 n 1 n 3 r yzy .
η iso 1 C * 1 2 n 2 3 r yyx ,
η iso 2 C * 1 2 n p 5 n 1 n 3 r xxx ,
η aniso C * n 2 3 n p 5 2 n 1 n 3 r yxy .

Metrics