Abstract

It is found that the sensitivity of photoresponse of SnO2 nanowires can be enhanced by metallic particles decoration. The underlying mechanism is attributed to the formation of the Schottky junction on nanowires surface in the vicinity of metallic nanoparticles. The increment in the barrier height and width of space charge region due to the existence of Schottky junction increases the surface electric field and enhances the spatial separation effect, which then prolongs the lifetime of photoinduced electron and consequently increases the photoresponse gain. The result shown here provides an alternative route for enhancing the photoresponse of semiconductor nanostructures, which should be useful for creating highly sensitive photodetectors.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Dmitriev, Y. Lilach, B. Button, M. Moskovits, and A. Kolmakov, "Nanoengineered chemiresistors: the interplay between electron transport and chemisorption properties of morphologically encoded SnO2 nanowires," Nanotechnology,  18,055707-055712 (2007).
    [CrossRef]
  2. Z. Liu, D. Zhang, S. Han, C. Li, T. Tang, W. Jin, X. Liu, B. Lei, and C. Zhou, "Laser Ablation Synthesis and Electron Transport Studies of Tin Oxide Nanowires," Adv. Mater. (Weinheim, Ger.) 15,1754-1757 (2003).
    [CrossRef]
  3. Y. K. Liu, C. L. Zheng, W. Z. Wang, C. R. Yin, and G. H. Wang, "Synthesis and Characteristics of Rutile SnO2 Nanorods," Adv. Mater. (Weinheim, Ger.) 13, 1883-1887 (2001).
    [CrossRef]
  4. B. Wang, Y. H. Yang, C. X. Wang, N. S. Xu, and G. W. Yang, "Field emission and photoluminescence of SnO2 nanograss," J. Appl. Phys. 98, 124303-1-12430-4 (2005).
    [CrossRef]
  5. B. Wang, Y. H. Yang, C. X. Wang, and G. W. Yang, "Nanostructures and self-catalyzed growth of SnO2," J. Appl. Phys. 98, 073520-1-073520-5 (2005).
  6. S. Luo, P. K. Chu, W. Liu, M. Zhang, and C. Lin, "Origin of low-temperature photoluminescence from SnO2 nanowires fabricated by thermal evaporation and annealed in different ambients," Appl. Phys. Lett. 88, 183112-1-183112-3 (2006).
    [CrossRef]
  7. L. L. Fields, J. P. Zheng, Y. Cheng, and P. Xiong, "Room-temperature low-power hydrogen sensor based on a single tin dioxide nanobelt," Appl. Phys. Lett. 88, 263102-1-263102-3 (2006).
    [CrossRef]
  8. A. Yang, X. Tao, R. Wang, S. Lee, and C. Surya, "Room temperature gas sensing properties of SnO2/multiwall-carbon-nanotube composite nanofibers," Appl. Phys. Lett. 91,133110-1-133110-3 (2007).
  9. S. Choudhury, C. A. Betty, K. G. Girija, and S. K. Kulshreshtha, "Room temperature gas sensitivity of ultrathin SnO2 films prepared from Langmuir-Blodgett film precursors," Appl. Phys. Lett. 89, 071914-1-071914-3 (2006).
    [CrossRef]
  10. A. Kolmakov, D. O. Klenov, Y. Lilach, S. Stemmer, and M. Moskovits, "Enhanced Gas Sensing by Individual SnO2 Nanowires and Nanobelts Functionalized with Pd Catalyst Particles," Nano. Lett. 5, 667-673 (2005).
    [CrossRef] [PubMed]
  11. X. H. Chen and M. Moskovits, "Observing Catalysis through the Agency of the Participating Electrons: Surface -Chemistry-Induced Current Changes in a Tin Oxide Nanowire Decorated with Silver," Nano. Lett. 7, 807-812 (2007).
    [CrossRef] [PubMed]
  12. C. Y. Chang, G. C. Chi, W. M. Wang, L. C. Chen, K. H. Chen, F. Ren, and S. J. Pearton, "Electrical Transport Properties of Single GaN and InN Nanowires," J. Electro. Mater. 35, 738-743 (2006).
    [CrossRef]
  13. R. S. Chen, H. Y. Chen, C. Y. Lu, K. H. Chen, C. P. Chen, L. C. Chen, and Y. J. Yang, "Ultrahigh photocurrent gain in m-axial GaN nanowires," Appl. Phys. Lett. 91, 223106-1-223106-3 (2007).
  14. X. T. Zhou, F. Heigl, M. W. Murphy, T. K. Sham, T. Regier, I. Coulthard, and R. I. R. Blyth, "Time-resolved x-ray excited optical luminescence from SnO2 nanoribbons: Direct evidence for the origin of the blue luminescence and the role of surface states," Appl. Phys. Lett. 89, 213109-1-213109-3 (2006).
    [CrossRef]
  15. J. A. Garrido, E. Monroy, I. Izpura, and E. Muñoz, "Photoconductive gain modelling of GaN photodetectors," Semicond. Sci. Technol. 13, 563-568 (1998).
    [CrossRef]

2007

S. Dmitriev, Y. Lilach, B. Button, M. Moskovits, and A. Kolmakov, "Nanoengineered chemiresistors: the interplay between electron transport and chemisorption properties of morphologically encoded SnO2 nanowires," Nanotechnology,  18,055707-055712 (2007).
[CrossRef]

A. Yang, X. Tao, R. Wang, S. Lee, and C. Surya, "Room temperature gas sensing properties of SnO2/multiwall-carbon-nanotube composite nanofibers," Appl. Phys. Lett. 91,133110-1-133110-3 (2007).

X. H. Chen and M. Moskovits, "Observing Catalysis through the Agency of the Participating Electrons: Surface -Chemistry-Induced Current Changes in a Tin Oxide Nanowire Decorated with Silver," Nano. Lett. 7, 807-812 (2007).
[CrossRef] [PubMed]

R. S. Chen, H. Y. Chen, C. Y. Lu, K. H. Chen, C. P. Chen, L. C. Chen, and Y. J. Yang, "Ultrahigh photocurrent gain in m-axial GaN nanowires," Appl. Phys. Lett. 91, 223106-1-223106-3 (2007).

2006

X. T. Zhou, F. Heigl, M. W. Murphy, T. K. Sham, T. Regier, I. Coulthard, and R. I. R. Blyth, "Time-resolved x-ray excited optical luminescence from SnO2 nanoribbons: Direct evidence for the origin of the blue luminescence and the role of surface states," Appl. Phys. Lett. 89, 213109-1-213109-3 (2006).
[CrossRef]

C. Y. Chang, G. C. Chi, W. M. Wang, L. C. Chen, K. H. Chen, F. Ren, and S. J. Pearton, "Electrical Transport Properties of Single GaN and InN Nanowires," J. Electro. Mater. 35, 738-743 (2006).
[CrossRef]

S. Choudhury, C. A. Betty, K. G. Girija, and S. K. Kulshreshtha, "Room temperature gas sensitivity of ultrathin SnO2 films prepared from Langmuir-Blodgett film precursors," Appl. Phys. Lett. 89, 071914-1-071914-3 (2006).
[CrossRef]

S. Luo, P. K. Chu, W. Liu, M. Zhang, and C. Lin, "Origin of low-temperature photoluminescence from SnO2 nanowires fabricated by thermal evaporation and annealed in different ambients," Appl. Phys. Lett. 88, 183112-1-183112-3 (2006).
[CrossRef]

L. L. Fields, J. P. Zheng, Y. Cheng, and P. Xiong, "Room-temperature low-power hydrogen sensor based on a single tin dioxide nanobelt," Appl. Phys. Lett. 88, 263102-1-263102-3 (2006).
[CrossRef]

2005

A. Kolmakov, D. O. Klenov, Y. Lilach, S. Stemmer, and M. Moskovits, "Enhanced Gas Sensing by Individual SnO2 Nanowires and Nanobelts Functionalized with Pd Catalyst Particles," Nano. Lett. 5, 667-673 (2005).
[CrossRef] [PubMed]

B. Wang, Y. H. Yang, C. X. Wang, N. S. Xu, and G. W. Yang, "Field emission and photoluminescence of SnO2 nanograss," J. Appl. Phys. 98, 124303-1-12430-4 (2005).
[CrossRef]

B. Wang, Y. H. Yang, C. X. Wang, and G. W. Yang, "Nanostructures and self-catalyzed growth of SnO2," J. Appl. Phys. 98, 073520-1-073520-5 (2005).

2003

Z. Liu, D. Zhang, S. Han, C. Li, T. Tang, W. Jin, X. Liu, B. Lei, and C. Zhou, "Laser Ablation Synthesis and Electron Transport Studies of Tin Oxide Nanowires," Adv. Mater. (Weinheim, Ger.) 15,1754-1757 (2003).
[CrossRef]

2001

Y. K. Liu, C. L. Zheng, W. Z. Wang, C. R. Yin, and G. H. Wang, "Synthesis and Characteristics of Rutile SnO2 Nanorods," Adv. Mater. (Weinheim, Ger.) 13, 1883-1887 (2001).
[CrossRef]

1998

J. A. Garrido, E. Monroy, I. Izpura, and E. Muñoz, "Photoconductive gain modelling of GaN photodetectors," Semicond. Sci. Technol. 13, 563-568 (1998).
[CrossRef]

Betty, C. A.

S. Choudhury, C. A. Betty, K. G. Girija, and S. K. Kulshreshtha, "Room temperature gas sensitivity of ultrathin SnO2 films prepared from Langmuir-Blodgett film precursors," Appl. Phys. Lett. 89, 071914-1-071914-3 (2006).
[CrossRef]

Blyth, R. I. R.

X. T. Zhou, F. Heigl, M. W. Murphy, T. K. Sham, T. Regier, I. Coulthard, and R. I. R. Blyth, "Time-resolved x-ray excited optical luminescence from SnO2 nanoribbons: Direct evidence for the origin of the blue luminescence and the role of surface states," Appl. Phys. Lett. 89, 213109-1-213109-3 (2006).
[CrossRef]

Button, B.

S. Dmitriev, Y. Lilach, B. Button, M. Moskovits, and A. Kolmakov, "Nanoengineered chemiresistors: the interplay between electron transport and chemisorption properties of morphologically encoded SnO2 nanowires," Nanotechnology,  18,055707-055712 (2007).
[CrossRef]

Chang, C. Y.

C. Y. Chang, G. C. Chi, W. M. Wang, L. C. Chen, K. H. Chen, F. Ren, and S. J. Pearton, "Electrical Transport Properties of Single GaN and InN Nanowires," J. Electro. Mater. 35, 738-743 (2006).
[CrossRef]

Chen, C. P.

R. S. Chen, H. Y. Chen, C. Y. Lu, K. H. Chen, C. P. Chen, L. C. Chen, and Y. J. Yang, "Ultrahigh photocurrent gain in m-axial GaN nanowires," Appl. Phys. Lett. 91, 223106-1-223106-3 (2007).

Chen, H. Y.

R. S. Chen, H. Y. Chen, C. Y. Lu, K. H. Chen, C. P. Chen, L. C. Chen, and Y. J. Yang, "Ultrahigh photocurrent gain in m-axial GaN nanowires," Appl. Phys. Lett. 91, 223106-1-223106-3 (2007).

Chen, K. H.

R. S. Chen, H. Y. Chen, C. Y. Lu, K. H. Chen, C. P. Chen, L. C. Chen, and Y. J. Yang, "Ultrahigh photocurrent gain in m-axial GaN nanowires," Appl. Phys. Lett. 91, 223106-1-223106-3 (2007).

C. Y. Chang, G. C. Chi, W. M. Wang, L. C. Chen, K. H. Chen, F. Ren, and S. J. Pearton, "Electrical Transport Properties of Single GaN and InN Nanowires," J. Electro. Mater. 35, 738-743 (2006).
[CrossRef]

Chen, L. C.

R. S. Chen, H. Y. Chen, C. Y. Lu, K. H. Chen, C. P. Chen, L. C. Chen, and Y. J. Yang, "Ultrahigh photocurrent gain in m-axial GaN nanowires," Appl. Phys. Lett. 91, 223106-1-223106-3 (2007).

C. Y. Chang, G. C. Chi, W. M. Wang, L. C. Chen, K. H. Chen, F. Ren, and S. J. Pearton, "Electrical Transport Properties of Single GaN and InN Nanowires," J. Electro. Mater. 35, 738-743 (2006).
[CrossRef]

Chen, R. S.

R. S. Chen, H. Y. Chen, C. Y. Lu, K. H. Chen, C. P. Chen, L. C. Chen, and Y. J. Yang, "Ultrahigh photocurrent gain in m-axial GaN nanowires," Appl. Phys. Lett. 91, 223106-1-223106-3 (2007).

Chen, X. H.

X. H. Chen and M. Moskovits, "Observing Catalysis through the Agency of the Participating Electrons: Surface -Chemistry-Induced Current Changes in a Tin Oxide Nanowire Decorated with Silver," Nano. Lett. 7, 807-812 (2007).
[CrossRef] [PubMed]

Cheng, Y.

L. L. Fields, J. P. Zheng, Y. Cheng, and P. Xiong, "Room-temperature low-power hydrogen sensor based on a single tin dioxide nanobelt," Appl. Phys. Lett. 88, 263102-1-263102-3 (2006).
[CrossRef]

Chi, G. C.

C. Y. Chang, G. C. Chi, W. M. Wang, L. C. Chen, K. H. Chen, F. Ren, and S. J. Pearton, "Electrical Transport Properties of Single GaN and InN Nanowires," J. Electro. Mater. 35, 738-743 (2006).
[CrossRef]

Choudhury, S.

S. Choudhury, C. A. Betty, K. G. Girija, and S. K. Kulshreshtha, "Room temperature gas sensitivity of ultrathin SnO2 films prepared from Langmuir-Blodgett film precursors," Appl. Phys. Lett. 89, 071914-1-071914-3 (2006).
[CrossRef]

Chu, P. K.

S. Luo, P. K. Chu, W. Liu, M. Zhang, and C. Lin, "Origin of low-temperature photoluminescence from SnO2 nanowires fabricated by thermal evaporation and annealed in different ambients," Appl. Phys. Lett. 88, 183112-1-183112-3 (2006).
[CrossRef]

Coulthard, I.

X. T. Zhou, F. Heigl, M. W. Murphy, T. K. Sham, T. Regier, I. Coulthard, and R. I. R. Blyth, "Time-resolved x-ray excited optical luminescence from SnO2 nanoribbons: Direct evidence for the origin of the blue luminescence and the role of surface states," Appl. Phys. Lett. 89, 213109-1-213109-3 (2006).
[CrossRef]

Dmitriev, S.

S. Dmitriev, Y. Lilach, B. Button, M. Moskovits, and A. Kolmakov, "Nanoengineered chemiresistors: the interplay between electron transport and chemisorption properties of morphologically encoded SnO2 nanowires," Nanotechnology,  18,055707-055712 (2007).
[CrossRef]

Fields, L. L.

L. L. Fields, J. P. Zheng, Y. Cheng, and P. Xiong, "Room-temperature low-power hydrogen sensor based on a single tin dioxide nanobelt," Appl. Phys. Lett. 88, 263102-1-263102-3 (2006).
[CrossRef]

Garrido, J. A.

J. A. Garrido, E. Monroy, I. Izpura, and E. Muñoz, "Photoconductive gain modelling of GaN photodetectors," Semicond. Sci. Technol. 13, 563-568 (1998).
[CrossRef]

Girija, K. G.

S. Choudhury, C. A. Betty, K. G. Girija, and S. K. Kulshreshtha, "Room temperature gas sensitivity of ultrathin SnO2 films prepared from Langmuir-Blodgett film precursors," Appl. Phys. Lett. 89, 071914-1-071914-3 (2006).
[CrossRef]

Han, S.

Z. Liu, D. Zhang, S. Han, C. Li, T. Tang, W. Jin, X. Liu, B. Lei, and C. Zhou, "Laser Ablation Synthesis and Electron Transport Studies of Tin Oxide Nanowires," Adv. Mater. (Weinheim, Ger.) 15,1754-1757 (2003).
[CrossRef]

Heigl, F.

X. T. Zhou, F. Heigl, M. W. Murphy, T. K. Sham, T. Regier, I. Coulthard, and R. I. R. Blyth, "Time-resolved x-ray excited optical luminescence from SnO2 nanoribbons: Direct evidence for the origin of the blue luminescence and the role of surface states," Appl. Phys. Lett. 89, 213109-1-213109-3 (2006).
[CrossRef]

Izpura, I.

J. A. Garrido, E. Monroy, I. Izpura, and E. Muñoz, "Photoconductive gain modelling of GaN photodetectors," Semicond. Sci. Technol. 13, 563-568 (1998).
[CrossRef]

Jin, W.

Z. Liu, D. Zhang, S. Han, C. Li, T. Tang, W. Jin, X. Liu, B. Lei, and C. Zhou, "Laser Ablation Synthesis and Electron Transport Studies of Tin Oxide Nanowires," Adv. Mater. (Weinheim, Ger.) 15,1754-1757 (2003).
[CrossRef]

Klenov, D. O.

A. Kolmakov, D. O. Klenov, Y. Lilach, S. Stemmer, and M. Moskovits, "Enhanced Gas Sensing by Individual SnO2 Nanowires and Nanobelts Functionalized with Pd Catalyst Particles," Nano. Lett. 5, 667-673 (2005).
[CrossRef] [PubMed]

Kolmakov, A.

S. Dmitriev, Y. Lilach, B. Button, M. Moskovits, and A. Kolmakov, "Nanoengineered chemiresistors: the interplay between electron transport and chemisorption properties of morphologically encoded SnO2 nanowires," Nanotechnology,  18,055707-055712 (2007).
[CrossRef]

A. Kolmakov, D. O. Klenov, Y. Lilach, S. Stemmer, and M. Moskovits, "Enhanced Gas Sensing by Individual SnO2 Nanowires and Nanobelts Functionalized with Pd Catalyst Particles," Nano. Lett. 5, 667-673 (2005).
[CrossRef] [PubMed]

Kulshreshtha, S. K.

S. Choudhury, C. A. Betty, K. G. Girija, and S. K. Kulshreshtha, "Room temperature gas sensitivity of ultrathin SnO2 films prepared from Langmuir-Blodgett film precursors," Appl. Phys. Lett. 89, 071914-1-071914-3 (2006).
[CrossRef]

Lee, S.

A. Yang, X. Tao, R. Wang, S. Lee, and C. Surya, "Room temperature gas sensing properties of SnO2/multiwall-carbon-nanotube composite nanofibers," Appl. Phys. Lett. 91,133110-1-133110-3 (2007).

Lei, B.

Z. Liu, D. Zhang, S. Han, C. Li, T. Tang, W. Jin, X. Liu, B. Lei, and C. Zhou, "Laser Ablation Synthesis and Electron Transport Studies of Tin Oxide Nanowires," Adv. Mater. (Weinheim, Ger.) 15,1754-1757 (2003).
[CrossRef]

Li, C.

Z. Liu, D. Zhang, S. Han, C. Li, T. Tang, W. Jin, X. Liu, B. Lei, and C. Zhou, "Laser Ablation Synthesis and Electron Transport Studies of Tin Oxide Nanowires," Adv. Mater. (Weinheim, Ger.) 15,1754-1757 (2003).
[CrossRef]

Lilach, Y.

S. Dmitriev, Y. Lilach, B. Button, M. Moskovits, and A. Kolmakov, "Nanoengineered chemiresistors: the interplay between electron transport and chemisorption properties of morphologically encoded SnO2 nanowires," Nanotechnology,  18,055707-055712 (2007).
[CrossRef]

A. Kolmakov, D. O. Klenov, Y. Lilach, S. Stemmer, and M. Moskovits, "Enhanced Gas Sensing by Individual SnO2 Nanowires and Nanobelts Functionalized with Pd Catalyst Particles," Nano. Lett. 5, 667-673 (2005).
[CrossRef] [PubMed]

Lin, C.

S. Luo, P. K. Chu, W. Liu, M. Zhang, and C. Lin, "Origin of low-temperature photoluminescence from SnO2 nanowires fabricated by thermal evaporation and annealed in different ambients," Appl. Phys. Lett. 88, 183112-1-183112-3 (2006).
[CrossRef]

Liu, W.

S. Luo, P. K. Chu, W. Liu, M. Zhang, and C. Lin, "Origin of low-temperature photoluminescence from SnO2 nanowires fabricated by thermal evaporation and annealed in different ambients," Appl. Phys. Lett. 88, 183112-1-183112-3 (2006).
[CrossRef]

Liu, X.

Z. Liu, D. Zhang, S. Han, C. Li, T. Tang, W. Jin, X. Liu, B. Lei, and C. Zhou, "Laser Ablation Synthesis and Electron Transport Studies of Tin Oxide Nanowires," Adv. Mater. (Weinheim, Ger.) 15,1754-1757 (2003).
[CrossRef]

Liu, Y. K.

Y. K. Liu, C. L. Zheng, W. Z. Wang, C. R. Yin, and G. H. Wang, "Synthesis and Characteristics of Rutile SnO2 Nanorods," Adv. Mater. (Weinheim, Ger.) 13, 1883-1887 (2001).
[CrossRef]

Liu, Z.

Z. Liu, D. Zhang, S. Han, C. Li, T. Tang, W. Jin, X. Liu, B. Lei, and C. Zhou, "Laser Ablation Synthesis and Electron Transport Studies of Tin Oxide Nanowires," Adv. Mater. (Weinheim, Ger.) 15,1754-1757 (2003).
[CrossRef]

Lu, C. Y.

R. S. Chen, H. Y. Chen, C. Y. Lu, K. H. Chen, C. P. Chen, L. C. Chen, and Y. J. Yang, "Ultrahigh photocurrent gain in m-axial GaN nanowires," Appl. Phys. Lett. 91, 223106-1-223106-3 (2007).

Luo, S.

S. Luo, P. K. Chu, W. Liu, M. Zhang, and C. Lin, "Origin of low-temperature photoluminescence from SnO2 nanowires fabricated by thermal evaporation and annealed in different ambients," Appl. Phys. Lett. 88, 183112-1-183112-3 (2006).
[CrossRef]

Monroy, E.

J. A. Garrido, E. Monroy, I. Izpura, and E. Muñoz, "Photoconductive gain modelling of GaN photodetectors," Semicond. Sci. Technol. 13, 563-568 (1998).
[CrossRef]

Moskovits, M.

S. Dmitriev, Y. Lilach, B. Button, M. Moskovits, and A. Kolmakov, "Nanoengineered chemiresistors: the interplay between electron transport and chemisorption properties of morphologically encoded SnO2 nanowires," Nanotechnology,  18,055707-055712 (2007).
[CrossRef]

X. H. Chen and M. Moskovits, "Observing Catalysis through the Agency of the Participating Electrons: Surface -Chemistry-Induced Current Changes in a Tin Oxide Nanowire Decorated with Silver," Nano. Lett. 7, 807-812 (2007).
[CrossRef] [PubMed]

A. Kolmakov, D. O. Klenov, Y. Lilach, S. Stemmer, and M. Moskovits, "Enhanced Gas Sensing by Individual SnO2 Nanowires and Nanobelts Functionalized with Pd Catalyst Particles," Nano. Lett. 5, 667-673 (2005).
[CrossRef] [PubMed]

Muñoz, E.

J. A. Garrido, E. Monroy, I. Izpura, and E. Muñoz, "Photoconductive gain modelling of GaN photodetectors," Semicond. Sci. Technol. 13, 563-568 (1998).
[CrossRef]

Murphy, M. W.

X. T. Zhou, F. Heigl, M. W. Murphy, T. K. Sham, T. Regier, I. Coulthard, and R. I. R. Blyth, "Time-resolved x-ray excited optical luminescence from SnO2 nanoribbons: Direct evidence for the origin of the blue luminescence and the role of surface states," Appl. Phys. Lett. 89, 213109-1-213109-3 (2006).
[CrossRef]

Pearton, S. J.

C. Y. Chang, G. C. Chi, W. M. Wang, L. C. Chen, K. H. Chen, F. Ren, and S. J. Pearton, "Electrical Transport Properties of Single GaN and InN Nanowires," J. Electro. Mater. 35, 738-743 (2006).
[CrossRef]

Regier, T.

X. T. Zhou, F. Heigl, M. W. Murphy, T. K. Sham, T. Regier, I. Coulthard, and R. I. R. Blyth, "Time-resolved x-ray excited optical luminescence from SnO2 nanoribbons: Direct evidence for the origin of the blue luminescence and the role of surface states," Appl. Phys. Lett. 89, 213109-1-213109-3 (2006).
[CrossRef]

Ren, F.

C. Y. Chang, G. C. Chi, W. M. Wang, L. C. Chen, K. H. Chen, F. Ren, and S. J. Pearton, "Electrical Transport Properties of Single GaN and InN Nanowires," J. Electro. Mater. 35, 738-743 (2006).
[CrossRef]

Sham, T. K.

X. T. Zhou, F. Heigl, M. W. Murphy, T. K. Sham, T. Regier, I. Coulthard, and R. I. R. Blyth, "Time-resolved x-ray excited optical luminescence from SnO2 nanoribbons: Direct evidence for the origin of the blue luminescence and the role of surface states," Appl. Phys. Lett. 89, 213109-1-213109-3 (2006).
[CrossRef]

Stemmer, S.

A. Kolmakov, D. O. Klenov, Y. Lilach, S. Stemmer, and M. Moskovits, "Enhanced Gas Sensing by Individual SnO2 Nanowires and Nanobelts Functionalized with Pd Catalyst Particles," Nano. Lett. 5, 667-673 (2005).
[CrossRef] [PubMed]

Surya, C.

A. Yang, X. Tao, R. Wang, S. Lee, and C. Surya, "Room temperature gas sensing properties of SnO2/multiwall-carbon-nanotube composite nanofibers," Appl. Phys. Lett. 91,133110-1-133110-3 (2007).

Tang, T.

Z. Liu, D. Zhang, S. Han, C. Li, T. Tang, W. Jin, X. Liu, B. Lei, and C. Zhou, "Laser Ablation Synthesis and Electron Transport Studies of Tin Oxide Nanowires," Adv. Mater. (Weinheim, Ger.) 15,1754-1757 (2003).
[CrossRef]

Tao, X.

A. Yang, X. Tao, R. Wang, S. Lee, and C. Surya, "Room temperature gas sensing properties of SnO2/multiwall-carbon-nanotube composite nanofibers," Appl. Phys. Lett. 91,133110-1-133110-3 (2007).

Wang, B.

B. Wang, Y. H. Yang, C. X. Wang, N. S. Xu, and G. W. Yang, "Field emission and photoluminescence of SnO2 nanograss," J. Appl. Phys. 98, 124303-1-12430-4 (2005).
[CrossRef]

B. Wang, Y. H. Yang, C. X. Wang, and G. W. Yang, "Nanostructures and self-catalyzed growth of SnO2," J. Appl. Phys. 98, 073520-1-073520-5 (2005).

Wang, C. X.

B. Wang, Y. H. Yang, C. X. Wang, and G. W. Yang, "Nanostructures and self-catalyzed growth of SnO2," J. Appl. Phys. 98, 073520-1-073520-5 (2005).

B. Wang, Y. H. Yang, C. X. Wang, N. S. Xu, and G. W. Yang, "Field emission and photoluminescence of SnO2 nanograss," J. Appl. Phys. 98, 124303-1-12430-4 (2005).
[CrossRef]

Wang, G. H.

Y. K. Liu, C. L. Zheng, W. Z. Wang, C. R. Yin, and G. H. Wang, "Synthesis and Characteristics of Rutile SnO2 Nanorods," Adv. Mater. (Weinheim, Ger.) 13, 1883-1887 (2001).
[CrossRef]

Wang, R.

A. Yang, X. Tao, R. Wang, S. Lee, and C. Surya, "Room temperature gas sensing properties of SnO2/multiwall-carbon-nanotube composite nanofibers," Appl. Phys. Lett. 91,133110-1-133110-3 (2007).

Wang, W. M.

C. Y. Chang, G. C. Chi, W. M. Wang, L. C. Chen, K. H. Chen, F. Ren, and S. J. Pearton, "Electrical Transport Properties of Single GaN and InN Nanowires," J. Electro. Mater. 35, 738-743 (2006).
[CrossRef]

Wang, W. Z.

Y. K. Liu, C. L. Zheng, W. Z. Wang, C. R. Yin, and G. H. Wang, "Synthesis and Characteristics of Rutile SnO2 Nanorods," Adv. Mater. (Weinheim, Ger.) 13, 1883-1887 (2001).
[CrossRef]

Xiong, P.

L. L. Fields, J. P. Zheng, Y. Cheng, and P. Xiong, "Room-temperature low-power hydrogen sensor based on a single tin dioxide nanobelt," Appl. Phys. Lett. 88, 263102-1-263102-3 (2006).
[CrossRef]

Xu, N. S.

B. Wang, Y. H. Yang, C. X. Wang, N. S. Xu, and G. W. Yang, "Field emission and photoluminescence of SnO2 nanograss," J. Appl. Phys. 98, 124303-1-12430-4 (2005).
[CrossRef]

Yang, A.

A. Yang, X. Tao, R. Wang, S. Lee, and C. Surya, "Room temperature gas sensing properties of SnO2/multiwall-carbon-nanotube composite nanofibers," Appl. Phys. Lett. 91,133110-1-133110-3 (2007).

Yang, G. W.

B. Wang, Y. H. Yang, C. X. Wang, N. S. Xu, and G. W. Yang, "Field emission and photoluminescence of SnO2 nanograss," J. Appl. Phys. 98, 124303-1-12430-4 (2005).
[CrossRef]

B. Wang, Y. H. Yang, C. X. Wang, and G. W. Yang, "Nanostructures and self-catalyzed growth of SnO2," J. Appl. Phys. 98, 073520-1-073520-5 (2005).

Yang, Y. H.

B. Wang, Y. H. Yang, C. X. Wang, and G. W. Yang, "Nanostructures and self-catalyzed growth of SnO2," J. Appl. Phys. 98, 073520-1-073520-5 (2005).

B. Wang, Y. H. Yang, C. X. Wang, N. S. Xu, and G. W. Yang, "Field emission and photoluminescence of SnO2 nanograss," J. Appl. Phys. 98, 124303-1-12430-4 (2005).
[CrossRef]

Yang, Y. J.

R. S. Chen, H. Y. Chen, C. Y. Lu, K. H. Chen, C. P. Chen, L. C. Chen, and Y. J. Yang, "Ultrahigh photocurrent gain in m-axial GaN nanowires," Appl. Phys. Lett. 91, 223106-1-223106-3 (2007).

Yin, C. R.

Y. K. Liu, C. L. Zheng, W. Z. Wang, C. R. Yin, and G. H. Wang, "Synthesis and Characteristics of Rutile SnO2 Nanorods," Adv. Mater. (Weinheim, Ger.) 13, 1883-1887 (2001).
[CrossRef]

Zhang, D.

Z. Liu, D. Zhang, S. Han, C. Li, T. Tang, W. Jin, X. Liu, B. Lei, and C. Zhou, "Laser Ablation Synthesis and Electron Transport Studies of Tin Oxide Nanowires," Adv. Mater. (Weinheim, Ger.) 15,1754-1757 (2003).
[CrossRef]

Zhang, M.

S. Luo, P. K. Chu, W. Liu, M. Zhang, and C. Lin, "Origin of low-temperature photoluminescence from SnO2 nanowires fabricated by thermal evaporation and annealed in different ambients," Appl. Phys. Lett. 88, 183112-1-183112-3 (2006).
[CrossRef]

Zheng, C. L.

Y. K. Liu, C. L. Zheng, W. Z. Wang, C. R. Yin, and G. H. Wang, "Synthesis and Characteristics of Rutile SnO2 Nanorods," Adv. Mater. (Weinheim, Ger.) 13, 1883-1887 (2001).
[CrossRef]

Zheng, J. P.

L. L. Fields, J. P. Zheng, Y. Cheng, and P. Xiong, "Room-temperature low-power hydrogen sensor based on a single tin dioxide nanobelt," Appl. Phys. Lett. 88, 263102-1-263102-3 (2006).
[CrossRef]

Zhou, C.

Z. Liu, D. Zhang, S. Han, C. Li, T. Tang, W. Jin, X. Liu, B. Lei, and C. Zhou, "Laser Ablation Synthesis and Electron Transport Studies of Tin Oxide Nanowires," Adv. Mater. (Weinheim, Ger.) 15,1754-1757 (2003).
[CrossRef]

Zhou, X. T.

X. T. Zhou, F. Heigl, M. W. Murphy, T. K. Sham, T. Regier, I. Coulthard, and R. I. R. Blyth, "Time-resolved x-ray excited optical luminescence from SnO2 nanoribbons: Direct evidence for the origin of the blue luminescence and the role of surface states," Appl. Phys. Lett. 89, 213109-1-213109-3 (2006).
[CrossRef]

Adv. Mater. (Weinheim, Ger.)

Z. Liu, D. Zhang, S. Han, C. Li, T. Tang, W. Jin, X. Liu, B. Lei, and C. Zhou, "Laser Ablation Synthesis and Electron Transport Studies of Tin Oxide Nanowires," Adv. Mater. (Weinheim, Ger.) 15,1754-1757 (2003).
[CrossRef]

Y. K. Liu, C. L. Zheng, W. Z. Wang, C. R. Yin, and G. H. Wang, "Synthesis and Characteristics of Rutile SnO2 Nanorods," Adv. Mater. (Weinheim, Ger.) 13, 1883-1887 (2001).
[CrossRef]

Appl. Phys.

B. Wang, Y. H. Yang, C. X. Wang, and G. W. Yang, "Nanostructures and self-catalyzed growth of SnO2," J. Appl. Phys. 98, 073520-1-073520-5 (2005).

Appl. Phys. Lett.

S. Luo, P. K. Chu, W. Liu, M. Zhang, and C. Lin, "Origin of low-temperature photoluminescence from SnO2 nanowires fabricated by thermal evaporation and annealed in different ambients," Appl. Phys. Lett. 88, 183112-1-183112-3 (2006).
[CrossRef]

L. L. Fields, J. P. Zheng, Y. Cheng, and P. Xiong, "Room-temperature low-power hydrogen sensor based on a single tin dioxide nanobelt," Appl. Phys. Lett. 88, 263102-1-263102-3 (2006).
[CrossRef]

A. Yang, X. Tao, R. Wang, S. Lee, and C. Surya, "Room temperature gas sensing properties of SnO2/multiwall-carbon-nanotube composite nanofibers," Appl. Phys. Lett. 91,133110-1-133110-3 (2007).

S. Choudhury, C. A. Betty, K. G. Girija, and S. K. Kulshreshtha, "Room temperature gas sensitivity of ultrathin SnO2 films prepared from Langmuir-Blodgett film precursors," Appl. Phys. Lett. 89, 071914-1-071914-3 (2006).
[CrossRef]

R. S. Chen, H. Y. Chen, C. Y. Lu, K. H. Chen, C. P. Chen, L. C. Chen, and Y. J. Yang, "Ultrahigh photocurrent gain in m-axial GaN nanowires," Appl. Phys. Lett. 91, 223106-1-223106-3 (2007).

X. T. Zhou, F. Heigl, M. W. Murphy, T. K. Sham, T. Regier, I. Coulthard, and R. I. R. Blyth, "Time-resolved x-ray excited optical luminescence from SnO2 nanoribbons: Direct evidence for the origin of the blue luminescence and the role of surface states," Appl. Phys. Lett. 89, 213109-1-213109-3 (2006).
[CrossRef]

J. Appl. Phys.

B. Wang, Y. H. Yang, C. X. Wang, N. S. Xu, and G. W. Yang, "Field emission and photoluminescence of SnO2 nanograss," J. Appl. Phys. 98, 124303-1-12430-4 (2005).
[CrossRef]

J. Electro. Mater.

C. Y. Chang, G. C. Chi, W. M. Wang, L. C. Chen, K. H. Chen, F. Ren, and S. J. Pearton, "Electrical Transport Properties of Single GaN and InN Nanowires," J. Electro. Mater. 35, 738-743 (2006).
[CrossRef]

Nano. Lett.

A. Kolmakov, D. O. Klenov, Y. Lilach, S. Stemmer, and M. Moskovits, "Enhanced Gas Sensing by Individual SnO2 Nanowires and Nanobelts Functionalized with Pd Catalyst Particles," Nano. Lett. 5, 667-673 (2005).
[CrossRef] [PubMed]

X. H. Chen and M. Moskovits, "Observing Catalysis through the Agency of the Participating Electrons: Surface -Chemistry-Induced Current Changes in a Tin Oxide Nanowire Decorated with Silver," Nano. Lett. 7, 807-812 (2007).
[CrossRef] [PubMed]

Nanotechnology

S. Dmitriev, Y. Lilach, B. Button, M. Moskovits, and A. Kolmakov, "Nanoengineered chemiresistors: the interplay between electron transport and chemisorption properties of morphologically encoded SnO2 nanowires," Nanotechnology,  18,055707-055712 (2007).
[CrossRef]

Semicond. Sci. Technol.

J. A. Garrido, E. Monroy, I. Izpura, and E. Muñoz, "Photoconductive gain modelling of GaN photodetectors," Semicond. Sci. Technol. 13, 563-568 (1998).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

IV characteristics of SnO2 nanowires with and without Au-nanoparticles in ambient air.

Fig. 2.
Fig. 2.

(a). Scanning electron microscope (SEM) image of the Au-decorated SnO2 nanowires. (b) Photoresponse of SnO2 nanowires by UV illumination under different excitation intensity. The corresponding intensity of each step is 3.2, 4.2, 6.5, 9.6, 13.1, 18.9, 25, 33.1, 56.9, 96.7, 150, 224, 774 W/m2, respectively.

Fig. 3.
Fig. 3.

Power dependence of pristine and Au-decorated SnO2 nanowires.

Fig. 4.
Fig. 4.

(a). Accumulation of free electrons and upward band-bending on the surface. (b). Au-nanoparticles result in a localized Schottky barrier in the vicinity of Au-nanoparticles, which will increase the height and the width of space chare region.

Fig. 5.
Fig. 5.

Computer simulation of gain versus intensity and barrier height. An increase of the exponent K and gain with increasing barrier height are obtained by Eq. (2).

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Γ = Δ i q P h ν × 1 η ,
i dark d w dark × { [ 2 ε Δ Ψ o q N d ] 1 2 [ 2 ε ( Δ Ψ o Ψ ph ) 1 2 q N d ] } ,
V ph = V T In [ 1 + e Δ Ψ o / V V T ( q η P h ν A * T 2 ) ] , w dark ( 2 ε Δ Ψ o q N d ) 1 2 .

Metrics