Abstract

We investigate the reflection and transmission characteristics of the low-dielectric constant cut off barrier in the metal-insulator-metal (MIM) waveguide and propose a novel plasmonic nano-cavity made of two cut off barriers and the waveguide between them. It is shown that the anti-symmetric mode in the MIM waveguide with the core of the low dielectric constant below the specific value cannot be supported and this region can be regarded as a cut off barrier with high stability. The phase shift due to the reflection at the finite-length cut off barrier is calculated and the design scheme of the cavity length for the resonant tunneling is presented. The transmission spectra through the proposed nano-cavity are also discussed.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Rather, Surface Plasmons (Springer-Verlag, Berlin, 1988).
  2. W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824-830 (2003).
    [CrossRef] [PubMed]
  3. S. Kim, H. Kim, Y. Lim, and B. Lee, "Off-axis directional beaming of optical field diffracted by a single subwavelength metal slit with asymmetric dielectric surface gratings," Appl. Phys. Lett. 90, 051113 (2007).
    [CrossRef]
  4. H. Kim, J. Hahn, and B. Lee, "Focusing properties of surface plasmon polariton floating dielectric lenses," Opt. Express 16, 3049-3057 (2008).
    [CrossRef] [PubMed]
  5. Y. Lim, S. Kim, H. Kim, J. Jung, and B. Lee, "Interference of surface plasmon waves and plasmon coupled waveguide modes for the pattering of thin film," IEEE J. Quant. Electron. 44, 305-311 (2008).
    [CrossRef]
  6. I.-M. Lee, J. Jung, J. Park, H. Kim, and B. Lee, "Dispersion characteristics of channel plasmon polariton waveguides with step-trench-type grooves," Opt. Express 15, 16596-16603 (2007).
    [CrossRef] [PubMed]
  7. S. Sidorenko and O. J. F. Martin, "Resonant tunneling of surface plasmon-polaritons," Opt. Express 15, 6380-6388 (2007).
    [CrossRef] [PubMed]
  8. M. I. Stockman, "Slow propagation, anomalous absorption, and total external reflection of surface plasmon polaritons in nanolayer systems," Nano Lett. 6, 2604-2608 (2006).
    [CrossRef] [PubMed]
  9. S. I. Bozhevolnyi and T. Søndergaard, "General properties of slow-plasmon resonant nanostructures: nano-antennas and resonators," Opt. Express 15, 10869-10877 (2007).
    [CrossRef] [PubMed]
  10. G. D. Valle, T. Søndergaard, and S. I. Bozhevolnyi, "Plasmon-polariton nano-strip resonators: from visible to infra-red," Opt. Express 16, 6867-6876 (2008).
    [CrossRef] [PubMed]
  11. H. T. Miyazaki and Y. Kurokawa, "Squeezing visible light waves into a 3-nm-thick and 55-nm-long plasmon cavity," Phys. Rev. Lett. 96, 097401 (2006).
    [CrossRef] [PubMed]
  12. Y. Kurokawa and H. T. Miyazaki, "Metal-insulator-metal plasmon nanocavities: analysis of optical properties," Phys. Rev. B 75, 035411 (2007).
    [CrossRef]
  13. H. T. Miyazaki and Y. Kurokawa, "Controlled plasmon resonance in closed metal/insulator/metal nanocavities," Appl. Phys. Lett. 89, 211126 (2006).
    [CrossRef]
  14. J. A. Dionne, L. A. Sweatlock, and H. A. Atwater, "Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization," Phys. Rev. B 73, 035407 (2006).
    [CrossRef]
  15. R. Zia, M. D. Selker, P. B. Catrysse, and M. Brongersma, "Geometries and materials for subwavelength surface plasmon modes," J. Opt. Soc. Am. A 21, 2442-2446 (2004).
    [CrossRef]
  16. E. N. Economou, "Surface plasmons in thin films," Phys. Rev. 182, 539-554 (1969).
    [CrossRef]
  17. J. J. Burke, G. I. Stegeman, and T. Tamir, "Surface-polariton-like waves guided by thin, lossy metal films," Phys. Rev. B 33, 5186-5201 (1986).
    [CrossRef]
  18. P. Berini, "Plasmon-polariton waves guided by thin lossy metal films of finite width: bound modes of symmetric structures," Phys. Rev. B 61, 10484-10503 (2000).
    [CrossRef]
  19. J. A. Dionne, L. A. Sweatlock, and H. A. Atwater, "Planar metal plasmon waveguides: Frequency-dependent dispersion, propagation, localization, and loss beyond the free electron model," Phys. Rev. B 72, 075405 (2005).
    [CrossRef]
  20. J. Park and B. Lee, "An approximate formula of the effective refractive index of the metal-insulator-metal surface plasmon polariton waveguide in the infrared region," Jpn. J. Appl. Phys. (accepted for publication).
  21. J. A. Dionne, H. J. Lezec, and H. A. Atwater, "Highly confined photon transport in subwavelength metallic slot waveguides," Nano Lett. 6, 1928-1932 (2006).
    [CrossRef] [PubMed]
  22. M. J. Preiner, K. T. Shimizu, J. S. White, and N. A. Melosh, "Efficient optical coupling into metal-insulator-metal plasmon mode with subwavelength diffraction gratings," Appl. Phys. Lett. 92, 113109 (2008).
    [CrossRef]
  23. B. Wang and G. P. Wang, "Plasmon Bragg reflectors and nanocavities on flat metallic surfaces," Appl. Phys. Lett. 87, 013107 (2005).
    [CrossRef]
  24. A. Hosseini and Y. Massoud, "A low-loss metal-insulator-metal plasmonic Bragg reflector," Opt. Express 14, 11318-11323 (2006).
    [CrossRef]
  25. Z. Han, E. Forsberg, and S. He, "Surface plasmon Bragg gratings formed in metal-insulator-metal waveguides," IEEE Photon. Technol. Lett. 19, 91-93 (2007).
    [CrossRef]
  26. J. Park, H. Kim, and B. Lee, "High order plasmonic Bragg reflection in the metal-insulator-metal waveguide Bragg grating," Opt. Express 16, 413-425 (2008).
    [CrossRef] [PubMed]
  27. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, 2nd ed. (Wiley Intersceince, Hoboken, NJ, 2007).
  28. H. J. Lezec, J. A. Dionne, and H. A. Atwater, "Negative refraction at visible frequencies," Science 316, 430-432 (2007).
    [CrossRef] [PubMed]
  29. M. G. Moharam and T. K. Gaylord, "Rigorous coupled-wave analysis of planar-grating diffraction," J. Opt. Soc. Am. A 71, 811-818 (1981).
    [CrossRef]
  30. M. G. Moharam, E. B. Grann, and D. A. Pommet, "Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings," J. Opt. Soc. Am. A 12, 1067-1076 (1995).
    [CrossRef]
  31. P. Lalanne, "Improved formulation of the coupled-wave method for two-dimensional gratings," J. Opt. Soc. Am. A 14, 1592-1598 (1997).
    [CrossRef]
  32. H. Kim, I.-M. Lee, and B. Lee, "Extended scattering-matrix method for efficient full parallel implementation of rigorous coupled-wave analysis," J. Opt. Soc. Am. A 24, 2313-2327 (2007).
    [CrossRef]
  33. K.-Y. Kim, "Photon tunneling in composite layers of negative- and positive-index media," Phys. Rev. E 70, 047603 (2004)
    [CrossRef]
  34. K.-Y. Kim and B. Lee, "Complete tunneling of light through impedance-mismatched barrier layers," Phys. Rev. A 77, 023822 (2008).
  35. J. Park, K.-Y. Kim, and B. Lee, "Complete tunneling of light through a composite barrier consisting of multiple layers," (in submission).

2008

Y. Lim, S. Kim, H. Kim, J. Jung, and B. Lee, "Interference of surface plasmon waves and plasmon coupled waveguide modes for the pattering of thin film," IEEE J. Quant. Electron. 44, 305-311 (2008).
[CrossRef]

M. J. Preiner, K. T. Shimizu, J. S. White, and N. A. Melosh, "Efficient optical coupling into metal-insulator-metal plasmon mode with subwavelength diffraction gratings," Appl. Phys. Lett. 92, 113109 (2008).
[CrossRef]

K.-Y. Kim and B. Lee, "Complete tunneling of light through impedance-mismatched barrier layers," Phys. Rev. A 77, 023822 (2008).

J. Park, H. Kim, and B. Lee, "High order plasmonic Bragg reflection in the metal-insulator-metal waveguide Bragg grating," Opt. Express 16, 413-425 (2008).
[CrossRef] [PubMed]

H. Kim, J. Hahn, and B. Lee, "Focusing properties of surface plasmon polariton floating dielectric lenses," Opt. Express 16, 3049-3057 (2008).
[CrossRef] [PubMed]

G. D. Valle, T. Søndergaard, and S. I. Bozhevolnyi, "Plasmon-polariton nano-strip resonators: from visible to infra-red," Opt. Express 16, 6867-6876 (2008).
[CrossRef] [PubMed]

2007

S. Sidorenko and O. J. F. Martin, "Resonant tunneling of surface plasmon-polaritons," Opt. Express 15, 6380-6388 (2007).
[CrossRef] [PubMed]

H. Kim, I.-M. Lee, and B. Lee, "Extended scattering-matrix method for efficient full parallel implementation of rigorous coupled-wave analysis," J. Opt. Soc. Am. A 24, 2313-2327 (2007).
[CrossRef]

S. I. Bozhevolnyi and T. Søndergaard, "General properties of slow-plasmon resonant nanostructures: nano-antennas and resonators," Opt. Express 15, 10869-10877 (2007).
[CrossRef] [PubMed]

I.-M. Lee, J. Jung, J. Park, H. Kim, and B. Lee, "Dispersion characteristics of channel plasmon polariton waveguides with step-trench-type grooves," Opt. Express 15, 16596-16603 (2007).
[CrossRef] [PubMed]

Z. Han, E. Forsberg, and S. He, "Surface plasmon Bragg gratings formed in metal-insulator-metal waveguides," IEEE Photon. Technol. Lett. 19, 91-93 (2007).
[CrossRef]

H. J. Lezec, J. A. Dionne, and H. A. Atwater, "Negative refraction at visible frequencies," Science 316, 430-432 (2007).
[CrossRef] [PubMed]

S. Kim, H. Kim, Y. Lim, and B. Lee, "Off-axis directional beaming of optical field diffracted by a single subwavelength metal slit with asymmetric dielectric surface gratings," Appl. Phys. Lett. 90, 051113 (2007).
[CrossRef]

Y. Kurokawa and H. T. Miyazaki, "Metal-insulator-metal plasmon nanocavities: analysis of optical properties," Phys. Rev. B 75, 035411 (2007).
[CrossRef]

2006

H. T. Miyazaki and Y. Kurokawa, "Controlled plasmon resonance in closed metal/insulator/metal nanocavities," Appl. Phys. Lett. 89, 211126 (2006).
[CrossRef]

J. A. Dionne, L. A. Sweatlock, and H. A. Atwater, "Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization," Phys. Rev. B 73, 035407 (2006).
[CrossRef]

H. T. Miyazaki and Y. Kurokawa, "Squeezing visible light waves into a 3-nm-thick and 55-nm-long plasmon cavity," Phys. Rev. Lett. 96, 097401 (2006).
[CrossRef] [PubMed]

J. A. Dionne, H. J. Lezec, and H. A. Atwater, "Highly confined photon transport in subwavelength metallic slot waveguides," Nano Lett. 6, 1928-1932 (2006).
[CrossRef] [PubMed]

M. I. Stockman, "Slow propagation, anomalous absorption, and total external reflection of surface plasmon polaritons in nanolayer systems," Nano Lett. 6, 2604-2608 (2006).
[CrossRef] [PubMed]

A. Hosseini and Y. Massoud, "A low-loss metal-insulator-metal plasmonic Bragg reflector," Opt. Express 14, 11318-11323 (2006).
[CrossRef]

2005

J. A. Dionne, L. A. Sweatlock, and H. A. Atwater, "Planar metal plasmon waveguides: Frequency-dependent dispersion, propagation, localization, and loss beyond the free electron model," Phys. Rev. B 72, 075405 (2005).
[CrossRef]

B. Wang and G. P. Wang, "Plasmon Bragg reflectors and nanocavities on flat metallic surfaces," Appl. Phys. Lett. 87, 013107 (2005).
[CrossRef]

2004

2003

W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824-830 (2003).
[CrossRef] [PubMed]

2000

P. Berini, "Plasmon-polariton waves guided by thin lossy metal films of finite width: bound modes of symmetric structures," Phys. Rev. B 61, 10484-10503 (2000).
[CrossRef]

1997

1995

M. G. Moharam, E. B. Grann, and D. A. Pommet, "Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings," J. Opt. Soc. Am. A 12, 1067-1076 (1995).
[CrossRef]

1986

J. J. Burke, G. I. Stegeman, and T. Tamir, "Surface-polariton-like waves guided by thin, lossy metal films," Phys. Rev. B 33, 5186-5201 (1986).
[CrossRef]

1981

M. G. Moharam and T. K. Gaylord, "Rigorous coupled-wave analysis of planar-grating diffraction," J. Opt. Soc. Am. A 71, 811-818 (1981).
[CrossRef]

1969

E. N. Economou, "Surface plasmons in thin films," Phys. Rev. 182, 539-554 (1969).
[CrossRef]

Atwater, H. A.

H. J. Lezec, J. A. Dionne, and H. A. Atwater, "Negative refraction at visible frequencies," Science 316, 430-432 (2007).
[CrossRef] [PubMed]

J. A. Dionne, L. A. Sweatlock, and H. A. Atwater, "Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization," Phys. Rev. B 73, 035407 (2006).
[CrossRef]

J. A. Dionne, H. J. Lezec, and H. A. Atwater, "Highly confined photon transport in subwavelength metallic slot waveguides," Nano Lett. 6, 1928-1932 (2006).
[CrossRef] [PubMed]

J. A. Dionne, L. A. Sweatlock, and H. A. Atwater, "Planar metal plasmon waveguides: Frequency-dependent dispersion, propagation, localization, and loss beyond the free electron model," Phys. Rev. B 72, 075405 (2005).
[CrossRef]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824-830 (2003).
[CrossRef] [PubMed]

Berini, P.

P. Berini, "Plasmon-polariton waves guided by thin lossy metal films of finite width: bound modes of symmetric structures," Phys. Rev. B 61, 10484-10503 (2000).
[CrossRef]

Bozhevolnyi, S. I.

Brongersma, M.

Burke, J. J.

J. J. Burke, G. I. Stegeman, and T. Tamir, "Surface-polariton-like waves guided by thin, lossy metal films," Phys. Rev. B 33, 5186-5201 (1986).
[CrossRef]

Catrysse, P. B.

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824-830 (2003).
[CrossRef] [PubMed]

Dionne, J. A.

H. J. Lezec, J. A. Dionne, and H. A. Atwater, "Negative refraction at visible frequencies," Science 316, 430-432 (2007).
[CrossRef] [PubMed]

J. A. Dionne, L. A. Sweatlock, and H. A. Atwater, "Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization," Phys. Rev. B 73, 035407 (2006).
[CrossRef]

J. A. Dionne, H. J. Lezec, and H. A. Atwater, "Highly confined photon transport in subwavelength metallic slot waveguides," Nano Lett. 6, 1928-1932 (2006).
[CrossRef] [PubMed]

J. A. Dionne, L. A. Sweatlock, and H. A. Atwater, "Planar metal plasmon waveguides: Frequency-dependent dispersion, propagation, localization, and loss beyond the free electron model," Phys. Rev. B 72, 075405 (2005).
[CrossRef]

Ebbesen, T. W.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824-830 (2003).
[CrossRef] [PubMed]

Economou, E. N.

E. N. Economou, "Surface plasmons in thin films," Phys. Rev. 182, 539-554 (1969).
[CrossRef]

Forsberg, E.

Z. Han, E. Forsberg, and S. He, "Surface plasmon Bragg gratings formed in metal-insulator-metal waveguides," IEEE Photon. Technol. Lett. 19, 91-93 (2007).
[CrossRef]

Gaylord, T. K.

M. G. Moharam and T. K. Gaylord, "Rigorous coupled-wave analysis of planar-grating diffraction," J. Opt. Soc. Am. A 71, 811-818 (1981).
[CrossRef]

Grann, E. B.

M. G. Moharam, E. B. Grann, and D. A. Pommet, "Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings," J. Opt. Soc. Am. A 12, 1067-1076 (1995).
[CrossRef]

Hahn, J.

Han, Z.

Z. Han, E. Forsberg, and S. He, "Surface plasmon Bragg gratings formed in metal-insulator-metal waveguides," IEEE Photon. Technol. Lett. 19, 91-93 (2007).
[CrossRef]

He, S.

Z. Han, E. Forsberg, and S. He, "Surface plasmon Bragg gratings formed in metal-insulator-metal waveguides," IEEE Photon. Technol. Lett. 19, 91-93 (2007).
[CrossRef]

Hosseini, A.

Jung, J.

Y. Lim, S. Kim, H. Kim, J. Jung, and B. Lee, "Interference of surface plasmon waves and plasmon coupled waveguide modes for the pattering of thin film," IEEE J. Quant. Electron. 44, 305-311 (2008).
[CrossRef]

I.-M. Lee, J. Jung, J. Park, H. Kim, and B. Lee, "Dispersion characteristics of channel plasmon polariton waveguides with step-trench-type grooves," Opt. Express 15, 16596-16603 (2007).
[CrossRef] [PubMed]

Kim, H.

Kim, K.-Y.

K.-Y. Kim and B. Lee, "Complete tunneling of light through impedance-mismatched barrier layers," Phys. Rev. A 77, 023822 (2008).

K.-Y. Kim, "Photon tunneling in composite layers of negative- and positive-index media," Phys. Rev. E 70, 047603 (2004)
[CrossRef]

Kim, S.

Y. Lim, S. Kim, H. Kim, J. Jung, and B. Lee, "Interference of surface plasmon waves and plasmon coupled waveguide modes for the pattering of thin film," IEEE J. Quant. Electron. 44, 305-311 (2008).
[CrossRef]

S. Kim, H. Kim, Y. Lim, and B. Lee, "Off-axis directional beaming of optical field diffracted by a single subwavelength metal slit with asymmetric dielectric surface gratings," Appl. Phys. Lett. 90, 051113 (2007).
[CrossRef]

Kurokawa, Y.

Y. Kurokawa and H. T. Miyazaki, "Metal-insulator-metal plasmon nanocavities: analysis of optical properties," Phys. Rev. B 75, 035411 (2007).
[CrossRef]

H. T. Miyazaki and Y. Kurokawa, "Controlled plasmon resonance in closed metal/insulator/metal nanocavities," Appl. Phys. Lett. 89, 211126 (2006).
[CrossRef]

H. T. Miyazaki and Y. Kurokawa, "Squeezing visible light waves into a 3-nm-thick and 55-nm-long plasmon cavity," Phys. Rev. Lett. 96, 097401 (2006).
[CrossRef] [PubMed]

Lalanne, P.

Lee, B.

K.-Y. Kim and B. Lee, "Complete tunneling of light through impedance-mismatched barrier layers," Phys. Rev. A 77, 023822 (2008).

H. Kim, J. Hahn, and B. Lee, "Focusing properties of surface plasmon polariton floating dielectric lenses," Opt. Express 16, 3049-3057 (2008).
[CrossRef] [PubMed]

Y. Lim, S. Kim, H. Kim, J. Jung, and B. Lee, "Interference of surface plasmon waves and plasmon coupled waveguide modes for the pattering of thin film," IEEE J. Quant. Electron. 44, 305-311 (2008).
[CrossRef]

J. Park, H. Kim, and B. Lee, "High order plasmonic Bragg reflection in the metal-insulator-metal waveguide Bragg grating," Opt. Express 16, 413-425 (2008).
[CrossRef] [PubMed]

S. Kim, H. Kim, Y. Lim, and B. Lee, "Off-axis directional beaming of optical field diffracted by a single subwavelength metal slit with asymmetric dielectric surface gratings," Appl. Phys. Lett. 90, 051113 (2007).
[CrossRef]

H. Kim, I.-M. Lee, and B. Lee, "Extended scattering-matrix method for efficient full parallel implementation of rigorous coupled-wave analysis," J. Opt. Soc. Am. A 24, 2313-2327 (2007).
[CrossRef]

I.-M. Lee, J. Jung, J. Park, H. Kim, and B. Lee, "Dispersion characteristics of channel plasmon polariton waveguides with step-trench-type grooves," Opt. Express 15, 16596-16603 (2007).
[CrossRef] [PubMed]

J. Park and B. Lee, "An approximate formula of the effective refractive index of the metal-insulator-metal surface plasmon polariton waveguide in the infrared region," Jpn. J. Appl. Phys. (accepted for publication).

Lee, I.-M.

Lezec, H. J.

H. J. Lezec, J. A. Dionne, and H. A. Atwater, "Negative refraction at visible frequencies," Science 316, 430-432 (2007).
[CrossRef] [PubMed]

J. A. Dionne, H. J. Lezec, and H. A. Atwater, "Highly confined photon transport in subwavelength metallic slot waveguides," Nano Lett. 6, 1928-1932 (2006).
[CrossRef] [PubMed]

Lim, Y.

Y. Lim, S. Kim, H. Kim, J. Jung, and B. Lee, "Interference of surface plasmon waves and plasmon coupled waveguide modes for the pattering of thin film," IEEE J. Quant. Electron. 44, 305-311 (2008).
[CrossRef]

S. Kim, H. Kim, Y. Lim, and B. Lee, "Off-axis directional beaming of optical field diffracted by a single subwavelength metal slit with asymmetric dielectric surface gratings," Appl. Phys. Lett. 90, 051113 (2007).
[CrossRef]

Martin, O. J. F.

Massoud, Y.

Melosh, N. A.

M. J. Preiner, K. T. Shimizu, J. S. White, and N. A. Melosh, "Efficient optical coupling into metal-insulator-metal plasmon mode with subwavelength diffraction gratings," Appl. Phys. Lett. 92, 113109 (2008).
[CrossRef]

Miyazaki, H. T.

Y. Kurokawa and H. T. Miyazaki, "Metal-insulator-metal plasmon nanocavities: analysis of optical properties," Phys. Rev. B 75, 035411 (2007).
[CrossRef]

H. T. Miyazaki and Y. Kurokawa, "Controlled plasmon resonance in closed metal/insulator/metal nanocavities," Appl. Phys. Lett. 89, 211126 (2006).
[CrossRef]

H. T. Miyazaki and Y. Kurokawa, "Squeezing visible light waves into a 3-nm-thick and 55-nm-long plasmon cavity," Phys. Rev. Lett. 96, 097401 (2006).
[CrossRef] [PubMed]

Moharam, M. G.

M. G. Moharam, E. B. Grann, and D. A. Pommet, "Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings," J. Opt. Soc. Am. A 12, 1067-1076 (1995).
[CrossRef]

M. G. Moharam and T. K. Gaylord, "Rigorous coupled-wave analysis of planar-grating diffraction," J. Opt. Soc. Am. A 71, 811-818 (1981).
[CrossRef]

Park, J.

Pommet, D. A.

M. G. Moharam, E. B. Grann, and D. A. Pommet, "Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings," J. Opt. Soc. Am. A 12, 1067-1076 (1995).
[CrossRef]

Preiner, M. J.

M. J. Preiner, K. T. Shimizu, J. S. White, and N. A. Melosh, "Efficient optical coupling into metal-insulator-metal plasmon mode with subwavelength diffraction gratings," Appl. Phys. Lett. 92, 113109 (2008).
[CrossRef]

Selker, M. D.

Shimizu, K. T.

M. J. Preiner, K. T. Shimizu, J. S. White, and N. A. Melosh, "Efficient optical coupling into metal-insulator-metal plasmon mode with subwavelength diffraction gratings," Appl. Phys. Lett. 92, 113109 (2008).
[CrossRef]

Sidorenko, S.

Søndergaard, T.

Stegeman, G. I.

J. J. Burke, G. I. Stegeman, and T. Tamir, "Surface-polariton-like waves guided by thin, lossy metal films," Phys. Rev. B 33, 5186-5201 (1986).
[CrossRef]

Stockman, M. I.

M. I. Stockman, "Slow propagation, anomalous absorption, and total external reflection of surface plasmon polaritons in nanolayer systems," Nano Lett. 6, 2604-2608 (2006).
[CrossRef] [PubMed]

Sweatlock, L. A.

J. A. Dionne, L. A. Sweatlock, and H. A. Atwater, "Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization," Phys. Rev. B 73, 035407 (2006).
[CrossRef]

J. A. Dionne, L. A. Sweatlock, and H. A. Atwater, "Planar metal plasmon waveguides: Frequency-dependent dispersion, propagation, localization, and loss beyond the free electron model," Phys. Rev. B 72, 075405 (2005).
[CrossRef]

Tamir, T.

J. J. Burke, G. I. Stegeman, and T. Tamir, "Surface-polariton-like waves guided by thin, lossy metal films," Phys. Rev. B 33, 5186-5201 (1986).
[CrossRef]

Valle, G. D.

Wang, B.

B. Wang and G. P. Wang, "Plasmon Bragg reflectors and nanocavities on flat metallic surfaces," Appl. Phys. Lett. 87, 013107 (2005).
[CrossRef]

Wang, G. P.

B. Wang and G. P. Wang, "Plasmon Bragg reflectors and nanocavities on flat metallic surfaces," Appl. Phys. Lett. 87, 013107 (2005).
[CrossRef]

White, J. S.

M. J. Preiner, K. T. Shimizu, J. S. White, and N. A. Melosh, "Efficient optical coupling into metal-insulator-metal plasmon mode with subwavelength diffraction gratings," Appl. Phys. Lett. 92, 113109 (2008).
[CrossRef]

Zia, R.

Appl. Phys. Lett.

S. Kim, H. Kim, Y. Lim, and B. Lee, "Off-axis directional beaming of optical field diffracted by a single subwavelength metal slit with asymmetric dielectric surface gratings," Appl. Phys. Lett. 90, 051113 (2007).
[CrossRef]

M. J. Preiner, K. T. Shimizu, J. S. White, and N. A. Melosh, "Efficient optical coupling into metal-insulator-metal plasmon mode with subwavelength diffraction gratings," Appl. Phys. Lett. 92, 113109 (2008).
[CrossRef]

B. Wang and G. P. Wang, "Plasmon Bragg reflectors and nanocavities on flat metallic surfaces," Appl. Phys. Lett. 87, 013107 (2005).
[CrossRef]

H. T. Miyazaki and Y. Kurokawa, "Controlled plasmon resonance in closed metal/insulator/metal nanocavities," Appl. Phys. Lett. 89, 211126 (2006).
[CrossRef]

IEEE J. Quant. Electron.

Y. Lim, S. Kim, H. Kim, J. Jung, and B. Lee, "Interference of surface plasmon waves and plasmon coupled waveguide modes for the pattering of thin film," IEEE J. Quant. Electron. 44, 305-311 (2008).
[CrossRef]

IEEE Photon. Technol. Lett.

Z. Han, E. Forsberg, and S. He, "Surface plasmon Bragg gratings formed in metal-insulator-metal waveguides," IEEE Photon. Technol. Lett. 19, 91-93 (2007).
[CrossRef]

J. Opt. Soc. Am. A

Jpn. J. Appl. Phys.

J. Park and B. Lee, "An approximate formula of the effective refractive index of the metal-insulator-metal surface plasmon polariton waveguide in the infrared region," Jpn. J. Appl. Phys. (accepted for publication).

Nano Lett.

J. A. Dionne, H. J. Lezec, and H. A. Atwater, "Highly confined photon transport in subwavelength metallic slot waveguides," Nano Lett. 6, 1928-1932 (2006).
[CrossRef] [PubMed]

M. I. Stockman, "Slow propagation, anomalous absorption, and total external reflection of surface plasmon polaritons in nanolayer systems," Nano Lett. 6, 2604-2608 (2006).
[CrossRef] [PubMed]

Nature

W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824-830 (2003).
[CrossRef] [PubMed]

Opt. Express

Phys. Rev.

E. N. Economou, "Surface plasmons in thin films," Phys. Rev. 182, 539-554 (1969).
[CrossRef]

Phys. Rev. A

K.-Y. Kim and B. Lee, "Complete tunneling of light through impedance-mismatched barrier layers," Phys. Rev. A 77, 023822 (2008).

Phys. Rev. B

J. J. Burke, G. I. Stegeman, and T. Tamir, "Surface-polariton-like waves guided by thin, lossy metal films," Phys. Rev. B 33, 5186-5201 (1986).
[CrossRef]

P. Berini, "Plasmon-polariton waves guided by thin lossy metal films of finite width: bound modes of symmetric structures," Phys. Rev. B 61, 10484-10503 (2000).
[CrossRef]

J. A. Dionne, L. A. Sweatlock, and H. A. Atwater, "Planar metal plasmon waveguides: Frequency-dependent dispersion, propagation, localization, and loss beyond the free electron model," Phys. Rev. B 72, 075405 (2005).
[CrossRef]

Y. Kurokawa and H. T. Miyazaki, "Metal-insulator-metal plasmon nanocavities: analysis of optical properties," Phys. Rev. B 75, 035411 (2007).
[CrossRef]

J. A. Dionne, L. A. Sweatlock, and H. A. Atwater, "Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization," Phys. Rev. B 73, 035407 (2006).
[CrossRef]

Phys. Rev. E

K.-Y. Kim, "Photon tunneling in composite layers of negative- and positive-index media," Phys. Rev. E 70, 047603 (2004)
[CrossRef]

Phys. Rev. Lett.

H. T. Miyazaki and Y. Kurokawa, "Squeezing visible light waves into a 3-nm-thick and 55-nm-long plasmon cavity," Phys. Rev. Lett. 96, 097401 (2006).
[CrossRef] [PubMed]

Science

H. J. Lezec, J. A. Dionne, and H. A. Atwater, "Negative refraction at visible frequencies," Science 316, 430-432 (2007).
[CrossRef] [PubMed]

Other

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, 2nd ed. (Wiley Intersceince, Hoboken, NJ, 2007).

H. Rather, Surface Plasmons (Springer-Verlag, Berlin, 1988).

J. Park, K.-Y. Kim, and B. Lee, "Complete tunneling of light through a composite barrier consisting of multiple layers," (in submission).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Metal-insulator-metal surface plasmon polariton waveguide.

Fig. 2.
Fig. 2.

Effective refractive index and the propagation length as a function of (a) ε d in the symmetric mode, (b) ε d in the anti-symmetric mode, (c) d in the symmetric mode, and (d) d in the anti-symmetric mode. d=80nm in (a) and (b). ε d =4 in (c) and (d). λ 0=532nm in all cases.

Fig. 3.
Fig. 3.

(a) Finite-length barrier (ε l ) in the MIM waveguide with the core dielectric constant of ε h . (b) Tunneling of electron through a potential barrier.

Fig. 4.
Fig. 4.

(a) Reflection coefficient and phase shift due to the reflection as a function of the barrier length for the anti-symmetric mode. (b) Dependence of the transmission coefficient on the barrier length of the anti-symmetric and symmetric modes. Field distributions of H y for (c) the anti-symmetric mode and (d) the symmetric mode with the barrier length of 200nm. ε h =6, d=80nm, and λ 0=532nm in all cases. ε l =2, 4, 4.3 in (a). ε l =4 in (b)-(d). The white dot ted- lines show the boundaries of the structure shown in Fig. 3(a).

Fig. 5.
Fig. 5.

(a) Schematic diagram of the MIM waveguide Bragg grating. (b) Transmission as a function of the grating number. ε 2=6, ε l=5, d=80nm, P=130nm, f=0.5, and λ 0=532nm.

Fig. 6.
Fig. 6.

(a) Schematic diagram of the MIM Fabry-Perot cavity consisting of two cut off barriers and the waveguide between them. (b) Dependence of the transmission coefficient on the length of the cavity for various values of barrier lengths. H y field distributions at (c) the point A (the first resonance mode) and (d) the point B (the second resonance mode). ε h =6, ε l =4, d=80nm, and λ 0=532nm in all cases. The white dotted-lines show the boundaries of the structure shown in part (a).

Fig. 7.
Fig. 7.

(a) Transmission spectra for various values of the cavity lengths (L 2). (b) Resonance wavelength and the full-width at half maximum (FWHM) as a function of the cavity length. (c) Q factor versus the cavity length. ε h =6, ε l =4, d=80nm, L 1=80nm and λ 0=532nm in all cases.

Tables (1)

Tables Icon

Table 1. Cut off conditions of ε d and d.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

ε m = ε ω p 2 ω ( ω + i γ ) ,
photonic symmetric mode : tan ( k d d 2 ) = ε d κ m ε m k d ,
photonic anti symmetric mode : cot ( k d d 2 ) = ε d κ m ε m k d ,
plasmonic symmetric mode : tanh ( κ d d 2 ) = ε d κ m ε m κ d ,
plasmonic anti symmetric mode : coth ( κ d d 2 ) = ε d κ m ε m κ d .
k d 2 + β 2 = ε d k 0 2 ,
κ d 2 + β 2 = ε d k 0 2 ,
κ m 2 + β 2 = ε m k 0 2 ,
k S. I . SPP = k 0 ε m ε d ε m + ε d ,
cot ( k 0 d 2 ε cut off ) ε cut off ε m = 0 .
d cut off = 2 k 0 ε d cot 1 ε d ε m .
L 2 = λ 0 2 n eff ( q ϕ ref π ) , ( q = 1 , 2 , 3 , ) .

Metrics