Abstract

We show that chiral photonic flake has potential as a physical effect colorant that contributes both bright interference colors and a characteristic polarization spectrum. An analysis of the polarizing properties of chiral film and flake indicates that the Stokes spectrum s 3 v. λ is suitable for characterization. s 3 is shown to be invariant both to azimuthal rotation of a flake and to incoherent summation of the light from an array of flakes with random orientations. We form chiral photonic flake experimentally by scraping film material from nanoengineered chiral films on glass. Three basic architectures are used, a standard chiral medium that supports a single Bragg resonance, a threaded chiral medium that supports right-handed and left-handed resonances at different wavelengths and a threaded chiral medium that supports two right-handed resonances at different wavelengths. In a separate set of experiments a twist defect is added to each basic structure. Experimental measurements of s 3 spectra from film and flake show the expected signatures of the circular Bragg resonances and of the spectral holes caused by the defects.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Rahman and N. P. Johnson, The new generation of physical effect colorants. Opt. Photon. News, p. 24, February 2008.
  2. G. Pfaff, ed. Special Effect Pigments (Vincentz Verlag Hannover, 2008).
  3. L. De Silva, I. J. Hodgkinson, P. Murray, Q. H. Wu, M. Arnold, J. Leader, and A. McNaughton, "Natural and Nanoengineered Chiral Reflectors: Structural Color of Manuka Beetles and Titania Coatings," Electromag. 25,391-408 (2005).
    [CrossRef]
  4. K. Robbie, M. J. Brett, and A. Lakhtakia, "Chiral sculptured thin films," Nature,  384,616 (1996).
    [CrossRef]
  5. H. A. Macleod, Thin film Optical Filters (Adam Hilger, 1969).
  6. I. J. Hodgkinson and Q. H. Wu, Birefringent Thin Films and Polarizing Elements (World Scientific, 1998).
  7. M. Born and E. Wolf, Principles of Optics (Pergamon Press, 1980).
  8. I.J. Hodgkinson, Q. H. Wu, M. Arnold, M. W. McCall and A. Lakhtakia, "Chiral mirror and optical resonator designs for circularly polarized light: suppression of cross-polarized reflectances and transmittances," Opt. Commun. 210,201 (2002).
    [CrossRef]
  9. IA020 double-sided carbon tape, ProSicTech, PO Box 111, Thuringowa 4817, Australia, http://www.proscitech.com/.
  10. L. Bourke, "Threaded chiral media and flake," MSc thesis, University of Otago, New Zealand (2008).

2005

L. De Silva, I. J. Hodgkinson, P. Murray, Q. H. Wu, M. Arnold, J. Leader, and A. McNaughton, "Natural and Nanoengineered Chiral Reflectors: Structural Color of Manuka Beetles and Titania Coatings," Electromag. 25,391-408 (2005).
[CrossRef]

2002

I.J. Hodgkinson, Q. H. Wu, M. Arnold, M. W. McCall and A. Lakhtakia, "Chiral mirror and optical resonator designs for circularly polarized light: suppression of cross-polarized reflectances and transmittances," Opt. Commun. 210,201 (2002).
[CrossRef]

1996

K. Robbie, M. J. Brett, and A. Lakhtakia, "Chiral sculptured thin films," Nature,  384,616 (1996).
[CrossRef]

Arnold, M.

L. De Silva, I. J. Hodgkinson, P. Murray, Q. H. Wu, M. Arnold, J. Leader, and A. McNaughton, "Natural and Nanoengineered Chiral Reflectors: Structural Color of Manuka Beetles and Titania Coatings," Electromag. 25,391-408 (2005).
[CrossRef]

I.J. Hodgkinson, Q. H. Wu, M. Arnold, M. W. McCall and A. Lakhtakia, "Chiral mirror and optical resonator designs for circularly polarized light: suppression of cross-polarized reflectances and transmittances," Opt. Commun. 210,201 (2002).
[CrossRef]

Brett, M. J.

K. Robbie, M. J. Brett, and A. Lakhtakia, "Chiral sculptured thin films," Nature,  384,616 (1996).
[CrossRef]

De Silva, L.

L. De Silva, I. J. Hodgkinson, P. Murray, Q. H. Wu, M. Arnold, J. Leader, and A. McNaughton, "Natural and Nanoengineered Chiral Reflectors: Structural Color of Manuka Beetles and Titania Coatings," Electromag. 25,391-408 (2005).
[CrossRef]

Hodgkinson, I. J.

L. De Silva, I. J. Hodgkinson, P. Murray, Q. H. Wu, M. Arnold, J. Leader, and A. McNaughton, "Natural and Nanoengineered Chiral Reflectors: Structural Color of Manuka Beetles and Titania Coatings," Electromag. 25,391-408 (2005).
[CrossRef]

Hodgkinson, I.J.

I.J. Hodgkinson, Q. H. Wu, M. Arnold, M. W. McCall and A. Lakhtakia, "Chiral mirror and optical resonator designs for circularly polarized light: suppression of cross-polarized reflectances and transmittances," Opt. Commun. 210,201 (2002).
[CrossRef]

Lakhtakia, A.

I.J. Hodgkinson, Q. H. Wu, M. Arnold, M. W. McCall and A. Lakhtakia, "Chiral mirror and optical resonator designs for circularly polarized light: suppression of cross-polarized reflectances and transmittances," Opt. Commun. 210,201 (2002).
[CrossRef]

K. Robbie, M. J. Brett, and A. Lakhtakia, "Chiral sculptured thin films," Nature,  384,616 (1996).
[CrossRef]

Leader, J.

L. De Silva, I. J. Hodgkinson, P. Murray, Q. H. Wu, M. Arnold, J. Leader, and A. McNaughton, "Natural and Nanoengineered Chiral Reflectors: Structural Color of Manuka Beetles and Titania Coatings," Electromag. 25,391-408 (2005).
[CrossRef]

McCall, M. W.

I.J. Hodgkinson, Q. H. Wu, M. Arnold, M. W. McCall and A. Lakhtakia, "Chiral mirror and optical resonator designs for circularly polarized light: suppression of cross-polarized reflectances and transmittances," Opt. Commun. 210,201 (2002).
[CrossRef]

McNaughton, A.

L. De Silva, I. J. Hodgkinson, P. Murray, Q. H. Wu, M. Arnold, J. Leader, and A. McNaughton, "Natural and Nanoengineered Chiral Reflectors: Structural Color of Manuka Beetles and Titania Coatings," Electromag. 25,391-408 (2005).
[CrossRef]

Murray, P.

L. De Silva, I. J. Hodgkinson, P. Murray, Q. H. Wu, M. Arnold, J. Leader, and A. McNaughton, "Natural and Nanoengineered Chiral Reflectors: Structural Color of Manuka Beetles and Titania Coatings," Electromag. 25,391-408 (2005).
[CrossRef]

Robbie, K.

K. Robbie, M. J. Brett, and A. Lakhtakia, "Chiral sculptured thin films," Nature,  384,616 (1996).
[CrossRef]

Wu, Q. H.

L. De Silva, I. J. Hodgkinson, P. Murray, Q. H. Wu, M. Arnold, J. Leader, and A. McNaughton, "Natural and Nanoengineered Chiral Reflectors: Structural Color of Manuka Beetles and Titania Coatings," Electromag. 25,391-408 (2005).
[CrossRef]

I.J. Hodgkinson, Q. H. Wu, M. Arnold, M. W. McCall and A. Lakhtakia, "Chiral mirror and optical resonator designs for circularly polarized light: suppression of cross-polarized reflectances and transmittances," Opt. Commun. 210,201 (2002).
[CrossRef]

Electromag.

L. De Silva, I. J. Hodgkinson, P. Murray, Q. H. Wu, M. Arnold, J. Leader, and A. McNaughton, "Natural and Nanoengineered Chiral Reflectors: Structural Color of Manuka Beetles and Titania Coatings," Electromag. 25,391-408 (2005).
[CrossRef]

Nature

K. Robbie, M. J. Brett, and A. Lakhtakia, "Chiral sculptured thin films," Nature,  384,616 (1996).
[CrossRef]

Opt. Commun.

I.J. Hodgkinson, Q. H. Wu, M. Arnold, M. W. McCall and A. Lakhtakia, "Chiral mirror and optical resonator designs for circularly polarized light: suppression of cross-polarized reflectances and transmittances," Opt. Commun. 210,201 (2002).
[CrossRef]

Other

IA020 double-sided carbon tape, ProSicTech, PO Box 111, Thuringowa 4817, Australia, http://www.proscitech.com/.

L. Bourke, "Threaded chiral media and flake," MSc thesis, University of Otago, New Zealand (2008).

F. Rahman and N. P. Johnson, The new generation of physical effect colorants. Opt. Photon. News, p. 24, February 2008.

G. Pfaff, ed. Special Effect Pigments (Vincentz Verlag Hannover, 2008).

H. A. Macleod, Thin film Optical Filters (Adam Hilger, 1969).

I. J. Hodgkinson and Q. H. Wu, Birefringent Thin Films and Polarizing Elements (World Scientific, 1998).

M. Born and E. Wolf, Principles of Optics (Pergamon Press, 1980).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Simulated Stokes parameters for (a) a chiral photonic film on glass, (b) 50 identical films with random azimuthal angles and (c) an index-matched film.

Fig. 2.
Fig. 2.

Scanning electron micrographs of chiral photonic flake (left) and the edge of a single platelet (right).

Fig. 3.
Fig. 3.

Left-handed chiral photonic flake illuminated by unpolarized white light and photographed without a filter (left) and using a filter opaque to left circular light (right). The scale can be determined from the 25mm spacing of the screw holes.

Fig. 4.
Fig. 4.

Polarization spectra s 3 recorded for chiral photonic films on glass and from flake scraped from the films.

Fig. 5.
Fig. 5.

Polarization spectra s 3 recorded for chiral photonic films deposited with a central twist defect of 90° on glass and from flake scraped from the films. In each case the arrows indicate the location of spectral holes caused by the defect.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

s 0 = r RR 2 + r LR 2 + r RL 2 + r LL 2
s 1 = 2 { ( r RR r LR * + r RL r LL * ) e i 2 ξ }
s 2 = 2 { ( r RR r LR * + r RL r LL * ) e i 2 ξ }
s 3 = r RR 2 r LR 2 + r RL 2 r LL 2

Metrics