Abstract

We report on the concept of a thin film wire-grid polarizer (WGP) with optically dual characteristics by introducing a nano-patterned graded metal-dielectric composite-material layer. The Ti-SiO2 composite layer with a depth profile of a gradually-varied composition ratio shows an absorptive feature due to the elimination of an optical interface between a metal and a glass substrate, while the metal side of the WGP gives a reflective character. The unprecedented optically-bifacial thin-film WGP with the 144 nm-period straight-line patterns of a 100 nm-thick Ti-SiO2 composite layer and a 185 nm-thick Al layer shows the exceptionally low reflectance below 15 % from the absorptive side and the high polarization extinction ratio (PER) of over 500 at 550 nm, which is acceptable for use as various display applications such as AMOLEDs and LCDs.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Gu and S. R. Forrest, "Design of flat-panel displays based on organic light-emitting devices," IEEE J. Sel. Top. Quantum Electron. 4, 83-99 (1998).
    [CrossRef]
  2. K. Werner, "The flowering of flat displays," IEEE Spectrum 34, 40-49 (1997).
    [CrossRef]
  3. J. C. Sturm, W. Wilson, and H. Iodice, "Thermal effects and scaling in organic light-emitting flat-panel displays," IEEE J. Sel. Top. Quantum Electron. 4, 75-82 (1998).
    [CrossRef]
  4. Y. Nakamura, H. Ikeda, H. Ohara, T. Ishitani, Y. Hirakata, S. Yamazaki, A. Ishii, T. Ohshima, T. Kodaira, and H. Kawashima, "2.1-inch QCIF+ dual emission AMOLED display having transparent chathode electrode," SID Symposium Digest Tech. Papers 35, 1403-1405 (2004).
    [CrossRef]
  5. C.-C. Wu, C.-W. Chen, C.-L. Lin, and C.-J. Yang, "Advanced organic light-emitting devices for enhancing display performances," J. Display Tech. 1, 248-266 (2005).
    [CrossRef]
  6. S. Arnold, E. Gardner, D. Hansen, and R. Perkins, "An improved polarizing beamsplitter LCOS projection displaybased on wire-grid polarizers," SID Symposium Digest Tech. Papers 32, 1282-1285 (2001).
    [CrossRef]
  7. D. Hansen, E. Gardner, R. Perkins, M. Lines, and A. Robbins, "The display applications and physics of the ProFlux wire grid polarizer," SID Symposium Digest Tech. Papers 33, 730-733 (2002).
    [CrossRef]
  8. E. H. Land, "Some aspects of the development of sheet polarizers," J. Opt. Soc. Am. 41, 957-963 (1951).
    [CrossRef]
  9. N. Tatsuki, "NPF polarizing film," Nitto Denko Tech. Report 41, 21-25 (2003).
  10. E. Peeters, J. Lub, A. M. Steenbakkers, and D. J. Broer, "High-contrast thin-film polarizers by photo-crosslinking of smectic guest-host systems," Adv. Mater. 18, 2412-2417 (2006).
    [CrossRef]
  11. H. Tamada, T. Doumuki, T. Yamaguchi, and S. Matsumoto, "Al wire-grid polarizer using the s-polarization resonance effect at the 0.8-μm-wavelength band," Opt. Lett. 22, 419-421 (1997).
    [CrossRef] [PubMed]
  12. M. Xu, H. P. Urbach, D. K. G. De Boer, and H. J. Cornelissen, "Wire-grid diffraction gratings used as polarizing beam splitter for visible light and applied in liquid crystal on silicon," Opt. Express 13, 2303-2320 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-7-2303.
    [CrossRef] [PubMed]
  13. Y. Ekinci, H. H. Solak, C. David, and H. Sigg, "Bilayer Al wire-grids as broadband and high-performance polarizers," Opt. Express 14, 2323-2334 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-6-2323.
    [CrossRef] [PubMed]
  14. Z. Y. Yang and Y. F. Lu, "Broadband nanowire-grid polarizers in ultraviolet-visible-near-infrared regions," Opt. Express 15, 9510-9519 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-15-9510.
    [CrossRef] [PubMed]
  15. X. J. Yu and H. S. Kwok, "Optical wire-grid polarizers at oblique angles of incidence," J. Appl. Phys. 93, 4407-4412 (2003).
    [CrossRef]
  16. G. Derra, H. Moench, E. Fischer, H. Giese, U. Hechtfischer, G. Heusler, A. Koerber, U. Niemann, F. Noertemann, P. Pekarski, J. Pollmann-Retsch, A. Ritz, and U. Weichmann, "UHP lamp systems for projection applications," J. Phys. D: Appl. Phys. 38, 2995-3010 (2005).
    [CrossRef]
  17. S. H. Kim, J.-D. Park, and K.-D. Lee, "Fabrication of a nano-wire grid polarizer for brightness enhancement in liquid crystal display," Nanotechnology 17, 4436-4438 (2006).
    [CrossRef]
  18. V. Vaenkatesan, R. T. Wegh, J.-P. Teunissen, J. Lub, C. W. M. Bastiaansen, and D. J. Broer, "Improving the brightness and daylight contrast of organic light-emitting diodes," Adv. Funct. Mater. 15, 138-142 (2005).
    [CrossRef]
  19. J. Pucilowski, R. Schuman, and J. Velasquez, "Contrast enhancement of light emitting diode displays," Appl. Opt. 13, 2248-2252 (1974).
    [CrossRef] [PubMed]
  20. V. M. Shalaev, "Electromagnetic properties of small-particle composites," Phys. Rep. 272, 61-137 (1996).
    [CrossRef]
  21. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7th edition (Cambridge University Press, 1995), Chap. 14.
  22. W. E. Baird, M. G. Moharam, and T. K. Gaylord, "Diffraction characteristics of planar absorption gratings," Appl. Phys. B: Lasers Opt. 32, 15-20 (1983).
    [CrossRef]
  23. "PBS/PBF Series Introduction" (Moxtek Inc., 2007) http://www.moxtek.com/optics/pbs.html

2007 (1)

2006 (3)

E. Peeters, J. Lub, A. M. Steenbakkers, and D. J. Broer, "High-contrast thin-film polarizers by photo-crosslinking of smectic guest-host systems," Adv. Mater. 18, 2412-2417 (2006).
[CrossRef]

S. H. Kim, J.-D. Park, and K.-D. Lee, "Fabrication of a nano-wire grid polarizer for brightness enhancement in liquid crystal display," Nanotechnology 17, 4436-4438 (2006).
[CrossRef]

Y. Ekinci, H. H. Solak, C. David, and H. Sigg, "Bilayer Al wire-grids as broadband and high-performance polarizers," Opt. Express 14, 2323-2334 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-6-2323.
[CrossRef] [PubMed]

2005 (4)

M. Xu, H. P. Urbach, D. K. G. De Boer, and H. J. Cornelissen, "Wire-grid diffraction gratings used as polarizing beam splitter for visible light and applied in liquid crystal on silicon," Opt. Express 13, 2303-2320 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-7-2303.
[CrossRef] [PubMed]

V. Vaenkatesan, R. T. Wegh, J.-P. Teunissen, J. Lub, C. W. M. Bastiaansen, and D. J. Broer, "Improving the brightness and daylight contrast of organic light-emitting diodes," Adv. Funct. Mater. 15, 138-142 (2005).
[CrossRef]

G. Derra, H. Moench, E. Fischer, H. Giese, U. Hechtfischer, G. Heusler, A. Koerber, U. Niemann, F. Noertemann, P. Pekarski, J. Pollmann-Retsch, A. Ritz, and U. Weichmann, "UHP lamp systems for projection applications," J. Phys. D: Appl. Phys. 38, 2995-3010 (2005).
[CrossRef]

C.-C. Wu, C.-W. Chen, C.-L. Lin, and C.-J. Yang, "Advanced organic light-emitting devices for enhancing display performances," J. Display Tech. 1, 248-266 (2005).
[CrossRef]

2003 (2)

N. Tatsuki, "NPF polarizing film," Nitto Denko Tech. Report 41, 21-25 (2003).

X. J. Yu and H. S. Kwok, "Optical wire-grid polarizers at oblique angles of incidence," J. Appl. Phys. 93, 4407-4412 (2003).
[CrossRef]

1998 (2)

J. C. Sturm, W. Wilson, and H. Iodice, "Thermal effects and scaling in organic light-emitting flat-panel displays," IEEE J. Sel. Top. Quantum Electron. 4, 75-82 (1998).
[CrossRef]

G. Gu and S. R. Forrest, "Design of flat-panel displays based on organic light-emitting devices," IEEE J. Sel. Top. Quantum Electron. 4, 83-99 (1998).
[CrossRef]

1997 (2)

1996 (1)

V. M. Shalaev, "Electromagnetic properties of small-particle composites," Phys. Rep. 272, 61-137 (1996).
[CrossRef]

1983 (1)

W. E. Baird, M. G. Moharam, and T. K. Gaylord, "Diffraction characteristics of planar absorption gratings," Appl. Phys. B: Lasers Opt. 32, 15-20 (1983).
[CrossRef]

1974 (1)

1951 (1)

Baird, W. E.

W. E. Baird, M. G. Moharam, and T. K. Gaylord, "Diffraction characteristics of planar absorption gratings," Appl. Phys. B: Lasers Opt. 32, 15-20 (1983).
[CrossRef]

Bastiaansen, C. W. M.

V. Vaenkatesan, R. T. Wegh, J.-P. Teunissen, J. Lub, C. W. M. Bastiaansen, and D. J. Broer, "Improving the brightness and daylight contrast of organic light-emitting diodes," Adv. Funct. Mater. 15, 138-142 (2005).
[CrossRef]

Broer, D. J.

E. Peeters, J. Lub, A. M. Steenbakkers, and D. J. Broer, "High-contrast thin-film polarizers by photo-crosslinking of smectic guest-host systems," Adv. Mater. 18, 2412-2417 (2006).
[CrossRef]

V. Vaenkatesan, R. T. Wegh, J.-P. Teunissen, J. Lub, C. W. M. Bastiaansen, and D. J. Broer, "Improving the brightness and daylight contrast of organic light-emitting diodes," Adv. Funct. Mater. 15, 138-142 (2005).
[CrossRef]

Chen, C.-W.

C.-C. Wu, C.-W. Chen, C.-L. Lin, and C.-J. Yang, "Advanced organic light-emitting devices for enhancing display performances," J. Display Tech. 1, 248-266 (2005).
[CrossRef]

Cornelissen, H. J.

David, C.

De Boer, D. K. G.

Derra, G.

G. Derra, H. Moench, E. Fischer, H. Giese, U. Hechtfischer, G. Heusler, A. Koerber, U. Niemann, F. Noertemann, P. Pekarski, J. Pollmann-Retsch, A. Ritz, and U. Weichmann, "UHP lamp systems for projection applications," J. Phys. D: Appl. Phys. 38, 2995-3010 (2005).
[CrossRef]

Doumuki, T.

Ekinci, Y.

Fischer, E.

G. Derra, H. Moench, E. Fischer, H. Giese, U. Hechtfischer, G. Heusler, A. Koerber, U. Niemann, F. Noertemann, P. Pekarski, J. Pollmann-Retsch, A. Ritz, and U. Weichmann, "UHP lamp systems for projection applications," J. Phys. D: Appl. Phys. 38, 2995-3010 (2005).
[CrossRef]

Forrest, S. R.

G. Gu and S. R. Forrest, "Design of flat-panel displays based on organic light-emitting devices," IEEE J. Sel. Top. Quantum Electron. 4, 83-99 (1998).
[CrossRef]

Gaylord, T. K.

W. E. Baird, M. G. Moharam, and T. K. Gaylord, "Diffraction characteristics of planar absorption gratings," Appl. Phys. B: Lasers Opt. 32, 15-20 (1983).
[CrossRef]

Giese, H.

G. Derra, H. Moench, E. Fischer, H. Giese, U. Hechtfischer, G. Heusler, A. Koerber, U. Niemann, F. Noertemann, P. Pekarski, J. Pollmann-Retsch, A. Ritz, and U. Weichmann, "UHP lamp systems for projection applications," J. Phys. D: Appl. Phys. 38, 2995-3010 (2005).
[CrossRef]

Gu, G.

G. Gu and S. R. Forrest, "Design of flat-panel displays based on organic light-emitting devices," IEEE J. Sel. Top. Quantum Electron. 4, 83-99 (1998).
[CrossRef]

Hechtfischer, U.

G. Derra, H. Moench, E. Fischer, H. Giese, U. Hechtfischer, G. Heusler, A. Koerber, U. Niemann, F. Noertemann, P. Pekarski, J. Pollmann-Retsch, A. Ritz, and U. Weichmann, "UHP lamp systems for projection applications," J. Phys. D: Appl. Phys. 38, 2995-3010 (2005).
[CrossRef]

Heusler, G.

G. Derra, H. Moench, E. Fischer, H. Giese, U. Hechtfischer, G. Heusler, A. Koerber, U. Niemann, F. Noertemann, P. Pekarski, J. Pollmann-Retsch, A. Ritz, and U. Weichmann, "UHP lamp systems for projection applications," J. Phys. D: Appl. Phys. 38, 2995-3010 (2005).
[CrossRef]

Iodice, H.

J. C. Sturm, W. Wilson, and H. Iodice, "Thermal effects and scaling in organic light-emitting flat-panel displays," IEEE J. Sel. Top. Quantum Electron. 4, 75-82 (1998).
[CrossRef]

Kim, S. H.

S. H. Kim, J.-D. Park, and K.-D. Lee, "Fabrication of a nano-wire grid polarizer for brightness enhancement in liquid crystal display," Nanotechnology 17, 4436-4438 (2006).
[CrossRef]

Koerber, A.

G. Derra, H. Moench, E. Fischer, H. Giese, U. Hechtfischer, G. Heusler, A. Koerber, U. Niemann, F. Noertemann, P. Pekarski, J. Pollmann-Retsch, A. Ritz, and U. Weichmann, "UHP lamp systems for projection applications," J. Phys. D: Appl. Phys. 38, 2995-3010 (2005).
[CrossRef]

Kwok, H. S.

X. J. Yu and H. S. Kwok, "Optical wire-grid polarizers at oblique angles of incidence," J. Appl. Phys. 93, 4407-4412 (2003).
[CrossRef]

Land, E. H.

Lee, K.-D.

S. H. Kim, J.-D. Park, and K.-D. Lee, "Fabrication of a nano-wire grid polarizer for brightness enhancement in liquid crystal display," Nanotechnology 17, 4436-4438 (2006).
[CrossRef]

Lin, C.-L.

C.-C. Wu, C.-W. Chen, C.-L. Lin, and C.-J. Yang, "Advanced organic light-emitting devices for enhancing display performances," J. Display Tech. 1, 248-266 (2005).
[CrossRef]

Lu, Y. F.

Lub, J.

E. Peeters, J. Lub, A. M. Steenbakkers, and D. J. Broer, "High-contrast thin-film polarizers by photo-crosslinking of smectic guest-host systems," Adv. Mater. 18, 2412-2417 (2006).
[CrossRef]

V. Vaenkatesan, R. T. Wegh, J.-P. Teunissen, J. Lub, C. W. M. Bastiaansen, and D. J. Broer, "Improving the brightness and daylight contrast of organic light-emitting diodes," Adv. Funct. Mater. 15, 138-142 (2005).
[CrossRef]

Matsumoto, S.

Moench, H.

G. Derra, H. Moench, E. Fischer, H. Giese, U. Hechtfischer, G. Heusler, A. Koerber, U. Niemann, F. Noertemann, P. Pekarski, J. Pollmann-Retsch, A. Ritz, and U. Weichmann, "UHP lamp systems for projection applications," J. Phys. D: Appl. Phys. 38, 2995-3010 (2005).
[CrossRef]

Moharam, M. G.

W. E. Baird, M. G. Moharam, and T. K. Gaylord, "Diffraction characteristics of planar absorption gratings," Appl. Phys. B: Lasers Opt. 32, 15-20 (1983).
[CrossRef]

Niemann, U.

G. Derra, H. Moench, E. Fischer, H. Giese, U. Hechtfischer, G. Heusler, A. Koerber, U. Niemann, F. Noertemann, P. Pekarski, J. Pollmann-Retsch, A. Ritz, and U. Weichmann, "UHP lamp systems for projection applications," J. Phys. D: Appl. Phys. 38, 2995-3010 (2005).
[CrossRef]

Noertemann, F.

G. Derra, H. Moench, E. Fischer, H. Giese, U. Hechtfischer, G. Heusler, A. Koerber, U. Niemann, F. Noertemann, P. Pekarski, J. Pollmann-Retsch, A. Ritz, and U. Weichmann, "UHP lamp systems for projection applications," J. Phys. D: Appl. Phys. 38, 2995-3010 (2005).
[CrossRef]

Park, J.-D.

S. H. Kim, J.-D. Park, and K.-D. Lee, "Fabrication of a nano-wire grid polarizer for brightness enhancement in liquid crystal display," Nanotechnology 17, 4436-4438 (2006).
[CrossRef]

Peeters, E.

E. Peeters, J. Lub, A. M. Steenbakkers, and D. J. Broer, "High-contrast thin-film polarizers by photo-crosslinking of smectic guest-host systems," Adv. Mater. 18, 2412-2417 (2006).
[CrossRef]

Pekarski, P.

G. Derra, H. Moench, E. Fischer, H. Giese, U. Hechtfischer, G. Heusler, A. Koerber, U. Niemann, F. Noertemann, P. Pekarski, J. Pollmann-Retsch, A. Ritz, and U. Weichmann, "UHP lamp systems for projection applications," J. Phys. D: Appl. Phys. 38, 2995-3010 (2005).
[CrossRef]

Pollmann-Retsch, J.

G. Derra, H. Moench, E. Fischer, H. Giese, U. Hechtfischer, G. Heusler, A. Koerber, U. Niemann, F. Noertemann, P. Pekarski, J. Pollmann-Retsch, A. Ritz, and U. Weichmann, "UHP lamp systems for projection applications," J. Phys. D: Appl. Phys. 38, 2995-3010 (2005).
[CrossRef]

Pucilowski, J.

Ritz, A.

G. Derra, H. Moench, E. Fischer, H. Giese, U. Hechtfischer, G. Heusler, A. Koerber, U. Niemann, F. Noertemann, P. Pekarski, J. Pollmann-Retsch, A. Ritz, and U. Weichmann, "UHP lamp systems for projection applications," J. Phys. D: Appl. Phys. 38, 2995-3010 (2005).
[CrossRef]

Schuman, R.

Shalaev, V. M.

V. M. Shalaev, "Electromagnetic properties of small-particle composites," Phys. Rep. 272, 61-137 (1996).
[CrossRef]

Sigg, H.

Solak, H. H.

Steenbakkers, A. M.

E. Peeters, J. Lub, A. M. Steenbakkers, and D. J. Broer, "High-contrast thin-film polarizers by photo-crosslinking of smectic guest-host systems," Adv. Mater. 18, 2412-2417 (2006).
[CrossRef]

Sturm, J. C.

J. C. Sturm, W. Wilson, and H. Iodice, "Thermal effects and scaling in organic light-emitting flat-panel displays," IEEE J. Sel. Top. Quantum Electron. 4, 75-82 (1998).
[CrossRef]

Tamada, H.

Tatsuki, N.

N. Tatsuki, "NPF polarizing film," Nitto Denko Tech. Report 41, 21-25 (2003).

Teunissen, J.-P.

V. Vaenkatesan, R. T. Wegh, J.-P. Teunissen, J. Lub, C. W. M. Bastiaansen, and D. J. Broer, "Improving the brightness and daylight contrast of organic light-emitting diodes," Adv. Funct. Mater. 15, 138-142 (2005).
[CrossRef]

Urbach, H. P.

Vaenkatesan, V.

V. Vaenkatesan, R. T. Wegh, J.-P. Teunissen, J. Lub, C. W. M. Bastiaansen, and D. J. Broer, "Improving the brightness and daylight contrast of organic light-emitting diodes," Adv. Funct. Mater. 15, 138-142 (2005).
[CrossRef]

Velasquez, J.

Wegh, R. T.

V. Vaenkatesan, R. T. Wegh, J.-P. Teunissen, J. Lub, C. W. M. Bastiaansen, and D. J. Broer, "Improving the brightness and daylight contrast of organic light-emitting diodes," Adv. Funct. Mater. 15, 138-142 (2005).
[CrossRef]

Weichmann, U.

G. Derra, H. Moench, E. Fischer, H. Giese, U. Hechtfischer, G. Heusler, A. Koerber, U. Niemann, F. Noertemann, P. Pekarski, J. Pollmann-Retsch, A. Ritz, and U. Weichmann, "UHP lamp systems for projection applications," J. Phys. D: Appl. Phys. 38, 2995-3010 (2005).
[CrossRef]

Werner, K.

K. Werner, "The flowering of flat displays," IEEE Spectrum 34, 40-49 (1997).
[CrossRef]

Wilson, W.

J. C. Sturm, W. Wilson, and H. Iodice, "Thermal effects and scaling in organic light-emitting flat-panel displays," IEEE J. Sel. Top. Quantum Electron. 4, 75-82 (1998).
[CrossRef]

Wu, C.-C.

C.-C. Wu, C.-W. Chen, C.-L. Lin, and C.-J. Yang, "Advanced organic light-emitting devices for enhancing display performances," J. Display Tech. 1, 248-266 (2005).
[CrossRef]

Xu, M.

Yamaguchi, T.

Yang, C.-J.

C.-C. Wu, C.-W. Chen, C.-L. Lin, and C.-J. Yang, "Advanced organic light-emitting devices for enhancing display performances," J. Display Tech. 1, 248-266 (2005).
[CrossRef]

Yang, Z. Y.

Yu, X. J.

X. J. Yu and H. S. Kwok, "Optical wire-grid polarizers at oblique angles of incidence," J. Appl. Phys. 93, 4407-4412 (2003).
[CrossRef]

Adv. Funct. Mater. (1)

V. Vaenkatesan, R. T. Wegh, J.-P. Teunissen, J. Lub, C. W. M. Bastiaansen, and D. J. Broer, "Improving the brightness and daylight contrast of organic light-emitting diodes," Adv. Funct. Mater. 15, 138-142 (2005).
[CrossRef]

Adv. Mater. (1)

E. Peeters, J. Lub, A. M. Steenbakkers, and D. J. Broer, "High-contrast thin-film polarizers by photo-crosslinking of smectic guest-host systems," Adv. Mater. 18, 2412-2417 (2006).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. B: Lasers Opt. (1)

W. E. Baird, M. G. Moharam, and T. K. Gaylord, "Diffraction characteristics of planar absorption gratings," Appl. Phys. B: Lasers Opt. 32, 15-20 (1983).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (2)

G. Gu and S. R. Forrest, "Design of flat-panel displays based on organic light-emitting devices," IEEE J. Sel. Top. Quantum Electron. 4, 83-99 (1998).
[CrossRef]

J. C. Sturm, W. Wilson, and H. Iodice, "Thermal effects and scaling in organic light-emitting flat-panel displays," IEEE J. Sel. Top. Quantum Electron. 4, 75-82 (1998).
[CrossRef]

IEEE Spectrum (1)

K. Werner, "The flowering of flat displays," IEEE Spectrum 34, 40-49 (1997).
[CrossRef]

J. Appl. Phys. (1)

X. J. Yu and H. S. Kwok, "Optical wire-grid polarizers at oblique angles of incidence," J. Appl. Phys. 93, 4407-4412 (2003).
[CrossRef]

J. Display Tech. (1)

C.-C. Wu, C.-W. Chen, C.-L. Lin, and C.-J. Yang, "Advanced organic light-emitting devices for enhancing display performances," J. Display Tech. 1, 248-266 (2005).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Phys. D: Appl. Phys. (1)

G. Derra, H. Moench, E. Fischer, H. Giese, U. Hechtfischer, G. Heusler, A. Koerber, U. Niemann, F. Noertemann, P. Pekarski, J. Pollmann-Retsch, A. Ritz, and U. Weichmann, "UHP lamp systems for projection applications," J. Phys. D: Appl. Phys. 38, 2995-3010 (2005).
[CrossRef]

Nanotechnology (1)

S. H. Kim, J.-D. Park, and K.-D. Lee, "Fabrication of a nano-wire grid polarizer for brightness enhancement in liquid crystal display," Nanotechnology 17, 4436-4438 (2006).
[CrossRef]

Nitto Denko Tech. Report (1)

N. Tatsuki, "NPF polarizing film," Nitto Denko Tech. Report 41, 21-25 (2003).

Opt. Express (3)

Opt. Lett. (1)

Phys. Rep. (1)

V. M. Shalaev, "Electromagnetic properties of small-particle composites," Phys. Rep. 272, 61-137 (1996).
[CrossRef]

Other (5)

M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7th edition (Cambridge University Press, 1995), Chap. 14.

S. Arnold, E. Gardner, D. Hansen, and R. Perkins, "An improved polarizing beamsplitter LCOS projection displaybased on wire-grid polarizers," SID Symposium Digest Tech. Papers 32, 1282-1285 (2001).
[CrossRef]

D. Hansen, E. Gardner, R. Perkins, M. Lines, and A. Robbins, "The display applications and physics of the ProFlux wire grid polarizer," SID Symposium Digest Tech. Papers 33, 730-733 (2002).
[CrossRef]

Y. Nakamura, H. Ikeda, H. Ohara, T. Ishitani, Y. Hirakata, S. Yamazaki, A. Ishii, T. Ohshima, T. Kodaira, and H. Kawashima, "2.1-inch QCIF+ dual emission AMOLED display having transparent chathode electrode," SID Symposium Digest Tech. Papers 35, 1403-1405 (2004).
[CrossRef]

"PBS/PBF Series Introduction" (Moxtek Inc., 2007) http://www.moxtek.com/optics/pbs.html

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Schematic of a bifacial thin film WGP with nano-patterned metal and graded metal-dielectric composite layers

Fig. 2.
Fig. 2.

A depth profile of the Ti-SiO2 graded composite layer by dynamic secondary ion mass spectroscopy

Fig. 3.
Fig. 3.

Measured reflectances and tranmittances on the SiO2-rich and Ti-rich sides of the 100 nm-thick unpatterned Ti-SiO2 graded composite layer only between an Al layer and a glass substrate

Fig. 4.
Fig. 4.

Measured reflectances on the unpatterned samples with and without the Ti-SiO2 graded composite layer between an Al layer and a glass substrate.

Fig. 5.
Fig. 5.

Scanning electron microscope images of the bifacial WGPs with patterned-line periods of (a) 230 nm and (b) 144 nm on the glass substrate.

Fig. 6.
Fig. 6.

Transmittances and reflectances of the bifacial WGPs with (a) 230 nm- and (b) 144 nm-period grid patterns: TX-nm indicates the transmittance of the WGPs with X nm-period line patterns (X=230 or 144). RX-nm_Ti-SiO2 and RX-nm_Al represent the reflectances on the patterned Ti-SiO2 graded-composite-layer and the Al-grid sides of the bifacial WGPs, respectively.

Fig. 7.
Fig. 7.

Polarization extinction ratios of the bifacial WGPs with nano-grid patterns of 144 nm and 230 nm periods

Fig. 8.
Fig. 8.

(a). Linear- and (b) log-scale transmittances of the bifacial WGPs with 230 nm- and 144 nm-period wire-grid patterns for the TE- and TM-polarized incidence waves.

Fig. 9.
Fig. 9.

Photograph of an 8 inch-sized bifacial WGP with 144 nm-period grid patterns under the two conventional H-sheet polarizers; The polarization axes of the H-sheet polarizers are parallel (left) and perpendicular (right) to that of the bifacial WGP.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

R = n ˜ 1 n ˜ 2 2 / n ˜ 1 + n ˜ 2 2

Metrics