Abstract

Using hydrogen as fuel presents a potential risk of explosion and requires low cost and efficient leak sensors. We present here a hybrid sensor configuration consisting of a long period fiber grating (LPFG) and a superimposed uniform fiber Bragg grating (FBG). Both gratings are covered with a sensitive layer made of WO3 doped with Pt on which H2 undergoes an exothermic reaction. The released heat increases the temperature around the gratings. In this configuration, the LPFG favors the exothermic reaction thanks to a light coupling to the sensitive layer while the FBG reflects the temperature change linked to the hydrogen concentration. Our sensor is very fast and suitable to detect low hydrogen concentrations in air whatever the relative humidity level and for temperatures down to -50 °C, which is without equivalent for other hydrogen optical sensors reported so far.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Maier, B. Jones, J. Barton, S. McCulloch, T. Allsop, J. Jones, and I. Bennion, "Fibre optics in palladium-based hydrogen sensing," J. Opt. A: Pure Appl. Opt. 9, S45-S59 (2007).
    [CrossRef]
  2. B. Sutapun, M. Tabib-Azar, and A. Kazemi, "Pd-coated elastooptic fiber optic Bragg grating sensors for multiplexed hydrogen sensing," Sens. Actuators B 60, 27-34 (1999).
    [CrossRef]
  3. T. Peng, Y. Tang, and J. Sirkis, "Hydrogen sensors based on palladium electroplated fiber Bragg gratings," SPIE Proc. 13th International Conference on Optical Fiber Sensors and Workshop on Device and System Technology toward Future Optical Fiber Communication and Sensing, 171-179 (1999).
  4. D. Zalvidea, A. Diez, J. L. Cruz, and M. V. Andres, "Wavelength multiplexed hydrogen sensor based on palladium-coated fibre-taper and Bragg grating," Electron. Lett. 40, 301-302 (2004).
    [CrossRef]
  5. R. Maier, J. Barton, J. Jones, S. McCulloch, B. Jones, and G. Burnell, "Palladium-based hydrogen sensing for monitoring of ageing materials," Meas. Sci. Technol. 17, 1118-1123 (2006).
    [CrossRef]
  6. M. Buric, K. Chen, M. Bhattarai, P. Swinehart, and M. Maklad, "Active fiber Bragg grating hydrogen sensors for all-temperature operation," IEEE Photon. Technol. Lett. 19, 255-257 (2007).
    [CrossRef]
  7. C. Caucheteur, M. Debliquy, D. Lahem, and P. Mégret, "Catalytic fiber Bragg grating sensor for hydrogen leak detection in air," IEEE Photon. Technol. Lett. 20, 96-98 (2008).
    [CrossRef]
  8. S. James and R. Tatam, "Optical fibre long-period grating sensors: characteristics and application," Meas. Sci. Technol. 14, R49-R61 (2003).
    [CrossRef]
  9. S. Okazaki, H. Nakagawa, S. Azakura, Y. Tomiuchi, N. Tsuji, H. Murayama, and M. Washiya, "Sensing characteristics of an optical fiber sensor for hydrogen leak," Sens. Actuators B 93, 142-147 (2003).
    [CrossRef]
  10. C. Appel, J. Mantzaras, R. Schaeren, R. Bombach, and A. Inaen, "Catalytic combustion of hydrogen-air mixtures over platine: validation of hetero/homogeneous chemical reaction schemes," Clean Air 5, 21-44 (2004).

2008 (1)

C. Caucheteur, M. Debliquy, D. Lahem, and P. Mégret, "Catalytic fiber Bragg grating sensor for hydrogen leak detection in air," IEEE Photon. Technol. Lett. 20, 96-98 (2008).
[CrossRef]

2007 (2)

M. Buric, K. Chen, M. Bhattarai, P. Swinehart, and M. Maklad, "Active fiber Bragg grating hydrogen sensors for all-temperature operation," IEEE Photon. Technol. Lett. 19, 255-257 (2007).
[CrossRef]

R. Maier, B. Jones, J. Barton, S. McCulloch, T. Allsop, J. Jones, and I. Bennion, "Fibre optics in palladium-based hydrogen sensing," J. Opt. A: Pure Appl. Opt. 9, S45-S59 (2007).
[CrossRef]

2006 (1)

R. Maier, J. Barton, J. Jones, S. McCulloch, B. Jones, and G. Burnell, "Palladium-based hydrogen sensing for monitoring of ageing materials," Meas. Sci. Technol. 17, 1118-1123 (2006).
[CrossRef]

2004 (2)

D. Zalvidea, A. Diez, J. L. Cruz, and M. V. Andres, "Wavelength multiplexed hydrogen sensor based on palladium-coated fibre-taper and Bragg grating," Electron. Lett. 40, 301-302 (2004).
[CrossRef]

C. Appel, J. Mantzaras, R. Schaeren, R. Bombach, and A. Inaen, "Catalytic combustion of hydrogen-air mixtures over platine: validation of hetero/homogeneous chemical reaction schemes," Clean Air 5, 21-44 (2004).

2003 (2)

S. James and R. Tatam, "Optical fibre long-period grating sensors: characteristics and application," Meas. Sci. Technol. 14, R49-R61 (2003).
[CrossRef]

S. Okazaki, H. Nakagawa, S. Azakura, Y. Tomiuchi, N. Tsuji, H. Murayama, and M. Washiya, "Sensing characteristics of an optical fiber sensor for hydrogen leak," Sens. Actuators B 93, 142-147 (2003).
[CrossRef]

1999 (1)

B. Sutapun, M. Tabib-Azar, and A. Kazemi, "Pd-coated elastooptic fiber optic Bragg grating sensors for multiplexed hydrogen sensing," Sens. Actuators B 60, 27-34 (1999).
[CrossRef]

Allsop, T.

R. Maier, B. Jones, J. Barton, S. McCulloch, T. Allsop, J. Jones, and I. Bennion, "Fibre optics in palladium-based hydrogen sensing," J. Opt. A: Pure Appl. Opt. 9, S45-S59 (2007).
[CrossRef]

Andres, M. V.

D. Zalvidea, A. Diez, J. L. Cruz, and M. V. Andres, "Wavelength multiplexed hydrogen sensor based on palladium-coated fibre-taper and Bragg grating," Electron. Lett. 40, 301-302 (2004).
[CrossRef]

Appel, C.

C. Appel, J. Mantzaras, R. Schaeren, R. Bombach, and A. Inaen, "Catalytic combustion of hydrogen-air mixtures over platine: validation of hetero/homogeneous chemical reaction schemes," Clean Air 5, 21-44 (2004).

Azakura, S.

S. Okazaki, H. Nakagawa, S. Azakura, Y. Tomiuchi, N. Tsuji, H. Murayama, and M. Washiya, "Sensing characteristics of an optical fiber sensor for hydrogen leak," Sens. Actuators B 93, 142-147 (2003).
[CrossRef]

Barton, J.

R. Maier, B. Jones, J. Barton, S. McCulloch, T. Allsop, J. Jones, and I. Bennion, "Fibre optics in palladium-based hydrogen sensing," J. Opt. A: Pure Appl. Opt. 9, S45-S59 (2007).
[CrossRef]

R. Maier, J. Barton, J. Jones, S. McCulloch, B. Jones, and G. Burnell, "Palladium-based hydrogen sensing for monitoring of ageing materials," Meas. Sci. Technol. 17, 1118-1123 (2006).
[CrossRef]

Bennion, I.

R. Maier, B. Jones, J. Barton, S. McCulloch, T. Allsop, J. Jones, and I. Bennion, "Fibre optics in palladium-based hydrogen sensing," J. Opt. A: Pure Appl. Opt. 9, S45-S59 (2007).
[CrossRef]

Bhattarai, M.

M. Buric, K. Chen, M. Bhattarai, P. Swinehart, and M. Maklad, "Active fiber Bragg grating hydrogen sensors for all-temperature operation," IEEE Photon. Technol. Lett. 19, 255-257 (2007).
[CrossRef]

Bombach, R.

C. Appel, J. Mantzaras, R. Schaeren, R. Bombach, and A. Inaen, "Catalytic combustion of hydrogen-air mixtures over platine: validation of hetero/homogeneous chemical reaction schemes," Clean Air 5, 21-44 (2004).

Buric, M.

M. Buric, K. Chen, M. Bhattarai, P. Swinehart, and M. Maklad, "Active fiber Bragg grating hydrogen sensors for all-temperature operation," IEEE Photon. Technol. Lett. 19, 255-257 (2007).
[CrossRef]

Burnell, G.

R. Maier, J. Barton, J. Jones, S. McCulloch, B. Jones, and G. Burnell, "Palladium-based hydrogen sensing for monitoring of ageing materials," Meas. Sci. Technol. 17, 1118-1123 (2006).
[CrossRef]

Caucheteur, C.

C. Caucheteur, M. Debliquy, D. Lahem, and P. Mégret, "Catalytic fiber Bragg grating sensor for hydrogen leak detection in air," IEEE Photon. Technol. Lett. 20, 96-98 (2008).
[CrossRef]

Chen, K.

M. Buric, K. Chen, M. Bhattarai, P. Swinehart, and M. Maklad, "Active fiber Bragg grating hydrogen sensors for all-temperature operation," IEEE Photon. Technol. Lett. 19, 255-257 (2007).
[CrossRef]

Cruz, J. L.

D. Zalvidea, A. Diez, J. L. Cruz, and M. V. Andres, "Wavelength multiplexed hydrogen sensor based on palladium-coated fibre-taper and Bragg grating," Electron. Lett. 40, 301-302 (2004).
[CrossRef]

Debliquy, M.

C. Caucheteur, M. Debliquy, D. Lahem, and P. Mégret, "Catalytic fiber Bragg grating sensor for hydrogen leak detection in air," IEEE Photon. Technol. Lett. 20, 96-98 (2008).
[CrossRef]

Diez, A.

D. Zalvidea, A. Diez, J. L. Cruz, and M. V. Andres, "Wavelength multiplexed hydrogen sensor based on palladium-coated fibre-taper and Bragg grating," Electron. Lett. 40, 301-302 (2004).
[CrossRef]

Inaen, A.

C. Appel, J. Mantzaras, R. Schaeren, R. Bombach, and A. Inaen, "Catalytic combustion of hydrogen-air mixtures over platine: validation of hetero/homogeneous chemical reaction schemes," Clean Air 5, 21-44 (2004).

James, S.

S. James and R. Tatam, "Optical fibre long-period grating sensors: characteristics and application," Meas. Sci. Technol. 14, R49-R61 (2003).
[CrossRef]

Jones, B.

R. Maier, B. Jones, J. Barton, S. McCulloch, T. Allsop, J. Jones, and I. Bennion, "Fibre optics in palladium-based hydrogen sensing," J. Opt. A: Pure Appl. Opt. 9, S45-S59 (2007).
[CrossRef]

R. Maier, J. Barton, J. Jones, S. McCulloch, B. Jones, and G. Burnell, "Palladium-based hydrogen sensing for monitoring of ageing materials," Meas. Sci. Technol. 17, 1118-1123 (2006).
[CrossRef]

Jones, J.

R. Maier, B. Jones, J. Barton, S. McCulloch, T. Allsop, J. Jones, and I. Bennion, "Fibre optics in palladium-based hydrogen sensing," J. Opt. A: Pure Appl. Opt. 9, S45-S59 (2007).
[CrossRef]

R. Maier, J. Barton, J. Jones, S. McCulloch, B. Jones, and G. Burnell, "Palladium-based hydrogen sensing for monitoring of ageing materials," Meas. Sci. Technol. 17, 1118-1123 (2006).
[CrossRef]

Kazemi, A.

B. Sutapun, M. Tabib-Azar, and A. Kazemi, "Pd-coated elastooptic fiber optic Bragg grating sensors for multiplexed hydrogen sensing," Sens. Actuators B 60, 27-34 (1999).
[CrossRef]

Lahem, D.

C. Caucheteur, M. Debliquy, D. Lahem, and P. Mégret, "Catalytic fiber Bragg grating sensor for hydrogen leak detection in air," IEEE Photon. Technol. Lett. 20, 96-98 (2008).
[CrossRef]

Maier, R.

R. Maier, B. Jones, J. Barton, S. McCulloch, T. Allsop, J. Jones, and I. Bennion, "Fibre optics in palladium-based hydrogen sensing," J. Opt. A: Pure Appl. Opt. 9, S45-S59 (2007).
[CrossRef]

R. Maier, J. Barton, J. Jones, S. McCulloch, B. Jones, and G. Burnell, "Palladium-based hydrogen sensing for monitoring of ageing materials," Meas. Sci. Technol. 17, 1118-1123 (2006).
[CrossRef]

Maklad, M.

M. Buric, K. Chen, M. Bhattarai, P. Swinehart, and M. Maklad, "Active fiber Bragg grating hydrogen sensors for all-temperature operation," IEEE Photon. Technol. Lett. 19, 255-257 (2007).
[CrossRef]

Mantzaras, J.

C. Appel, J. Mantzaras, R. Schaeren, R. Bombach, and A. Inaen, "Catalytic combustion of hydrogen-air mixtures over platine: validation of hetero/homogeneous chemical reaction schemes," Clean Air 5, 21-44 (2004).

McCulloch, S.

R. Maier, B. Jones, J. Barton, S. McCulloch, T. Allsop, J. Jones, and I. Bennion, "Fibre optics in palladium-based hydrogen sensing," J. Opt. A: Pure Appl. Opt. 9, S45-S59 (2007).
[CrossRef]

R. Maier, J. Barton, J. Jones, S. McCulloch, B. Jones, and G. Burnell, "Palladium-based hydrogen sensing for monitoring of ageing materials," Meas. Sci. Technol. 17, 1118-1123 (2006).
[CrossRef]

Mégret, P.

C. Caucheteur, M. Debliquy, D. Lahem, and P. Mégret, "Catalytic fiber Bragg grating sensor for hydrogen leak detection in air," IEEE Photon. Technol. Lett. 20, 96-98 (2008).
[CrossRef]

Murayama, H.

S. Okazaki, H. Nakagawa, S. Azakura, Y. Tomiuchi, N. Tsuji, H. Murayama, and M. Washiya, "Sensing characteristics of an optical fiber sensor for hydrogen leak," Sens. Actuators B 93, 142-147 (2003).
[CrossRef]

Nakagawa, H.

S. Okazaki, H. Nakagawa, S. Azakura, Y. Tomiuchi, N. Tsuji, H. Murayama, and M. Washiya, "Sensing characteristics of an optical fiber sensor for hydrogen leak," Sens. Actuators B 93, 142-147 (2003).
[CrossRef]

Okazaki, S.

S. Okazaki, H. Nakagawa, S. Azakura, Y. Tomiuchi, N. Tsuji, H. Murayama, and M. Washiya, "Sensing characteristics of an optical fiber sensor for hydrogen leak," Sens. Actuators B 93, 142-147 (2003).
[CrossRef]

Schaeren, R.

C. Appel, J. Mantzaras, R. Schaeren, R. Bombach, and A. Inaen, "Catalytic combustion of hydrogen-air mixtures over platine: validation of hetero/homogeneous chemical reaction schemes," Clean Air 5, 21-44 (2004).

Sutapun, B.

B. Sutapun, M. Tabib-Azar, and A. Kazemi, "Pd-coated elastooptic fiber optic Bragg grating sensors for multiplexed hydrogen sensing," Sens. Actuators B 60, 27-34 (1999).
[CrossRef]

Swinehart, P.

M. Buric, K. Chen, M. Bhattarai, P. Swinehart, and M. Maklad, "Active fiber Bragg grating hydrogen sensors for all-temperature operation," IEEE Photon. Technol. Lett. 19, 255-257 (2007).
[CrossRef]

Tabib-Azar, M.

B. Sutapun, M. Tabib-Azar, and A. Kazemi, "Pd-coated elastooptic fiber optic Bragg grating sensors for multiplexed hydrogen sensing," Sens. Actuators B 60, 27-34 (1999).
[CrossRef]

Tatam, R.

S. James and R. Tatam, "Optical fibre long-period grating sensors: characteristics and application," Meas. Sci. Technol. 14, R49-R61 (2003).
[CrossRef]

Tomiuchi, Y.

S. Okazaki, H. Nakagawa, S. Azakura, Y. Tomiuchi, N. Tsuji, H. Murayama, and M. Washiya, "Sensing characteristics of an optical fiber sensor for hydrogen leak," Sens. Actuators B 93, 142-147 (2003).
[CrossRef]

Tsuji, N.

S. Okazaki, H. Nakagawa, S. Azakura, Y. Tomiuchi, N. Tsuji, H. Murayama, and M. Washiya, "Sensing characteristics of an optical fiber sensor for hydrogen leak," Sens. Actuators B 93, 142-147 (2003).
[CrossRef]

Washiya, M.

S. Okazaki, H. Nakagawa, S. Azakura, Y. Tomiuchi, N. Tsuji, H. Murayama, and M. Washiya, "Sensing characteristics of an optical fiber sensor for hydrogen leak," Sens. Actuators B 93, 142-147 (2003).
[CrossRef]

Zalvidea, D.

D. Zalvidea, A. Diez, J. L. Cruz, and M. V. Andres, "Wavelength multiplexed hydrogen sensor based on palladium-coated fibre-taper and Bragg grating," Electron. Lett. 40, 301-302 (2004).
[CrossRef]

Clean Air (1)

C. Appel, J. Mantzaras, R. Schaeren, R. Bombach, and A. Inaen, "Catalytic combustion of hydrogen-air mixtures over platine: validation of hetero/homogeneous chemical reaction schemes," Clean Air 5, 21-44 (2004).

Electron. Lett. (1)

D. Zalvidea, A. Diez, J. L. Cruz, and M. V. Andres, "Wavelength multiplexed hydrogen sensor based on palladium-coated fibre-taper and Bragg grating," Electron. Lett. 40, 301-302 (2004).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

M. Buric, K. Chen, M. Bhattarai, P. Swinehart, and M. Maklad, "Active fiber Bragg grating hydrogen sensors for all-temperature operation," IEEE Photon. Technol. Lett. 19, 255-257 (2007).
[CrossRef]

C. Caucheteur, M. Debliquy, D. Lahem, and P. Mégret, "Catalytic fiber Bragg grating sensor for hydrogen leak detection in air," IEEE Photon. Technol. Lett. 20, 96-98 (2008).
[CrossRef]

J. Opt. A: Pure Appl. Opt. (1)

R. Maier, B. Jones, J. Barton, S. McCulloch, T. Allsop, J. Jones, and I. Bennion, "Fibre optics in palladium-based hydrogen sensing," J. Opt. A: Pure Appl. Opt. 9, S45-S59 (2007).
[CrossRef]

Meas. Sci. Technol. (2)

R. Maier, J. Barton, J. Jones, S. McCulloch, B. Jones, and G. Burnell, "Palladium-based hydrogen sensing for monitoring of ageing materials," Meas. Sci. Technol. 17, 1118-1123 (2006).
[CrossRef]

S. James and R. Tatam, "Optical fibre long-period grating sensors: characteristics and application," Meas. Sci. Technol. 14, R49-R61 (2003).
[CrossRef]

Sens. Actuators B (2)

S. Okazaki, H. Nakagawa, S. Azakura, Y. Tomiuchi, N. Tsuji, H. Murayama, and M. Washiya, "Sensing characteristics of an optical fiber sensor for hydrogen leak," Sens. Actuators B 93, 142-147 (2003).
[CrossRef]

B. Sutapun, M. Tabib-Azar, and A. Kazemi, "Pd-coated elastooptic fiber optic Bragg grating sensors for multiplexed hydrogen sensing," Sens. Actuators B 60, 27-34 (1999).
[CrossRef]

Other (1)

T. Peng, Y. Tang, and J. Sirkis, "Hydrogen sensors based on palladium electroplated fiber Bragg gratings," SPIE Proc. 13th International Conference on Optical Fiber Sensors and Workshop on Device and System Technology toward Future Optical Fiber Communication and Sensing, 171-179 (1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig 1.
Fig 1.

Scheme of the experimental set-up used to test the H2 fiber grating sensors.

Fig. 2.
Fig. 2.

Sensor responses simulated for different ambient temperatures (left - k0=0.004 s-1) and for different sensitive layer efficiencies (right - te=25 °C).

Fig. 3.
Fig. 3.

Uniform FBG superimposed in a LPFG for H2 detection (left) and transmitted/reflected spectra of this hybrid sensor on the C+L bands (right).

Fig. 4.
Fig. 4.

Radiating efficiency as a function of the exposure time and corresponding LPFG transmission loss in the C+L bands.

Fig. 5.
Fig. 5.

Bragg wavelength shift as a function of the H2 concentration in dry air for a single uniform FBG and hybrid gratings with various LPFGs.

Fig. 6.
Fig. 6.

Bragg wavelength shift as a function of the H2 concentration in wet air for a hybrid sensor.

Fig 7.
Fig 7.

Bragg wavelength shift as a function of the H2 concentration at different temperatures.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

ϕ th = ε σ ( T 4 T e 4 )
ϕ r = v ( Δ H r ) with v = k C H 2 and k = k 0 exp ( E a RT )

Metrics