Abstract

We show that a photonic transistor device can be realized via the manipulation of optical interference by optically controlled gain or absorption in novel ways, resulting in efficient transistor signal gain and switching action. Exemplary devices illustrate two complementary device types with high operating speed, µm size, µW switching power, and switching gain. They can act in tandem to provide a wide variety of operations including wavelength conversion, pulse regeneration, and logical operations. These devices could have a Transistor Figure-of-Merits >105 times higher than current χ(3) approaches and are highly attractive.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. I. Papadimitriou, C. Papazoglou, and A. S. Pomportsis, "Optical Switching: Switch Fabrics, Techniques, and Architectures," J. Lightwave Technol. 21, 384-403 (2003).
    [CrossRef]
  2. D. Cotter,  et al., "Nonlinear Optics for High-Speed Digital Information Processing," Science 286, 1523-1528 (1999).
    [CrossRef] [PubMed]
  3. S. T. Ho, C. E. Soccolich, W. S. Hobson, A. F. J. Levi, M. N. Islam, and R. E. Slusher, "Large Nonlinear Phase Shifts in Low-Loss AlXGa1-XAs Waveguides Near Half-Gap," Appl. Phys. Lett. 59, 2558-2560 (1991).
    [CrossRef]
  4. R. P. Espindola, M. K. Udo, D. Y. Chu, S. L. Wu, R. C. Tiberio, P. F. Chapman, D. Cohen, and S. T. Ho, "All-Optical Switching with Low-Peak Power in Microfabricated AlGaAs Waveguides," IEEE Photon. Technol. Lett. 7, 641-643 (1995).
    [CrossRef]
  5. J. P. Zhang, D. Y. Chu, S. L. Wu, W. G. Bi, R. C. Tiberio, C. W. Tu, and S. T. Ho, "Photonic-Wire Laser," Phys. Rev. Lett. 75, 2678-2681 (1995).
    [CrossRef] [PubMed]
  6. C. Langrock, S. Kumar, J. E. McGeehan, A. E. Willner, and M. M. Fejer, "All-Optical Signal Processing Using �?(2) Nonlinearities in Guided-Wave Devices," J. Lightwave Technol. 24, 2579-2601 (2006).
    [CrossRef]
  7. Y.-H. Kao, T. J. Xia, M. N. Islam, and G. Raybon, "Limitations on ultrafast optical switching in a semiconductor laser amplifier operating at transparency current," J. Appl. Phys. 86, 4740-4747 (1999).
    [CrossRef]
  8. B. Dagens, C. Janz, D. Leclerc, V. Verdrager, F. Poingt, I. Guillemot, F. Gaborit, and D. Ottenwälder, "Design Optimization of All-Active Mach-Zehnder Wavelength Converters," IEEE Photon. Technol. Lett. 11, 424-426 (1999).
    [CrossRef]
  9. M. L. Masanovi�?, V. Lal, J. S. Barton, E. J. Skogen, L. A. Coldren, and D. J. Blumenthal, "Monolithically Integrated Mach-Zehnder Interferometer Wavelength Converter and Widely Tunable Laser in InP," IEEE Photon. Technol. Lett. 15, 1117-1119 (2003).
    [CrossRef]
  10. R. W. Boyd, Nonlinear Optics, (Academic Press, San Diego, 2003).
  11. S. M. Jensen, "The nonlinear coherent coupler," IEEE J. Quantum Electron. QE-18, 1568-1571 (1982).
  12. Y. Huang and S. T. Ho, "A numerically efficient semiconductor model with Fermi-Dirac thermalization dynamics (band-filling) for FDTD simulation of optoelectronic and photonic devices," Proceedings of the 2005 International Conference on Quantum Electronics & Lasers Science, Baltimore, QTuD7 (2005).
  13. Y. Huang and S. T. Ho, "Computational model of solid-state, molecular, or atomic media for FDTD simulation based on a multi-level multi-electron system governed by Pauli exclusion and Fermi-Dirac thermalization with application to semiconductor photonics," Opt. Express 14, 3569 (2006).
    [CrossRef] [PubMed]
  14. Y. Huang, "Simulation and Experimental Realization of Novel High Efficiency All-Optical and Electrically Pumped Nanophotonic Devices," PhD dissertation, Northwestern University, Evanston, IL, USA, 2007.
  15. L. A. Coldren and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits, (Wiley, John & Sons, 1995).
  16. K. Mistry,  et al., "A 45nm Logic Technology with High-k+Metal Gate Transistors, Strained Silicon, 9 Cu Interconnect Layers, 193nm Dry Patterning, and 100% Pb-free Packaging," Electron Devices Meeting, 2007. IEDM 2007.
  17. B. Mason, G. Fish, S. DenBaars, and L. Coldren, "Ridge Waveguide Sampled Grating DBR Lasers with 22-nm Quasi-Continuous Tuning Range," IEEE Photon. Technol. Lett. 10, 1211-1213 1998.
    [CrossRef]

2006

2003

M. L. Masanovi�?, V. Lal, J. S. Barton, E. J. Skogen, L. A. Coldren, and D. J. Blumenthal, "Monolithically Integrated Mach-Zehnder Interferometer Wavelength Converter and Widely Tunable Laser in InP," IEEE Photon. Technol. Lett. 15, 1117-1119 (2003).
[CrossRef]

G. I. Papadimitriou, C. Papazoglou, and A. S. Pomportsis, "Optical Switching: Switch Fabrics, Techniques, and Architectures," J. Lightwave Technol. 21, 384-403 (2003).
[CrossRef]

1999

D. Cotter,  et al., "Nonlinear Optics for High-Speed Digital Information Processing," Science 286, 1523-1528 (1999).
[CrossRef] [PubMed]

Y.-H. Kao, T. J. Xia, M. N. Islam, and G. Raybon, "Limitations on ultrafast optical switching in a semiconductor laser amplifier operating at transparency current," J. Appl. Phys. 86, 4740-4747 (1999).
[CrossRef]

B. Dagens, C. Janz, D. Leclerc, V. Verdrager, F. Poingt, I. Guillemot, F. Gaborit, and D. Ottenwälder, "Design Optimization of All-Active Mach-Zehnder Wavelength Converters," IEEE Photon. Technol. Lett. 11, 424-426 (1999).
[CrossRef]

1998

B. Mason, G. Fish, S. DenBaars, and L. Coldren, "Ridge Waveguide Sampled Grating DBR Lasers with 22-nm Quasi-Continuous Tuning Range," IEEE Photon. Technol. Lett. 10, 1211-1213 1998.
[CrossRef]

1995

R. P. Espindola, M. K. Udo, D. Y. Chu, S. L. Wu, R. C. Tiberio, P. F. Chapman, D. Cohen, and S. T. Ho, "All-Optical Switching with Low-Peak Power in Microfabricated AlGaAs Waveguides," IEEE Photon. Technol. Lett. 7, 641-643 (1995).
[CrossRef]

J. P. Zhang, D. Y. Chu, S. L. Wu, W. G. Bi, R. C. Tiberio, C. W. Tu, and S. T. Ho, "Photonic-Wire Laser," Phys. Rev. Lett. 75, 2678-2681 (1995).
[CrossRef] [PubMed]

1991

S. T. Ho, C. E. Soccolich, W. S. Hobson, A. F. J. Levi, M. N. Islam, and R. E. Slusher, "Large Nonlinear Phase Shifts in Low-Loss AlXGa1-XAs Waveguides Near Half-Gap," Appl. Phys. Lett. 59, 2558-2560 (1991).
[CrossRef]

1982

S. M. Jensen, "The nonlinear coherent coupler," IEEE J. Quantum Electron. QE-18, 1568-1571 (1982).

Barton, J. S.

M. L. Masanovi�?, V. Lal, J. S. Barton, E. J. Skogen, L. A. Coldren, and D. J. Blumenthal, "Monolithically Integrated Mach-Zehnder Interferometer Wavelength Converter and Widely Tunable Laser in InP," IEEE Photon. Technol. Lett. 15, 1117-1119 (2003).
[CrossRef]

Bi, W. G.

J. P. Zhang, D. Y. Chu, S. L. Wu, W. G. Bi, R. C. Tiberio, C. W. Tu, and S. T. Ho, "Photonic-Wire Laser," Phys. Rev. Lett. 75, 2678-2681 (1995).
[CrossRef] [PubMed]

Blumenthal, D. J.

M. L. Masanovi�?, V. Lal, J. S. Barton, E. J. Skogen, L. A. Coldren, and D. J. Blumenthal, "Monolithically Integrated Mach-Zehnder Interferometer Wavelength Converter and Widely Tunable Laser in InP," IEEE Photon. Technol. Lett. 15, 1117-1119 (2003).
[CrossRef]

Chapman, P. F.

R. P. Espindola, M. K. Udo, D. Y. Chu, S. L. Wu, R. C. Tiberio, P. F. Chapman, D. Cohen, and S. T. Ho, "All-Optical Switching with Low-Peak Power in Microfabricated AlGaAs Waveguides," IEEE Photon. Technol. Lett. 7, 641-643 (1995).
[CrossRef]

Chu, D. Y.

R. P. Espindola, M. K. Udo, D. Y. Chu, S. L. Wu, R. C. Tiberio, P. F. Chapman, D. Cohen, and S. T. Ho, "All-Optical Switching with Low-Peak Power in Microfabricated AlGaAs Waveguides," IEEE Photon. Technol. Lett. 7, 641-643 (1995).
[CrossRef]

J. P. Zhang, D. Y. Chu, S. L. Wu, W. G. Bi, R. C. Tiberio, C. W. Tu, and S. T. Ho, "Photonic-Wire Laser," Phys. Rev. Lett. 75, 2678-2681 (1995).
[CrossRef] [PubMed]

Cohen, D.

R. P. Espindola, M. K. Udo, D. Y. Chu, S. L. Wu, R. C. Tiberio, P. F. Chapman, D. Cohen, and S. T. Ho, "All-Optical Switching with Low-Peak Power in Microfabricated AlGaAs Waveguides," IEEE Photon. Technol. Lett. 7, 641-643 (1995).
[CrossRef]

Coldren, L.

B. Mason, G. Fish, S. DenBaars, and L. Coldren, "Ridge Waveguide Sampled Grating DBR Lasers with 22-nm Quasi-Continuous Tuning Range," IEEE Photon. Technol. Lett. 10, 1211-1213 1998.
[CrossRef]

Coldren, L. A.

M. L. Masanovi�?, V. Lal, J. S. Barton, E. J. Skogen, L. A. Coldren, and D. J. Blumenthal, "Monolithically Integrated Mach-Zehnder Interferometer Wavelength Converter and Widely Tunable Laser in InP," IEEE Photon. Technol. Lett. 15, 1117-1119 (2003).
[CrossRef]

Cotter, D.

D. Cotter,  et al., "Nonlinear Optics for High-Speed Digital Information Processing," Science 286, 1523-1528 (1999).
[CrossRef] [PubMed]

Dagens, B.

B. Dagens, C. Janz, D. Leclerc, V. Verdrager, F. Poingt, I. Guillemot, F. Gaborit, and D. Ottenwälder, "Design Optimization of All-Active Mach-Zehnder Wavelength Converters," IEEE Photon. Technol. Lett. 11, 424-426 (1999).
[CrossRef]

DenBaars, S.

B. Mason, G. Fish, S. DenBaars, and L. Coldren, "Ridge Waveguide Sampled Grating DBR Lasers with 22-nm Quasi-Continuous Tuning Range," IEEE Photon. Technol. Lett. 10, 1211-1213 1998.
[CrossRef]

Espindola, R. P.

R. P. Espindola, M. K. Udo, D. Y. Chu, S. L. Wu, R. C. Tiberio, P. F. Chapman, D. Cohen, and S. T. Ho, "All-Optical Switching with Low-Peak Power in Microfabricated AlGaAs Waveguides," IEEE Photon. Technol. Lett. 7, 641-643 (1995).
[CrossRef]

Fejer, M. M.

Fish, G.

B. Mason, G. Fish, S. DenBaars, and L. Coldren, "Ridge Waveguide Sampled Grating DBR Lasers with 22-nm Quasi-Continuous Tuning Range," IEEE Photon. Technol. Lett. 10, 1211-1213 1998.
[CrossRef]

Gaborit, F.

B. Dagens, C. Janz, D. Leclerc, V. Verdrager, F. Poingt, I. Guillemot, F. Gaborit, and D. Ottenwälder, "Design Optimization of All-Active Mach-Zehnder Wavelength Converters," IEEE Photon. Technol. Lett. 11, 424-426 (1999).
[CrossRef]

Guillemot, I.

B. Dagens, C. Janz, D. Leclerc, V. Verdrager, F. Poingt, I. Guillemot, F. Gaborit, and D. Ottenwälder, "Design Optimization of All-Active Mach-Zehnder Wavelength Converters," IEEE Photon. Technol. Lett. 11, 424-426 (1999).
[CrossRef]

Ho, S. T.

Y. Huang and S. T. Ho, "Computational model of solid-state, molecular, or atomic media for FDTD simulation based on a multi-level multi-electron system governed by Pauli exclusion and Fermi-Dirac thermalization with application to semiconductor photonics," Opt. Express 14, 3569 (2006).
[CrossRef] [PubMed]

J. P. Zhang, D. Y. Chu, S. L. Wu, W. G. Bi, R. C. Tiberio, C. W. Tu, and S. T. Ho, "Photonic-Wire Laser," Phys. Rev. Lett. 75, 2678-2681 (1995).
[CrossRef] [PubMed]

R. P. Espindola, M. K. Udo, D. Y. Chu, S. L. Wu, R. C. Tiberio, P. F. Chapman, D. Cohen, and S. T. Ho, "All-Optical Switching with Low-Peak Power in Microfabricated AlGaAs Waveguides," IEEE Photon. Technol. Lett. 7, 641-643 (1995).
[CrossRef]

S. T. Ho, C. E. Soccolich, W. S. Hobson, A. F. J. Levi, M. N. Islam, and R. E. Slusher, "Large Nonlinear Phase Shifts in Low-Loss AlXGa1-XAs Waveguides Near Half-Gap," Appl. Phys. Lett. 59, 2558-2560 (1991).
[CrossRef]

Hobson, W. S.

S. T. Ho, C. E. Soccolich, W. S. Hobson, A. F. J. Levi, M. N. Islam, and R. E. Slusher, "Large Nonlinear Phase Shifts in Low-Loss AlXGa1-XAs Waveguides Near Half-Gap," Appl. Phys. Lett. 59, 2558-2560 (1991).
[CrossRef]

Huang, Y.

Islam, M. N.

Y.-H. Kao, T. J. Xia, M. N. Islam, and G. Raybon, "Limitations on ultrafast optical switching in a semiconductor laser amplifier operating at transparency current," J. Appl. Phys. 86, 4740-4747 (1999).
[CrossRef]

S. T. Ho, C. E. Soccolich, W. S. Hobson, A. F. J. Levi, M. N. Islam, and R. E. Slusher, "Large Nonlinear Phase Shifts in Low-Loss AlXGa1-XAs Waveguides Near Half-Gap," Appl. Phys. Lett. 59, 2558-2560 (1991).
[CrossRef]

Janz, C.

B. Dagens, C. Janz, D. Leclerc, V. Verdrager, F. Poingt, I. Guillemot, F. Gaborit, and D. Ottenwälder, "Design Optimization of All-Active Mach-Zehnder Wavelength Converters," IEEE Photon. Technol. Lett. 11, 424-426 (1999).
[CrossRef]

Jensen, S. M.

S. M. Jensen, "The nonlinear coherent coupler," IEEE J. Quantum Electron. QE-18, 1568-1571 (1982).

Kao, Y.-H.

Y.-H. Kao, T. J. Xia, M. N. Islam, and G. Raybon, "Limitations on ultrafast optical switching in a semiconductor laser amplifier operating at transparency current," J. Appl. Phys. 86, 4740-4747 (1999).
[CrossRef]

Kumar, S.

Lal, V.

M. L. Masanovi�?, V. Lal, J. S. Barton, E. J. Skogen, L. A. Coldren, and D. J. Blumenthal, "Monolithically Integrated Mach-Zehnder Interferometer Wavelength Converter and Widely Tunable Laser in InP," IEEE Photon. Technol. Lett. 15, 1117-1119 (2003).
[CrossRef]

Langrock, C.

Leclerc, D.

B. Dagens, C. Janz, D. Leclerc, V. Verdrager, F. Poingt, I. Guillemot, F. Gaborit, and D. Ottenwälder, "Design Optimization of All-Active Mach-Zehnder Wavelength Converters," IEEE Photon. Technol. Lett. 11, 424-426 (1999).
[CrossRef]

Levi, A. F. J.

S. T. Ho, C. E. Soccolich, W. S. Hobson, A. F. J. Levi, M. N. Islam, and R. E. Slusher, "Large Nonlinear Phase Shifts in Low-Loss AlXGa1-XAs Waveguides Near Half-Gap," Appl. Phys. Lett. 59, 2558-2560 (1991).
[CrossRef]

Masanovi??, M. L.

M. L. Masanovi�?, V. Lal, J. S. Barton, E. J. Skogen, L. A. Coldren, and D. J. Blumenthal, "Monolithically Integrated Mach-Zehnder Interferometer Wavelength Converter and Widely Tunable Laser in InP," IEEE Photon. Technol. Lett. 15, 1117-1119 (2003).
[CrossRef]

Mason, B.

B. Mason, G. Fish, S. DenBaars, and L. Coldren, "Ridge Waveguide Sampled Grating DBR Lasers with 22-nm Quasi-Continuous Tuning Range," IEEE Photon. Technol. Lett. 10, 1211-1213 1998.
[CrossRef]

McGeehan, J. E.

Ottenwälder, D.

B. Dagens, C. Janz, D. Leclerc, V. Verdrager, F. Poingt, I. Guillemot, F. Gaborit, and D. Ottenwälder, "Design Optimization of All-Active Mach-Zehnder Wavelength Converters," IEEE Photon. Technol. Lett. 11, 424-426 (1999).
[CrossRef]

Papadimitriou, G. I.

Papazoglou, C.

Poingt, F.

B. Dagens, C. Janz, D. Leclerc, V. Verdrager, F. Poingt, I. Guillemot, F. Gaborit, and D. Ottenwälder, "Design Optimization of All-Active Mach-Zehnder Wavelength Converters," IEEE Photon. Technol. Lett. 11, 424-426 (1999).
[CrossRef]

Pomportsis, A. S.

Raybon, G.

Y.-H. Kao, T. J. Xia, M. N. Islam, and G. Raybon, "Limitations on ultrafast optical switching in a semiconductor laser amplifier operating at transparency current," J. Appl. Phys. 86, 4740-4747 (1999).
[CrossRef]

Skogen, E. J.

M. L. Masanovi�?, V. Lal, J. S. Barton, E. J. Skogen, L. A. Coldren, and D. J. Blumenthal, "Monolithically Integrated Mach-Zehnder Interferometer Wavelength Converter and Widely Tunable Laser in InP," IEEE Photon. Technol. Lett. 15, 1117-1119 (2003).
[CrossRef]

Slusher, R. E.

S. T. Ho, C. E. Soccolich, W. S. Hobson, A. F. J. Levi, M. N. Islam, and R. E. Slusher, "Large Nonlinear Phase Shifts in Low-Loss AlXGa1-XAs Waveguides Near Half-Gap," Appl. Phys. Lett. 59, 2558-2560 (1991).
[CrossRef]

Soccolich, C. E.

S. T. Ho, C. E. Soccolich, W. S. Hobson, A. F. J. Levi, M. N. Islam, and R. E. Slusher, "Large Nonlinear Phase Shifts in Low-Loss AlXGa1-XAs Waveguides Near Half-Gap," Appl. Phys. Lett. 59, 2558-2560 (1991).
[CrossRef]

Tiberio, R. C.

J. P. Zhang, D. Y. Chu, S. L. Wu, W. G. Bi, R. C. Tiberio, C. W. Tu, and S. T. Ho, "Photonic-Wire Laser," Phys. Rev. Lett. 75, 2678-2681 (1995).
[CrossRef] [PubMed]

R. P. Espindola, M. K. Udo, D. Y. Chu, S. L. Wu, R. C. Tiberio, P. F. Chapman, D. Cohen, and S. T. Ho, "All-Optical Switching with Low-Peak Power in Microfabricated AlGaAs Waveguides," IEEE Photon. Technol. Lett. 7, 641-643 (1995).
[CrossRef]

Tu, C. W.

J. P. Zhang, D. Y. Chu, S. L. Wu, W. G. Bi, R. C. Tiberio, C. W. Tu, and S. T. Ho, "Photonic-Wire Laser," Phys. Rev. Lett. 75, 2678-2681 (1995).
[CrossRef] [PubMed]

Udo, M. K.

R. P. Espindola, M. K. Udo, D. Y. Chu, S. L. Wu, R. C. Tiberio, P. F. Chapman, D. Cohen, and S. T. Ho, "All-Optical Switching with Low-Peak Power in Microfabricated AlGaAs Waveguides," IEEE Photon. Technol. Lett. 7, 641-643 (1995).
[CrossRef]

Verdrager, V.

B. Dagens, C. Janz, D. Leclerc, V. Verdrager, F. Poingt, I. Guillemot, F. Gaborit, and D. Ottenwälder, "Design Optimization of All-Active Mach-Zehnder Wavelength Converters," IEEE Photon. Technol. Lett. 11, 424-426 (1999).
[CrossRef]

Willner, A. E.

Wu, S. L.

J. P. Zhang, D. Y. Chu, S. L. Wu, W. G. Bi, R. C. Tiberio, C. W. Tu, and S. T. Ho, "Photonic-Wire Laser," Phys. Rev. Lett. 75, 2678-2681 (1995).
[CrossRef] [PubMed]

R. P. Espindola, M. K. Udo, D. Y. Chu, S. L. Wu, R. C. Tiberio, P. F. Chapman, D. Cohen, and S. T. Ho, "All-Optical Switching with Low-Peak Power in Microfabricated AlGaAs Waveguides," IEEE Photon. Technol. Lett. 7, 641-643 (1995).
[CrossRef]

Xia, T. J.

Y.-H. Kao, T. J. Xia, M. N. Islam, and G. Raybon, "Limitations on ultrafast optical switching in a semiconductor laser amplifier operating at transparency current," J. Appl. Phys. 86, 4740-4747 (1999).
[CrossRef]

Zhang, J. P.

J. P. Zhang, D. Y. Chu, S. L. Wu, W. G. Bi, R. C. Tiberio, C. W. Tu, and S. T. Ho, "Photonic-Wire Laser," Phys. Rev. Lett. 75, 2678-2681 (1995).
[CrossRef] [PubMed]

Appl. Phys. Lett.

S. T. Ho, C. E. Soccolich, W. S. Hobson, A. F. J. Levi, M. N. Islam, and R. E. Slusher, "Large Nonlinear Phase Shifts in Low-Loss AlXGa1-XAs Waveguides Near Half-Gap," Appl. Phys. Lett. 59, 2558-2560 (1991).
[CrossRef]

IEEE J. Quantum Electron.

S. M. Jensen, "The nonlinear coherent coupler," IEEE J. Quantum Electron. QE-18, 1568-1571 (1982).

IEEE Photon. Technol. Lett.

B. Mason, G. Fish, S. DenBaars, and L. Coldren, "Ridge Waveguide Sampled Grating DBR Lasers with 22-nm Quasi-Continuous Tuning Range," IEEE Photon. Technol. Lett. 10, 1211-1213 1998.
[CrossRef]

R. P. Espindola, M. K. Udo, D. Y. Chu, S. L. Wu, R. C. Tiberio, P. F. Chapman, D. Cohen, and S. T. Ho, "All-Optical Switching with Low-Peak Power in Microfabricated AlGaAs Waveguides," IEEE Photon. Technol. Lett. 7, 641-643 (1995).
[CrossRef]

B. Dagens, C. Janz, D. Leclerc, V. Verdrager, F. Poingt, I. Guillemot, F. Gaborit, and D. Ottenwälder, "Design Optimization of All-Active Mach-Zehnder Wavelength Converters," IEEE Photon. Technol. Lett. 11, 424-426 (1999).
[CrossRef]

M. L. Masanovi�?, V. Lal, J. S. Barton, E. J. Skogen, L. A. Coldren, and D. J. Blumenthal, "Monolithically Integrated Mach-Zehnder Interferometer Wavelength Converter and Widely Tunable Laser in InP," IEEE Photon. Technol. Lett. 15, 1117-1119 (2003).
[CrossRef]

J. Appl. Phys.

Y.-H. Kao, T. J. Xia, M. N. Islam, and G. Raybon, "Limitations on ultrafast optical switching in a semiconductor laser amplifier operating at transparency current," J. Appl. Phys. 86, 4740-4747 (1999).
[CrossRef]

J. Lightwave Technol.

Opt. Express

Phys. Rev. Lett.

J. P. Zhang, D. Y. Chu, S. L. Wu, W. G. Bi, R. C. Tiberio, C. W. Tu, and S. T. Ho, "Photonic-Wire Laser," Phys. Rev. Lett. 75, 2678-2681 (1995).
[CrossRef] [PubMed]

Science

D. Cotter,  et al., "Nonlinear Optics for High-Speed Digital Information Processing," Science 286, 1523-1528 (1999).
[CrossRef] [PubMed]

Other

R. W. Boyd, Nonlinear Optics, (Academic Press, San Diego, 2003).

Y. Huang, "Simulation and Experimental Realization of Novel High Efficiency All-Optical and Electrically Pumped Nanophotonic Devices," PhD dissertation, Northwestern University, Evanston, IL, USA, 2007.

L. A. Coldren and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits, (Wiley, John & Sons, 1995).

K. Mistry,  et al., "A 45nm Logic Technology with High-k+Metal Gate Transistors, Strained Silicon, 9 Cu Interconnect Layers, 193nm Dry Patterning, and 100% Pb-free Packaging," Electron Devices Meeting, 2007. IEDM 2007.

Y. Huang and S. T. Ho, "A numerically efficient semiconductor model with Fermi-Dirac thermalization dynamics (band-filling) for FDTD simulation of optoelectronic and photonic devices," Proceedings of the 2005 International Conference on Quantum Electronics & Lasers Science, Baltimore, QTuD7 (2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (18)

Fig. 1.
Fig. 1.

commonly used n (2) based switch with Mach Zehnder Interferometer (MZI) geometry. (a) Optical switching configuration: signal pulse will exit Port A if the control pulse is absent and Port B if the control pulse is present. (b) Wavelength conversion configuration: the input pulse at λ2 generates an output pulse at λ1 exiting Port B.

Fig. 2.
Fig. 2.

(a). Functional black box schematics of a photonic transistor illustrating an input signal beam switching a CW power supply to generate an output signal beam. (b). An electronic transistor for which an input signal voltage applied to the Gate terminal (G) modulates the amount of current exiting the Drain terminal (D) when a Power Supply source is connected to the Source terminal (S).

Fig. 3.
Fig. 3.

α(2) based all optical switching schemes using cross waveguide. (a) A signal beam IS with intensity higher than the saturation intensity of the active medium is used to excite the active medium and allow the power supply beam IPS to pass through the medium and generate an output signal beam ISOUT. (b) The power supply beam IPS must have lower power then the input signal beam IS or it will saturate the medium by itself and self switched through.

Fig. 4.
Fig. 4.

Directional coupler with one arm absorptive: (a) basic geometry with solid line showing the path of light when the top waveguide is transparent and dotted line showing the path of the light when the top waveguide is absorptive; (b) simulation example showing the electrical field in the device when the top waveguide is transparent; (c) simulated example showing the electrical field in the device when the top waveguide is absorptive.

Fig. 5.
Fig. 5.

Normalized output powers (PSIG-OUT and P PS-OUT ) as a function of absorptive coefficient α using analytical extended coupled-mode equation and numerical FDTD simulation. Y-axis is the normalized output power. X-axis is the product (αLC ) of absorption coefficient (α) and the coupler length (LC ). The discrete data points (crosses and triangles) are from numerical FDTD simulation, which agree with the curves obtained analytically.

Fig. 6.
Fig. 6.

Directional coupler with half of one arm amplifying: (a) basic geometry with solid line showing the path of light when the top waveguide is transparent and dotted line showing the path of the light when the top waveguide has gain; (b) simulation example showing the electrical field in the device when the top waveguide is transparent; (c) simulated example showing the electrical field in the device when the top waveguide has gain.

Fig. 7.
Fig. 7.

normalized output from two ports as a function of -αLC . The discrete data points (crosses and triangles) are from FDTD simulation, which agree with the curves obtained analytically.

Fig. 8.
Fig. 8.

Geometry for AMOI based energy-up photonic transistor showing power-supply input port (PS-IN), signal input port (SIG-IN) that is also the power-supply exiting port (PS-OUT), signal output port (SIG-OUT), and the wavelengths of the various beams at wavelength λH (high in energy) or λL (low in energy).

Fig. 9.
Fig. 9.

Basic operations for the AMOI based energy-up photonic transistor. (a) OFF state: left: The beam geometry at OFF state with power-supply beam present but no signal input; right: energy diagram shows the medium’s OFF state with the medium experiencing saturation at λH from the power-supply beam resulting in gain at λL, which is lower in energy than λH. (b) ON state: left: the beam geometry at ON state with power-supply beam and signal input both present; right: energy diagram shows the medium’s ON state with the medium experiencing loss at λH when its carriers are depleted by the input signal pulse at λL.

Fig. 10.
Fig. 10.

Geometry for GMOI based energy-down photonic transistor showing power-supply input port (PS-IN), power-supply exiting port (PS-OUT), signal input port (SIG-IN), signal output port (SIG-OUT), and the wavelengths of the various beams at wavelength λH or λL. The dotted arrow on the left of the bottom waveguide indicates an alternative port for the signal input, which relies on the coupler to couple the input signal up to the active medium M’ on the top waveguide.

Fig. 11.
Fig. 11.

Basic operations for GMOI based energy-down photonic transistor. (a) is the OFF state, (b) is the ON state. (a) left: the beam geometry at OFF state with power-supply beam at λLa present but no signal input; right: the medium’s OFF state with the medium being lossy or transparent for λLa and the power-supply beam has little of no energy in the medium. A signal beam at λH introduced at OFF state into the medium will excite the medium to achieve gain at λLa. (b) left: the beam geometry at ON state with power-supply beam and signal input both present; right: energy diagram shows the medium’s ON state with the medium experiencing gain at λLa when its carriers are excited by the input signal pulse at λH.

Fig. 12.
Fig. 12.

Full dynamical FDTD simulation of the photonic transistors: (a) discrete energy levels used in FDTD simulation, (b) medium response at different carrier density simulated using 10 pairs of levels spaced by 25nm in wavelength.

Fig. 13.
Fig. 13.

High-speed simulation results obtained with PPS-IN=1.29mw at λH: (a) Dynamical simulation with a 50psec input pulse (dotted line) gave the output pulse shown in solid line and (b) PSIG-OUT at different PSIG-IN with constant PPS-IN.

Fig. 14.
Fig. 14.

High-speed simulation results for the EDPT obtained with PPS-IN=14µw at λLa: (a) Dynamical simulation with a 50psec input pulse (dotted line) gave the output pulse shown in solid line, (b) PSIG-OUT at different PSIG-IN with constant PPS-IN.

Fig. 15.
Fig. 15.

(a). Layout of a full-function photon transistor; (b). input-output relation.

Fig. 16.
Fig. 16.

(a). EUPT input and output pulse in time domain; (b). input and output pulse in spectral domain.

Fig. 17.
Fig. 17.

(a). EDPT input and output pulse in time domain; (b). input and output pulse in spectral domain.

Fig. 18.
Fig. 18.

Spectral distortion of χ(3) based switch simulated by FDTD.

Tables (1)

Tables Icon

Table 1. Relative figure-of-merit for benchmark electronic transistor device and various photonic switching devices: (1) electronic transistor [16]; (2) χ(3) of semiconductor [3, 4]; (3) SOA based [7–9]; (4) GAMOI.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

P 1 ( z ) = e α z [ cos ( γ z ) + α 2 γ sin ( γ z ) ] 2 , P 2 ( z ) = e α z [ k γ sin ( γ z ) ] 2 .
P 1 ( z ) = e α z [ Cosh ( γ z ) + α 2 γ Sinh ( γ z ) ] 2 , P 2 ( z ) = e α z [ k γ Sinh ( γ z ) ] 2 .
MF PT = N ch RG S ( P PS + P CTR SIG ) A ,

Metrics