Abstract

We show that a photonic transistor device can be realized via the manipulation of optical interference by optically controlled gain or absorption in novel ways, resulting in efficient transistor signal gain and switching action. Exemplary devices illustrate two complementary device types with high operating speed, µm size, µW switching power, and switching gain. They can act in tandem to provide a wide variety of operations including wavelength conversion, pulse regeneration, and logical operations. These devices could have a Transistor Figure-of-Merits >105 times higher than current �?(3) approaches and are highly attractive.

© 2008 Optical Society of America

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. I. Papadimitriou, C. Papazoglou, and A. S. Pomportsis, "Optical Switching: Switch Fabrics, Techniques, and Architectures," J. Lightwave Technol. 21, 384-403 (2003).
    [CrossRef]
  2. D. Cotter,  et al., "Nonlinear Optics for High-Speed Digital Information Processing," Science 286, 1523-1528 (1999).
    [CrossRef]
  3. S. T. Ho, C. E. Soccolich, W. S. Hobson, A. F. J. Levi, M. N. Islam, and R. E. Slusher, "Large Nonlinear Phase Shifts in Low-Loss AlXGa1-XAs Waveguides Near Half-Gap," Appl. Phys. Lett. 59, 2558-2560 (1991).
    [CrossRef]
  4. R. P. Espindola, M. K. Udo, D. Y. Chu, S. L. Wu, R. C. Tiberio, P. F. Chapman, D. Cohen, and S. T. Ho, "All-Optical Switching with Low-Peak Power in Microfabricated AlGaAs Waveguides," IEEE Photon. Technol. Lett. 7, 641-643 (1995).
    [CrossRef]
  5. J. P. Zhang, D. Y. Chu, S. L. Wu, W. G. Bi, R. C. Tiberio, C. W. Tu, and S. T. Ho, "Photonic-Wire Laser," Phys. Rev. Lett. 75, 2678-2681 (1995).
    [CrossRef]
  6. C. Langrock, S. Kumar, J. E. McGeehan, A. E. Willner, and M. M. Fejer, "All-Optical Signal Processing Using �?(2) Nonlinearities in Guided-Wave Devices," J. Lightwave Technol. 24, 2579-2601 (2006).
    [CrossRef]
  7. Y.-H. Kao, T. J. Xia, M. N. Islam, and G. Raybon, "Limitations on ultrafast optical switching in a semiconductor laser amplifier operating at transparency current," J. Appl. Phys. 86, 4740-4747 (1999).
    [CrossRef]
  8. B. Dagens, C. Janz, D. Leclerc, V. Verdrager, F. Poingt, I. Guillemot, F. Gaborit, and D. Ottenwälder, "Design Optimization of All-Active Mach-Zehnder Wavelength Converters," IEEE Photon. Technol. Lett. 11, 424-426 (1999).
    [CrossRef]
  9. M. L. Masanovi�?, V. Lal, J. S. Barton, E. J. Skogen, L. A. Coldren, and D. J. Blumenthal, "Monolithically Integrated Mach-Zehnder Interferometer Wavelength Converter and Widely Tunable Laser in InP," IEEE Photon. Technol. Lett. 15, 1117-1119 (2003).
    [CrossRef]
  10. R. W. Boyd, Nonlinear Optics, (Academic Press, San Diego, 2003).
  11. S. M. Jensen, "The nonlinear coherent coupler," IEEE J. Quantum Electron. QE-18, 1568-1571 (1982).
  12. Y. Huang and S. T. Ho, "A numerically efficient semiconductor model with Fermi-Dirac thermalization dynamics (band-filling) for FDTD simulation of optoelectronic and photonic devices," Proceedings of the 2005 International Conference on Quantum Electronics & Lasers Science, Baltimore, QTuD7 (2005).
  13. Y. Huang and S. T. Ho, "Computational model of solid-state, molecular, or atomic media for FDTD simulation based on a multi-level multi-electron system governed by Pauli exclusion and Fermi-Dirac thermalization with application to semiconductor photonics," Opt. Express 14, 3569 (2006).
    [CrossRef]
  14. Y. Huang, "Simulation and Experimental Realization of Novel High Efficiency All-Optical and Electrically Pumped Nanophotonic Devices," PhD dissertation, Northwestern University, Evanston, IL, USA, 2007.
  15. L. A. Coldren and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits, (Wiley, John & Sons, 1995).
  16. K. Mistry,  et al., "A 45nm Logic Technology with High-k+Metal Gate Transistors, Strained Silicon, 9 Cu Interconnect Layers, 193nm Dry Patterning, and 100% Pb-free Packaging," Electron Devices Meeting, 2007. IEDM 2007.
  17. B. Mason, G. Fish, S. DenBaars, and L. Coldren, "Ridge Waveguide Sampled Grating DBR Lasers with 22-nm Quasi-Continuous Tuning Range," IEEE Photon. Technol. Lett. 10, 1211-1213 1998.
    [CrossRef]

2006 (2)

2003 (2)

G. I. Papadimitriou, C. Papazoglou, and A. S. Pomportsis, "Optical Switching: Switch Fabrics, Techniques, and Architectures," J. Lightwave Technol. 21, 384-403 (2003).
[CrossRef]

M. L. Masanovi�?, V. Lal, J. S. Barton, E. J. Skogen, L. A. Coldren, and D. J. Blumenthal, "Monolithically Integrated Mach-Zehnder Interferometer Wavelength Converter and Widely Tunable Laser in InP," IEEE Photon. Technol. Lett. 15, 1117-1119 (2003).
[CrossRef]

1999 (3)

Y.-H. Kao, T. J. Xia, M. N. Islam, and G. Raybon, "Limitations on ultrafast optical switching in a semiconductor laser amplifier operating at transparency current," J. Appl. Phys. 86, 4740-4747 (1999).
[CrossRef]

B. Dagens, C. Janz, D. Leclerc, V. Verdrager, F. Poingt, I. Guillemot, F. Gaborit, and D. Ottenwälder, "Design Optimization of All-Active Mach-Zehnder Wavelength Converters," IEEE Photon. Technol. Lett. 11, 424-426 (1999).
[CrossRef]

D. Cotter,  et al., "Nonlinear Optics for High-Speed Digital Information Processing," Science 286, 1523-1528 (1999).
[CrossRef]

1998 (1)

B. Mason, G. Fish, S. DenBaars, and L. Coldren, "Ridge Waveguide Sampled Grating DBR Lasers with 22-nm Quasi-Continuous Tuning Range," IEEE Photon. Technol. Lett. 10, 1211-1213 1998.
[CrossRef]

1995 (2)

R. P. Espindola, M. K. Udo, D. Y. Chu, S. L. Wu, R. C. Tiberio, P. F. Chapman, D. Cohen, and S. T. Ho, "All-Optical Switching with Low-Peak Power in Microfabricated AlGaAs Waveguides," IEEE Photon. Technol. Lett. 7, 641-643 (1995).
[CrossRef]

J. P. Zhang, D. Y. Chu, S. L. Wu, W. G. Bi, R. C. Tiberio, C. W. Tu, and S. T. Ho, "Photonic-Wire Laser," Phys. Rev. Lett. 75, 2678-2681 (1995).
[CrossRef]

1991 (1)

S. T. Ho, C. E. Soccolich, W. S. Hobson, A. F. J. Levi, M. N. Islam, and R. E. Slusher, "Large Nonlinear Phase Shifts in Low-Loss AlXGa1-XAs Waveguides Near Half-Gap," Appl. Phys. Lett. 59, 2558-2560 (1991).
[CrossRef]

1982 (1)

S. M. Jensen, "The nonlinear coherent coupler," IEEE J. Quantum Electron. QE-18, 1568-1571 (1982).

Barton, J. S.

M. L. Masanovi�?, V. Lal, J. S. Barton, E. J. Skogen, L. A. Coldren, and D. J. Blumenthal, "Monolithically Integrated Mach-Zehnder Interferometer Wavelength Converter and Widely Tunable Laser in InP," IEEE Photon. Technol. Lett. 15, 1117-1119 (2003).
[CrossRef]

Bi, W. G.

J. P. Zhang, D. Y. Chu, S. L. Wu, W. G. Bi, R. C. Tiberio, C. W. Tu, and S. T. Ho, "Photonic-Wire Laser," Phys. Rev. Lett. 75, 2678-2681 (1995).
[CrossRef]

Blumenthal, D. J.

M. L. Masanovi�?, V. Lal, J. S. Barton, E. J. Skogen, L. A. Coldren, and D. J. Blumenthal, "Monolithically Integrated Mach-Zehnder Interferometer Wavelength Converter and Widely Tunable Laser in InP," IEEE Photon. Technol. Lett. 15, 1117-1119 (2003).
[CrossRef]

Chapman, P. F.

R. P. Espindola, M. K. Udo, D. Y. Chu, S. L. Wu, R. C. Tiberio, P. F. Chapman, D. Cohen, and S. T. Ho, "All-Optical Switching with Low-Peak Power in Microfabricated AlGaAs Waveguides," IEEE Photon. Technol. Lett. 7, 641-643 (1995).
[CrossRef]

Chu, D. Y.

R. P. Espindola, M. K. Udo, D. Y. Chu, S. L. Wu, R. C. Tiberio, P. F. Chapman, D. Cohen, and S. T. Ho, "All-Optical Switching with Low-Peak Power in Microfabricated AlGaAs Waveguides," IEEE Photon. Technol. Lett. 7, 641-643 (1995).
[CrossRef]

J. P. Zhang, D. Y. Chu, S. L. Wu, W. G. Bi, R. C. Tiberio, C. W. Tu, and S. T. Ho, "Photonic-Wire Laser," Phys. Rev. Lett. 75, 2678-2681 (1995).
[CrossRef]

Cohen, D.

R. P. Espindola, M. K. Udo, D. Y. Chu, S. L. Wu, R. C. Tiberio, P. F. Chapman, D. Cohen, and S. T. Ho, "All-Optical Switching with Low-Peak Power in Microfabricated AlGaAs Waveguides," IEEE Photon. Technol. Lett. 7, 641-643 (1995).
[CrossRef]

Coldren, L.

B. Mason, G. Fish, S. DenBaars, and L. Coldren, "Ridge Waveguide Sampled Grating DBR Lasers with 22-nm Quasi-Continuous Tuning Range," IEEE Photon. Technol. Lett. 10, 1211-1213 1998.
[CrossRef]

Coldren, L. A.

M. L. Masanovi�?, V. Lal, J. S. Barton, E. J. Skogen, L. A. Coldren, and D. J. Blumenthal, "Monolithically Integrated Mach-Zehnder Interferometer Wavelength Converter and Widely Tunable Laser in InP," IEEE Photon. Technol. Lett. 15, 1117-1119 (2003).
[CrossRef]

Cotter, D.

D. Cotter,  et al., "Nonlinear Optics for High-Speed Digital Information Processing," Science 286, 1523-1528 (1999).
[CrossRef]

Dagens, B.

B. Dagens, C. Janz, D. Leclerc, V. Verdrager, F. Poingt, I. Guillemot, F. Gaborit, and D. Ottenwälder, "Design Optimization of All-Active Mach-Zehnder Wavelength Converters," IEEE Photon. Technol. Lett. 11, 424-426 (1999).
[CrossRef]

DenBaars, S.

B. Mason, G. Fish, S. DenBaars, and L. Coldren, "Ridge Waveguide Sampled Grating DBR Lasers with 22-nm Quasi-Continuous Tuning Range," IEEE Photon. Technol. Lett. 10, 1211-1213 1998.
[CrossRef]

Espindola, R. P.

R. P. Espindola, M. K. Udo, D. Y. Chu, S. L. Wu, R. C. Tiberio, P. F. Chapman, D. Cohen, and S. T. Ho, "All-Optical Switching with Low-Peak Power in Microfabricated AlGaAs Waveguides," IEEE Photon. Technol. Lett. 7, 641-643 (1995).
[CrossRef]

Fejer, M. M.

Fish, G.

B. Mason, G. Fish, S. DenBaars, and L. Coldren, "Ridge Waveguide Sampled Grating DBR Lasers with 22-nm Quasi-Continuous Tuning Range," IEEE Photon. Technol. Lett. 10, 1211-1213 1998.
[CrossRef]

Gaborit, F.

B. Dagens, C. Janz, D. Leclerc, V. Verdrager, F. Poingt, I. Guillemot, F. Gaborit, and D. Ottenwälder, "Design Optimization of All-Active Mach-Zehnder Wavelength Converters," IEEE Photon. Technol. Lett. 11, 424-426 (1999).
[CrossRef]

Guillemot, I.

B. Dagens, C. Janz, D. Leclerc, V. Verdrager, F. Poingt, I. Guillemot, F. Gaborit, and D. Ottenwälder, "Design Optimization of All-Active Mach-Zehnder Wavelength Converters," IEEE Photon. Technol. Lett. 11, 424-426 (1999).
[CrossRef]

Ho, S. T.

Y. Huang and S. T. Ho, "Computational model of solid-state, molecular, or atomic media for FDTD simulation based on a multi-level multi-electron system governed by Pauli exclusion and Fermi-Dirac thermalization with application to semiconductor photonics," Opt. Express 14, 3569 (2006).
[CrossRef]

J. P. Zhang, D. Y. Chu, S. L. Wu, W. G. Bi, R. C. Tiberio, C. W. Tu, and S. T. Ho, "Photonic-Wire Laser," Phys. Rev. Lett. 75, 2678-2681 (1995).
[CrossRef]

R. P. Espindola, M. K. Udo, D. Y. Chu, S. L. Wu, R. C. Tiberio, P. F. Chapman, D. Cohen, and S. T. Ho, "All-Optical Switching with Low-Peak Power in Microfabricated AlGaAs Waveguides," IEEE Photon. Technol. Lett. 7, 641-643 (1995).
[CrossRef]

S. T. Ho, C. E. Soccolich, W. S. Hobson, A. F. J. Levi, M. N. Islam, and R. E. Slusher, "Large Nonlinear Phase Shifts in Low-Loss AlXGa1-XAs Waveguides Near Half-Gap," Appl. Phys. Lett. 59, 2558-2560 (1991).
[CrossRef]

Hobson, W. S.

S. T. Ho, C. E. Soccolich, W. S. Hobson, A. F. J. Levi, M. N. Islam, and R. E. Slusher, "Large Nonlinear Phase Shifts in Low-Loss AlXGa1-XAs Waveguides Near Half-Gap," Appl. Phys. Lett. 59, 2558-2560 (1991).
[CrossRef]

Huang, Y.

Islam, M. N.

Y.-H. Kao, T. J. Xia, M. N. Islam, and G. Raybon, "Limitations on ultrafast optical switching in a semiconductor laser amplifier operating at transparency current," J. Appl. Phys. 86, 4740-4747 (1999).
[CrossRef]

S. T. Ho, C. E. Soccolich, W. S. Hobson, A. F. J. Levi, M. N. Islam, and R. E. Slusher, "Large Nonlinear Phase Shifts in Low-Loss AlXGa1-XAs Waveguides Near Half-Gap," Appl. Phys. Lett. 59, 2558-2560 (1991).
[CrossRef]

Janz, C.

B. Dagens, C. Janz, D. Leclerc, V. Verdrager, F. Poingt, I. Guillemot, F. Gaborit, and D. Ottenwälder, "Design Optimization of All-Active Mach-Zehnder Wavelength Converters," IEEE Photon. Technol. Lett. 11, 424-426 (1999).
[CrossRef]

Jensen, S. M.

S. M. Jensen, "The nonlinear coherent coupler," IEEE J. Quantum Electron. QE-18, 1568-1571 (1982).

Kao, Y.-H.

Y.-H. Kao, T. J. Xia, M. N. Islam, and G. Raybon, "Limitations on ultrafast optical switching in a semiconductor laser amplifier operating at transparency current," J. Appl. Phys. 86, 4740-4747 (1999).
[CrossRef]

Kumar, S.

Lal, V.

M. L. Masanovi�?, V. Lal, J. S. Barton, E. J. Skogen, L. A. Coldren, and D. J. Blumenthal, "Monolithically Integrated Mach-Zehnder Interferometer Wavelength Converter and Widely Tunable Laser in InP," IEEE Photon. Technol. Lett. 15, 1117-1119 (2003).
[CrossRef]

Langrock, C.

Leclerc, D.

B. Dagens, C. Janz, D. Leclerc, V. Verdrager, F. Poingt, I. Guillemot, F. Gaborit, and D. Ottenwälder, "Design Optimization of All-Active Mach-Zehnder Wavelength Converters," IEEE Photon. Technol. Lett. 11, 424-426 (1999).
[CrossRef]

Levi, A. F. J.

S. T. Ho, C. E. Soccolich, W. S. Hobson, A. F. J. Levi, M. N. Islam, and R. E. Slusher, "Large Nonlinear Phase Shifts in Low-Loss AlXGa1-XAs Waveguides Near Half-Gap," Appl. Phys. Lett. 59, 2558-2560 (1991).
[CrossRef]

Masanovi??, M. L.

M. L. Masanovi�?, V. Lal, J. S. Barton, E. J. Skogen, L. A. Coldren, and D. J. Blumenthal, "Monolithically Integrated Mach-Zehnder Interferometer Wavelength Converter and Widely Tunable Laser in InP," IEEE Photon. Technol. Lett. 15, 1117-1119 (2003).
[CrossRef]

Mason, B.

B. Mason, G. Fish, S. DenBaars, and L. Coldren, "Ridge Waveguide Sampled Grating DBR Lasers with 22-nm Quasi-Continuous Tuning Range," IEEE Photon. Technol. Lett. 10, 1211-1213 1998.
[CrossRef]

McGeehan, J. E.

Ottenwälder, D.

B. Dagens, C. Janz, D. Leclerc, V. Verdrager, F. Poingt, I. Guillemot, F. Gaborit, and D. Ottenwälder, "Design Optimization of All-Active Mach-Zehnder Wavelength Converters," IEEE Photon. Technol. Lett. 11, 424-426 (1999).
[CrossRef]

Papadimitriou, G. I.

Papazoglou, C.

Poingt, F.

B. Dagens, C. Janz, D. Leclerc, V. Verdrager, F. Poingt, I. Guillemot, F. Gaborit, and D. Ottenwälder, "Design Optimization of All-Active Mach-Zehnder Wavelength Converters," IEEE Photon. Technol. Lett. 11, 424-426 (1999).
[CrossRef]

Pomportsis, A. S.

Raybon, G.

Y.-H. Kao, T. J. Xia, M. N. Islam, and G. Raybon, "Limitations on ultrafast optical switching in a semiconductor laser amplifier operating at transparency current," J. Appl. Phys. 86, 4740-4747 (1999).
[CrossRef]

Skogen, E. J.

M. L. Masanovi�?, V. Lal, J. S. Barton, E. J. Skogen, L. A. Coldren, and D. J. Blumenthal, "Monolithically Integrated Mach-Zehnder Interferometer Wavelength Converter and Widely Tunable Laser in InP," IEEE Photon. Technol. Lett. 15, 1117-1119 (2003).
[CrossRef]

Slusher, R. E.

S. T. Ho, C. E. Soccolich, W. S. Hobson, A. F. J. Levi, M. N. Islam, and R. E. Slusher, "Large Nonlinear Phase Shifts in Low-Loss AlXGa1-XAs Waveguides Near Half-Gap," Appl. Phys. Lett. 59, 2558-2560 (1991).
[CrossRef]

Soccolich, C. E.

S. T. Ho, C. E. Soccolich, W. S. Hobson, A. F. J. Levi, M. N. Islam, and R. E. Slusher, "Large Nonlinear Phase Shifts in Low-Loss AlXGa1-XAs Waveguides Near Half-Gap," Appl. Phys. Lett. 59, 2558-2560 (1991).
[CrossRef]

Tiberio, R. C.

J. P. Zhang, D. Y. Chu, S. L. Wu, W. G. Bi, R. C. Tiberio, C. W. Tu, and S. T. Ho, "Photonic-Wire Laser," Phys. Rev. Lett. 75, 2678-2681 (1995).
[CrossRef]

R. P. Espindola, M. K. Udo, D. Y. Chu, S. L. Wu, R. C. Tiberio, P. F. Chapman, D. Cohen, and S. T. Ho, "All-Optical Switching with Low-Peak Power in Microfabricated AlGaAs Waveguides," IEEE Photon. Technol. Lett. 7, 641-643 (1995).
[CrossRef]

Tu, C. W.

J. P. Zhang, D. Y. Chu, S. L. Wu, W. G. Bi, R. C. Tiberio, C. W. Tu, and S. T. Ho, "Photonic-Wire Laser," Phys. Rev. Lett. 75, 2678-2681 (1995).
[CrossRef]

Udo, M. K.

R. P. Espindola, M. K. Udo, D. Y. Chu, S. L. Wu, R. C. Tiberio, P. F. Chapman, D. Cohen, and S. T. Ho, "All-Optical Switching with Low-Peak Power in Microfabricated AlGaAs Waveguides," IEEE Photon. Technol. Lett. 7, 641-643 (1995).
[CrossRef]

Verdrager, V.

B. Dagens, C. Janz, D. Leclerc, V. Verdrager, F. Poingt, I. Guillemot, F. Gaborit, and D. Ottenwälder, "Design Optimization of All-Active Mach-Zehnder Wavelength Converters," IEEE Photon. Technol. Lett. 11, 424-426 (1999).
[CrossRef]

Willner, A. E.

Wu, S. L.

J. P. Zhang, D. Y. Chu, S. L. Wu, W. G. Bi, R. C. Tiberio, C. W. Tu, and S. T. Ho, "Photonic-Wire Laser," Phys. Rev. Lett. 75, 2678-2681 (1995).
[CrossRef]

R. P. Espindola, M. K. Udo, D. Y. Chu, S. L. Wu, R. C. Tiberio, P. F. Chapman, D. Cohen, and S. T. Ho, "All-Optical Switching with Low-Peak Power in Microfabricated AlGaAs Waveguides," IEEE Photon. Technol. Lett. 7, 641-643 (1995).
[CrossRef]

Xia, T. J.

Y.-H. Kao, T. J. Xia, M. N. Islam, and G. Raybon, "Limitations on ultrafast optical switching in a semiconductor laser amplifier operating at transparency current," J. Appl. Phys. 86, 4740-4747 (1999).
[CrossRef]

Zhang, J. P.

J. P. Zhang, D. Y. Chu, S. L. Wu, W. G. Bi, R. C. Tiberio, C. W. Tu, and S. T. Ho, "Photonic-Wire Laser," Phys. Rev. Lett. 75, 2678-2681 (1995).
[CrossRef]

Appl. Phys. Lett. (1)

S. T. Ho, C. E. Soccolich, W. S. Hobson, A. F. J. Levi, M. N. Islam, and R. E. Slusher, "Large Nonlinear Phase Shifts in Low-Loss AlXGa1-XAs Waveguides Near Half-Gap," Appl. Phys. Lett. 59, 2558-2560 (1991).
[CrossRef]

IEEE J. Quantum Electron. (1)

S. M. Jensen, "The nonlinear coherent coupler," IEEE J. Quantum Electron. QE-18, 1568-1571 (1982).

IEEE Photon. Technol. Lett. (4)

R. P. Espindola, M. K. Udo, D. Y. Chu, S. L. Wu, R. C. Tiberio, P. F. Chapman, D. Cohen, and S. T. Ho, "All-Optical Switching with Low-Peak Power in Microfabricated AlGaAs Waveguides," IEEE Photon. Technol. Lett. 7, 641-643 (1995).
[CrossRef]

B. Dagens, C. Janz, D. Leclerc, V. Verdrager, F. Poingt, I. Guillemot, F. Gaborit, and D. Ottenwälder, "Design Optimization of All-Active Mach-Zehnder Wavelength Converters," IEEE Photon. Technol. Lett. 11, 424-426 (1999).
[CrossRef]

M. L. Masanovi�?, V. Lal, J. S. Barton, E. J. Skogen, L. A. Coldren, and D. J. Blumenthal, "Monolithically Integrated Mach-Zehnder Interferometer Wavelength Converter and Widely Tunable Laser in InP," IEEE Photon. Technol. Lett. 15, 1117-1119 (2003).
[CrossRef]

B. Mason, G. Fish, S. DenBaars, and L. Coldren, "Ridge Waveguide Sampled Grating DBR Lasers with 22-nm Quasi-Continuous Tuning Range," IEEE Photon. Technol. Lett. 10, 1211-1213 1998.
[CrossRef]

J. Appl. Phys. (1)

Y.-H. Kao, T. J. Xia, M. N. Islam, and G. Raybon, "Limitations on ultrafast optical switching in a semiconductor laser amplifier operating at transparency current," J. Appl. Phys. 86, 4740-4747 (1999).
[CrossRef]

J. Lightwave Technol. (2)

Opt. Express (1)

Phys. Rev. Lett. (1)

J. P. Zhang, D. Y. Chu, S. L. Wu, W. G. Bi, R. C. Tiberio, C. W. Tu, and S. T. Ho, "Photonic-Wire Laser," Phys. Rev. Lett. 75, 2678-2681 (1995).
[CrossRef]

Science (1)

D. Cotter,  et al., "Nonlinear Optics for High-Speed Digital Information Processing," Science 286, 1523-1528 (1999).
[CrossRef]

Other (5)

Y. Huang and S. T. Ho, "A numerically efficient semiconductor model with Fermi-Dirac thermalization dynamics (band-filling) for FDTD simulation of optoelectronic and photonic devices," Proceedings of the 2005 International Conference on Quantum Electronics & Lasers Science, Baltimore, QTuD7 (2005).

Y. Huang, "Simulation and Experimental Realization of Novel High Efficiency All-Optical and Electrically Pumped Nanophotonic Devices," PhD dissertation, Northwestern University, Evanston, IL, USA, 2007.

L. A. Coldren and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits, (Wiley, John & Sons, 1995).

K. Mistry,  et al., "A 45nm Logic Technology with High-k+Metal Gate Transistors, Strained Silicon, 9 Cu Interconnect Layers, 193nm Dry Patterning, and 100% Pb-free Packaging," Electron Devices Meeting, 2007. IEDM 2007.

R. W. Boyd, Nonlinear Optics, (Academic Press, San Diego, 2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics