Abstract

A forward-biased p-i-n diode integrated with a ridge waveguide forms a basic Si attenuator building block. Disruptive power improvement was achieved through a recessed contact configuration by limiting the amount of Si volume for carrier recombination. A device model was established by using realistic surface recombination velocities instead of effective carrier lifetime concept to understand the device physics of the afore-mentioned Si attenuator.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Soref and B. Bennett, "Electrooptical Effects in Silicon," IEEE J. Quantum. Electron. 23, 123 (1987).
    [CrossRef]
  2. A.P. Vonsovici and I.E. Day, "Electro-optic Modulator," UK Patent Application, GB 2372576A, published on Aug 28, 2002.
  3. T. Yin, R. Cohen, M. M. Morse, G. Sarid, Y. Chetrit, D. Rubin, and M. J. Paniccia, "31GHz Ge n-i-p waveguide photodetectors on Silicon-on-Insulator substrate," Opt. Express 15, 13965 (2007).
    [CrossRef] [PubMed]
  4. W. M. J. Green, M. J. Rooks, L. Sekaric, and Y. A. Vlasov, "Ultra-compact, low RF power, 10 Gb/s silicon Mach-Zehnder modulator," Opt. Express 15, 17106 (2007).
    [CrossRef] [PubMed]
  5. F. Gan and F. X. Kärtner, "High-Speed Silicon Electrooptic Modulator Design," IEEE Photon. Technol. Lett. 17, 1007 (2005).
    [CrossRef]
  6. S. Manipatruni, Q. Xu, and M. Lipson, "PINIP based high-speed high-extinction ratio micron-size silicon electro-optic modulator," Opt. Express 15, 13035 (2007).
    [CrossRef] [PubMed]
  7. www.kotura.com.
  8. Atlas User�??s manual, Silvaco Data system, 2007.
  9. D. W. Zheng, B. T. Smith, J. Dong and M. Asghari, "On the effective carrier lifetime of a silicon p-i-n diode optical modulator," Semicond. Sci. Technol. 23, 064006 (2008)
    [CrossRef]
  10. O. Palais and A. Arcari, "Contactless measurement of bulk lifetime and surface recombination velocity in silicon wafers," J. Appl. Phys. 93, 4686 (2003).
    [CrossRef]
  11. S. W. Glunz, A. B. Sproul, W. Warta, and W. Wettling, "Injection-level-dependent recombination velocities at the Si-SiO2 interface for various dopant concentrations," J. Appl. Phys. 75, 1611-1615 (1994).
    [CrossRef]
  12. K. K. Lee, D. R. Lim, and L. C. Kimerling, "Fabrication of ultralow-loss Si/SiO2 waveguides by roughness reduction," Opt. Lett. 26, 1888 (2001).
    [CrossRef]
  13. R. A. Soref and B. R. Bennett, "Kramers-Kronig analysis of electro-optical switching in silicon," Proc. SPIE 704, 32 (1986).
  14. P. D. Hewitt and G. T. Reed, "Improved Modulation Performance of a Silicon p-i-n Device by Trench Isolation," J. of Lightwave Tech. 19, 387 (2001).
    [CrossRef]

2008 (1)

D. W. Zheng, B. T. Smith, J. Dong and M. Asghari, "On the effective carrier lifetime of a silicon p-i-n diode optical modulator," Semicond. Sci. Technol. 23, 064006 (2008)
[CrossRef]

2007 (3)

2005 (1)

F. Gan and F. X. Kärtner, "High-Speed Silicon Electrooptic Modulator Design," IEEE Photon. Technol. Lett. 17, 1007 (2005).
[CrossRef]

2003 (1)

O. Palais and A. Arcari, "Contactless measurement of bulk lifetime and surface recombination velocity in silicon wafers," J. Appl. Phys. 93, 4686 (2003).
[CrossRef]

2001 (2)

K. K. Lee, D. R. Lim, and L. C. Kimerling, "Fabrication of ultralow-loss Si/SiO2 waveguides by roughness reduction," Opt. Lett. 26, 1888 (2001).
[CrossRef]

P. D. Hewitt and G. T. Reed, "Improved Modulation Performance of a Silicon p-i-n Device by Trench Isolation," J. of Lightwave Tech. 19, 387 (2001).
[CrossRef]

1994 (1)

S. W. Glunz, A. B. Sproul, W. Warta, and W. Wettling, "Injection-level-dependent recombination velocities at the Si-SiO2 interface for various dopant concentrations," J. Appl. Phys. 75, 1611-1615 (1994).
[CrossRef]

1987 (1)

R. Soref and B. Bennett, "Electrooptical Effects in Silicon," IEEE J. Quantum. Electron. 23, 123 (1987).
[CrossRef]

1986 (1)

R. A. Soref and B. R. Bennett, "Kramers-Kronig analysis of electro-optical switching in silicon," Proc. SPIE 704, 32 (1986).

Arcari, A.

O. Palais and A. Arcari, "Contactless measurement of bulk lifetime and surface recombination velocity in silicon wafers," J. Appl. Phys. 93, 4686 (2003).
[CrossRef]

Asghari, M.

D. W. Zheng, B. T. Smith, J. Dong and M. Asghari, "On the effective carrier lifetime of a silicon p-i-n diode optical modulator," Semicond. Sci. Technol. 23, 064006 (2008)
[CrossRef]

Bennett, B.

R. Soref and B. Bennett, "Electrooptical Effects in Silicon," IEEE J. Quantum. Electron. 23, 123 (1987).
[CrossRef]

Bennett, B. R.

R. A. Soref and B. R. Bennett, "Kramers-Kronig analysis of electro-optical switching in silicon," Proc. SPIE 704, 32 (1986).

Chetrit, Y.

Cohen, R.

Dong, J.

D. W. Zheng, B. T. Smith, J. Dong and M. Asghari, "On the effective carrier lifetime of a silicon p-i-n diode optical modulator," Semicond. Sci. Technol. 23, 064006 (2008)
[CrossRef]

Gan, F.

F. Gan and F. X. Kärtner, "High-Speed Silicon Electrooptic Modulator Design," IEEE Photon. Technol. Lett. 17, 1007 (2005).
[CrossRef]

Glunz, S. W.

S. W. Glunz, A. B. Sproul, W. Warta, and W. Wettling, "Injection-level-dependent recombination velocities at the Si-SiO2 interface for various dopant concentrations," J. Appl. Phys. 75, 1611-1615 (1994).
[CrossRef]

Green, W. M. J.

Hewitt, P. D.

P. D. Hewitt and G. T. Reed, "Improved Modulation Performance of a Silicon p-i-n Device by Trench Isolation," J. of Lightwave Tech. 19, 387 (2001).
[CrossRef]

Kärtner, F. X.

F. Gan and F. X. Kärtner, "High-Speed Silicon Electrooptic Modulator Design," IEEE Photon. Technol. Lett. 17, 1007 (2005).
[CrossRef]

Kimerling, L. C.

Lee, K. K.

Lim, D. R.

Lipson, M.

Manipatruni, S.

Morse, M. M.

Palais, O.

O. Palais and A. Arcari, "Contactless measurement of bulk lifetime and surface recombination velocity in silicon wafers," J. Appl. Phys. 93, 4686 (2003).
[CrossRef]

Paniccia, M. J.

Reed, G. T.

P. D. Hewitt and G. T. Reed, "Improved Modulation Performance of a Silicon p-i-n Device by Trench Isolation," J. of Lightwave Tech. 19, 387 (2001).
[CrossRef]

Rooks, M. J.

Rubin, D.

Sarid, G.

Sekaric, L.

Smith, B. T.

D. W. Zheng, B. T. Smith, J. Dong and M. Asghari, "On the effective carrier lifetime of a silicon p-i-n diode optical modulator," Semicond. Sci. Technol. 23, 064006 (2008)
[CrossRef]

Soref, R.

R. Soref and B. Bennett, "Electrooptical Effects in Silicon," IEEE J. Quantum. Electron. 23, 123 (1987).
[CrossRef]

Soref, R. A.

R. A. Soref and B. R. Bennett, "Kramers-Kronig analysis of electro-optical switching in silicon," Proc. SPIE 704, 32 (1986).

Sproul, A. B.

S. W. Glunz, A. B. Sproul, W. Warta, and W. Wettling, "Injection-level-dependent recombination velocities at the Si-SiO2 interface for various dopant concentrations," J. Appl. Phys. 75, 1611-1615 (1994).
[CrossRef]

Vlasov, Y. A.

Warta, W.

S. W. Glunz, A. B. Sproul, W. Warta, and W. Wettling, "Injection-level-dependent recombination velocities at the Si-SiO2 interface for various dopant concentrations," J. Appl. Phys. 75, 1611-1615 (1994).
[CrossRef]

Wettling, W.

S. W. Glunz, A. B. Sproul, W. Warta, and W. Wettling, "Injection-level-dependent recombination velocities at the Si-SiO2 interface for various dopant concentrations," J. Appl. Phys. 75, 1611-1615 (1994).
[CrossRef]

Xu, Q.

Yin, T.

Zheng, D. W.

D. W. Zheng, B. T. Smith, J. Dong and M. Asghari, "On the effective carrier lifetime of a silicon p-i-n diode optical modulator," Semicond. Sci. Technol. 23, 064006 (2008)
[CrossRef]

IEEE J. Quantum. Electron. (1)

R. Soref and B. Bennett, "Electrooptical Effects in Silicon," IEEE J. Quantum. Electron. 23, 123 (1987).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

F. Gan and F. X. Kärtner, "High-Speed Silicon Electrooptic Modulator Design," IEEE Photon. Technol. Lett. 17, 1007 (2005).
[CrossRef]

J. Appl. Phys. (2)

O. Palais and A. Arcari, "Contactless measurement of bulk lifetime and surface recombination velocity in silicon wafers," J. Appl. Phys. 93, 4686 (2003).
[CrossRef]

S. W. Glunz, A. B. Sproul, W. Warta, and W. Wettling, "Injection-level-dependent recombination velocities at the Si-SiO2 interface for various dopant concentrations," J. Appl. Phys. 75, 1611-1615 (1994).
[CrossRef]

J. of Lightwave Tech. (1)

P. D. Hewitt and G. T. Reed, "Improved Modulation Performance of a Silicon p-i-n Device by Trench Isolation," J. of Lightwave Tech. 19, 387 (2001).
[CrossRef]

Opt. Express (3)

Opt. Lett. (1)

Proc. SPIE (1)

R. A. Soref and B. R. Bennett, "Kramers-Kronig analysis of electro-optical switching in silicon," Proc. SPIE 704, 32 (1986).

Semicond. Sci. Technol. (1)

D. W. Zheng, B. T. Smith, J. Dong and M. Asghari, "On the effective carrier lifetime of a silicon p-i-n diode optical modulator," Semicond. Sci. Technol. 23, 064006 (2008)
[CrossRef]

Other (3)

A.P. Vonsovici and I.E. Day, "Electro-optic Modulator," UK Patent Application, GB 2372576A, published on Aug 28, 2002.

www.kotura.com.

Atlas User�??s manual, Silvaco Data system, 2007.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (19)

Fig. 1.
Fig. 1.

Cross-sectional diagram of a Si attenuator based upon a forward-biased p-i-n diode

Fig. 2.
Fig. 2.

Energy contour of the TE fundamental mode.

Fig. 3.
Fig. 3.

Attenuation vs drive current curves for a 1 cm-long Si attenuator including different physical mechanisms.

Fig. 4.
Fig. 4.

Electron concentration contour which gives 3dB of attenuation.

Fig. 5.
Fig. 5.

Electron concentration along the dash line A-A′ in Fig.4.

Fig. 6.
Fig. 6.

Cross-sectional view of a power efficient Si attenuator design with Through-SOI- layer doping.

Fig. 7.
Fig. 7.

Electron concentration contour which gives 3dB of attenuation for the case of Through SOI doping.

Fig. 8.
Fig. 8.

Electron concentration along the cutline B-B′ in Fig. 7.

Fig. 9.
Fig. 9.

A Si attenuator with a trench intercepting edge of doping.

Fig. 10.
Fig. 10.

A recessed contact configuration with Si volume minimized.

Fig. 11.
Fig. 11.

displays the electron concentration contour at a bias voltage of 0.796v, corresponding to 3 dB of attenuation for a 1-cm-long device.

Fig. 12.
Fig. 12.

doping profile of a touch-down recessed contact attenuator.

Fig. 13.
Fig. 13.

Electron concentration contour corresponding to 3dB attenuation

Fig. 14.
Fig. 14.

Electron concentration along the cutline C-C’ in Fig. 13.

Fig. 15.
Fig. 15.

Comparison of attenuation efficiency of different Si attenuator structures.

Fig. 16.
Fig. 16.

Comparison of the attenuation efficiency of 3 attenuator structures with different recess thickness.

Fig. 17.
Fig. 17.

Comparison of 0-3 dB transient speed of 3 different device structures, namely baseline (No recess), TDRC with 0.5, and 1.0 µm recess thickness.

Fig. 18.
Fig. 18.

Comparison of I-V curves from different device structures after diodes are turned on.

Fig. 19.
Fig. 19.

Comparison of experimental against modeling results on attenuation vs drive current for a 0.25-cm long 4-µm core VOA.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Attn ( dB ) = 4.3429 * L * ( 8.5 × 10 18 * n + 6.0 × 10 18 * p )

Metrics