Abstract

We characterize silicon waveguide based wavelength converters using a commercial semiconductor optical amplifier (SOA) based wavelength converter as a benchmark. Conversion efficiency as high as -5.5 dB can be achieved using a 2.5 cm long sub-micron silicon-on-insulator rib waveguide. Comparison with the SOA reveals that silicon offers broader conversion bandwidth, higher OSNR, and negligible channel crosstalk. The impact of two-photon absorption and free carrier absorption on the conversion efficiency and the dependence of the efficiency on the rib waveguide dimensions are investigated theoretically. Using a nonlinear index coefficient of 4×10-14 cm2/W for silicon, we obtain good agreement between simulations and measurements.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Pavesi and D. J. Lockwood, Silicon Photonics (Spronger-Verlag, New York, 2004).
  2. G. T. Reed and A. P. Knights, Silicon Photonics: An Introduction (John Wiley, Chichester, UK, 2004).
    [CrossRef]
  3. S. Y. -H. Kuo, H. Rong, V. Sih, S. Xu, M. Paniccia, and O. Cohen, "Demonstration of wavelength conversion at 40 Gb/s data rate in silicon waveguides," Opt. Express 14, 11721 (2006).
    [CrossRef] [PubMed]
  4. H. Rong, Y.-H. Kuo, A. Liu, M. Paniccia, and O. Cohen, "High efficiency wavelength conversion of 10 Gb/s data in silicon waveguides," Opt. Express 14, 1182-1188 (2006).
    [CrossRef] [PubMed]
  5. S. Ayotte, H. Rong, S. Xu, O. Cohen, and M. Paniccia, "Multichannel dispersion compensation using a silicon waveguide-based optical phase conjugator," Opt. Lett. 32, 2393-2395 (2007).
    [CrossRef] [PubMed]
  6. S. Ayotte, S. Xu, H. Rong, and M. J. Paniccia, "Dispersion compensation by optical phase conjugation in silicon waveguide," Electron. Lett. 43, 1037-1039 (2007).
    [CrossRef]
  7. R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, "Signal regeneration using low-power four-wave mixing on silicon chip," Nature Photonics 2, 35-38 (2008).
    [CrossRef]
  8. D. Nesset, T. Kelly, and D. Marcenac, "All-optical wavelength conversion using SOA nonlinearities," IEEE Commun. Mag. 36, 56-61 (1998).
    [CrossRef]
  9. C. Q. Xu, H. Okayama, and M. Kawahara, "1.5 μm band efficient broadband wavelength conversion by difference frequency generation in a periodically domain-inverted LiNbO3 channel waveguide," Appl. Phys. Lett. 63, 3559-3561 (1993).
    [CrossRef]
  10. S. L. Jansen, D. van den Borne, P. M. Krummrich, S. Spalter, G. D. Khoe, and H. de Waardt, "Long-Haul DWDM Transmission Systems Employing Optical Phase Conjugation," IEEE J. Lightwave Technol. 12, 505-520 (2006).
  11. A. Mecozzi, G. Contestabile, L. Graziani, F. Martelli, A. D�??Ottavi, P. Spano, R. Dall�??Ara, and J. Eckner, "Polarization-insensitive four-wave mixing in a semiconductor optical amplifier," Appl. Phys. Lett. 72, 2651-2653 (1998).
    [CrossRef]
  12. Details are available at http://www.photond.com.
  13. N. A. Olsson, "Lightwave systems with optical amplifiers," IEEE J. Lightwave Technol. 7, 1071-1082 (1989).
  14. F. Girardin, J. Eckner, G. Guekos, R. Dall�??Ara, A. Mecozzi, A. D�??Ottavi, F. Martelli, S. Scotti, and P. Spano, "Low-noise and very high efficiency four-wavemixing in 1.5-mm-long semiconductor optical amplifiers," IEEE Photon. Technol. Lett. 9, 746-748 (1997).
    [CrossRef]
  15. T. Akiyama, H. Kuatsuka, N. Hatori, Y. Nakata, H. Ebe, and M. Sugawara, "Symmetric highly efficient (~0 dB) wavelength conversion based on Four-wave mixing in quantum dot optical amplifiers," IEEE Photon. Technol. Lett. 14, 1139-1141 (2002).
    [CrossRef]
  16. F. G. Agis, C. Ware, D. Erasme, R. Ricken, V. Quiring, and W. Sohler, "10-GHz clock recovery using an optoelectronic phase-locked loop based on three-wave mixing in Periodically Poled Lithium Niobate," IEEE Photon. Technol. Lett. 18, 1460-1462 (2006).
    [CrossRef]
  17. G. McConnell and A. I. Ferguson, "Simultaneous stimulated Raman scattering and second harmonic generation in periodically poled lithium niobate," Opt. Express 13, 2099-2104 (2005).
    [CrossRef]
  18. T. Borghesani, "Semiconductor optical amplifiers for advanced optical applications," ICTON, paper Tu.C1.3, (2006).
    [CrossRef] [PubMed]
  19. H. Rong, A. Liu, R. Nicolaescu, M. Paniccia, O. Cohen, and D. Hak, "Raman gain and nonlinear optical absorption measurements in a low-loss silicon waveguide," Appl. Phys. Lett. 85, 2196-2198 (2004).
  20. R. Jones, H. Rong, A. Liu, A. W. Fang, M. J. Paniccia, D. Hak, and O. Cohen, "Net continuous wave optical gain in a low loss silicon-on-insulator waveguide by stimulated Raman scattering," Opt. Express 13, 519-525 (2005).
    [CrossRef] [PubMed]
  21. G. P. Agrawal, Nonlinear Fiber Optics, 3nd edition (Academic Press, New York, 2001).
    [CrossRef] [PubMed]
  22. O. Boyraz, T. Indukuri, and B. Jalali, "Self-phase-modulation induced spectral broadening in silicon waveguides," Opt. Express 12, 829-834 (2004).
    [CrossRef]
  23. H. Fukuda, K. Yamada, T. Shoji, M. Takahashi, T. Tsuchizawa, T. Watanabe, J. Takahashi, and S. Itabashi, "Four-wave mixing in silicon wire waveguides," Opt. Express 13, 4629-4637 (2005).
    [CrossRef] [PubMed]
  24. R. Salem, G. E. Tudury, T. U. Horton, G. M. Carter, and T. E. Murphy, "Polarization-insensitive optical clock recovery at 80 Gb/s using a silicon photodiode," IEEE Photon. Technol. Lett. 17, 1968-1970 (2005).
    [CrossRef]
  25. E. Dulkeith, Y. A. Vlasov, X. Chen, N. C. Panoiu, and R. M. Osgood, "Self-phase-modulation in submicron silicon-on-insulator photonic wires, " Opt. Express 14, 5524-5534 (2006).
    [CrossRef]
  26. A. D. Bristow, N. Rotenberg, and H. M. van Driel, "Two-photon absorption and Kerr coefficients of silicon for 850-2200 nm," Appl. Phys. Lett. 90, 191104 (2007).
    [CrossRef] [PubMed]
  27. Q. Lin, J. Zhang, G. Piredda, R. W. Boyd, P. M. Fauchet, and G. P. Agrawal, "Dispersion of silicon nonlinearities in the near infrared region," Appl. Phys. Lett. 91, 21111 (2007).
    [CrossRef]
  28. M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Shmidt, M. Lipson, and A. L. Gaeta, "Broad-band optical parametric gain on a silicon photonic chip," Nature 441, 960-962 (2006).
    [CrossRef] [PubMed]
  29. J. Hansryd, A. Andrekson, M. Westlund, J. Li, and P. Hedekvist, "Fiber-based optical parametric amplifiers and their applications," IEEE J. Sel. Top. Quantum Electron. 8, 506 (2002).
  30. A. C. Turner, M. A. Foster, A. L. Gaeta, and M. Lipson, "Ultra-low power parametric frequency conversion in a silicon microring resonator," Opt. Express 16, 4881-4887 (2008).

2008

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, "Signal regeneration using low-power four-wave mixing on silicon chip," Nature Photonics 2, 35-38 (2008).
[CrossRef]

A. C. Turner, M. A. Foster, A. L. Gaeta, and M. Lipson, "Ultra-low power parametric frequency conversion in a silicon microring resonator," Opt. Express 16, 4881-4887 (2008).

2007

A. D. Bristow, N. Rotenberg, and H. M. van Driel, "Two-photon absorption and Kerr coefficients of silicon for 850-2200 nm," Appl. Phys. Lett. 90, 191104 (2007).
[CrossRef] [PubMed]

Q. Lin, J. Zhang, G. Piredda, R. W. Boyd, P. M. Fauchet, and G. P. Agrawal, "Dispersion of silicon nonlinearities in the near infrared region," Appl. Phys. Lett. 91, 21111 (2007).
[CrossRef]

S. Ayotte, H. Rong, S. Xu, O. Cohen, and M. Paniccia, "Multichannel dispersion compensation using a silicon waveguide-based optical phase conjugator," Opt. Lett. 32, 2393-2395 (2007).
[CrossRef] [PubMed]

S. Ayotte, S. Xu, H. Rong, and M. J. Paniccia, "Dispersion compensation by optical phase conjugation in silicon waveguide," Electron. Lett. 43, 1037-1039 (2007).
[CrossRef]

2006

S. Y. -H. Kuo, H. Rong, V. Sih, S. Xu, M. Paniccia, and O. Cohen, "Demonstration of wavelength conversion at 40 Gb/s data rate in silicon waveguides," Opt. Express 14, 11721 (2006).
[CrossRef] [PubMed]

H. Rong, Y.-H. Kuo, A. Liu, M. Paniccia, and O. Cohen, "High efficiency wavelength conversion of 10 Gb/s data in silicon waveguides," Opt. Express 14, 1182-1188 (2006).
[CrossRef] [PubMed]

S. L. Jansen, D. van den Borne, P. M. Krummrich, S. Spalter, G. D. Khoe, and H. de Waardt, "Long-Haul DWDM Transmission Systems Employing Optical Phase Conjugation," IEEE J. Lightwave Technol. 12, 505-520 (2006).

F. G. Agis, C. Ware, D. Erasme, R. Ricken, V. Quiring, and W. Sohler, "10-GHz clock recovery using an optoelectronic phase-locked loop based on three-wave mixing in Periodically Poled Lithium Niobate," IEEE Photon. Technol. Lett. 18, 1460-1462 (2006).
[CrossRef]

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Shmidt, M. Lipson, and A. L. Gaeta, "Broad-band optical parametric gain on a silicon photonic chip," Nature 441, 960-962 (2006).
[CrossRef] [PubMed]

E. Dulkeith, Y. A. Vlasov, X. Chen, N. C. Panoiu, and R. M. Osgood, "Self-phase-modulation in submicron silicon-on-insulator photonic wires, " Opt. Express 14, 5524-5534 (2006).
[CrossRef]

2005

2004

O. Boyraz, T. Indukuri, and B. Jalali, "Self-phase-modulation induced spectral broadening in silicon waveguides," Opt. Express 12, 829-834 (2004).
[CrossRef]

H. Rong, A. Liu, R. Nicolaescu, M. Paniccia, O. Cohen, and D. Hak, "Raman gain and nonlinear optical absorption measurements in a low-loss silicon waveguide," Appl. Phys. Lett. 85, 2196-2198 (2004).

2002

T. Akiyama, H. Kuatsuka, N. Hatori, Y. Nakata, H. Ebe, and M. Sugawara, "Symmetric highly efficient (~0 dB) wavelength conversion based on Four-wave mixing in quantum dot optical amplifiers," IEEE Photon. Technol. Lett. 14, 1139-1141 (2002).
[CrossRef]

J. Hansryd, A. Andrekson, M. Westlund, J. Li, and P. Hedekvist, "Fiber-based optical parametric amplifiers and their applications," IEEE J. Sel. Top. Quantum Electron. 8, 506 (2002).

1998

A. Mecozzi, G. Contestabile, L. Graziani, F. Martelli, A. D�??Ottavi, P. Spano, R. Dall�??Ara, and J. Eckner, "Polarization-insensitive four-wave mixing in a semiconductor optical amplifier," Appl. Phys. Lett. 72, 2651-2653 (1998).
[CrossRef]

D. Nesset, T. Kelly, and D. Marcenac, "All-optical wavelength conversion using SOA nonlinearities," IEEE Commun. Mag. 36, 56-61 (1998).
[CrossRef]

1997

F. Girardin, J. Eckner, G. Guekos, R. Dall�??Ara, A. Mecozzi, A. D�??Ottavi, F. Martelli, S. Scotti, and P. Spano, "Low-noise and very high efficiency four-wavemixing in 1.5-mm-long semiconductor optical amplifiers," IEEE Photon. Technol. Lett. 9, 746-748 (1997).
[CrossRef]

1993

C. Q. Xu, H. Okayama, and M. Kawahara, "1.5 μm band efficient broadband wavelength conversion by difference frequency generation in a periodically domain-inverted LiNbO3 channel waveguide," Appl. Phys. Lett. 63, 3559-3561 (1993).
[CrossRef]

1989

N. A. Olsson, "Lightwave systems with optical amplifiers," IEEE J. Lightwave Technol. 7, 1071-1082 (1989).

Agis, F. G.

F. G. Agis, C. Ware, D. Erasme, R. Ricken, V. Quiring, and W. Sohler, "10-GHz clock recovery using an optoelectronic phase-locked loop based on three-wave mixing in Periodically Poled Lithium Niobate," IEEE Photon. Technol. Lett. 18, 1460-1462 (2006).
[CrossRef]

Agrawal, G. P.

Q. Lin, J. Zhang, G. Piredda, R. W. Boyd, P. M. Fauchet, and G. P. Agrawal, "Dispersion of silicon nonlinearities in the near infrared region," Appl. Phys. Lett. 91, 21111 (2007).
[CrossRef]

Akiyama, T.

T. Akiyama, H. Kuatsuka, N. Hatori, Y. Nakata, H. Ebe, and M. Sugawara, "Symmetric highly efficient (~0 dB) wavelength conversion based on Four-wave mixing in quantum dot optical amplifiers," IEEE Photon. Technol. Lett. 14, 1139-1141 (2002).
[CrossRef]

Andrekson, A.

J. Hansryd, A. Andrekson, M. Westlund, J. Li, and P. Hedekvist, "Fiber-based optical parametric amplifiers and their applications," IEEE J. Sel. Top. Quantum Electron. 8, 506 (2002).

Ayotte, S.

S. Ayotte, H. Rong, S. Xu, O. Cohen, and M. Paniccia, "Multichannel dispersion compensation using a silicon waveguide-based optical phase conjugator," Opt. Lett. 32, 2393-2395 (2007).
[CrossRef] [PubMed]

S. Ayotte, S. Xu, H. Rong, and M. J. Paniccia, "Dispersion compensation by optical phase conjugation in silicon waveguide," Electron. Lett. 43, 1037-1039 (2007).
[CrossRef]

Boyd, R. W.

Q. Lin, J. Zhang, G. Piredda, R. W. Boyd, P. M. Fauchet, and G. P. Agrawal, "Dispersion of silicon nonlinearities in the near infrared region," Appl. Phys. Lett. 91, 21111 (2007).
[CrossRef]

Boyraz, O.

Bristow, A. D.

A. D. Bristow, N. Rotenberg, and H. M. van Driel, "Two-photon absorption and Kerr coefficients of silicon for 850-2200 nm," Appl. Phys. Lett. 90, 191104 (2007).
[CrossRef] [PubMed]

Carter, G. M.

R. Salem, G. E. Tudury, T. U. Horton, G. M. Carter, and T. E. Murphy, "Polarization-insensitive optical clock recovery at 80 Gb/s using a silicon photodiode," IEEE Photon. Technol. Lett. 17, 1968-1970 (2005).
[CrossRef]

Chen, X.

Cohen, O.

Contestabile, G.

A. Mecozzi, G. Contestabile, L. Graziani, F. Martelli, A. D�??Ottavi, P. Spano, R. Dall�??Ara, and J. Eckner, "Polarization-insensitive four-wave mixing in a semiconductor optical amplifier," Appl. Phys. Lett. 72, 2651-2653 (1998).
[CrossRef]

D???Ottavi, A.

A. Mecozzi, G. Contestabile, L. Graziani, F. Martelli, A. D�??Ottavi, P. Spano, R. Dall�??Ara, and J. Eckner, "Polarization-insensitive four-wave mixing in a semiconductor optical amplifier," Appl. Phys. Lett. 72, 2651-2653 (1998).
[CrossRef]

F. Girardin, J. Eckner, G. Guekos, R. Dall�??Ara, A. Mecozzi, A. D�??Ottavi, F. Martelli, S. Scotti, and P. Spano, "Low-noise and very high efficiency four-wavemixing in 1.5-mm-long semiconductor optical amplifiers," IEEE Photon. Technol. Lett. 9, 746-748 (1997).
[CrossRef]

Dall???Ara, R.

A. Mecozzi, G. Contestabile, L. Graziani, F. Martelli, A. D�??Ottavi, P. Spano, R. Dall�??Ara, and J. Eckner, "Polarization-insensitive four-wave mixing in a semiconductor optical amplifier," Appl. Phys. Lett. 72, 2651-2653 (1998).
[CrossRef]

F. Girardin, J. Eckner, G. Guekos, R. Dall�??Ara, A. Mecozzi, A. D�??Ottavi, F. Martelli, S. Scotti, and P. Spano, "Low-noise and very high efficiency four-wavemixing in 1.5-mm-long semiconductor optical amplifiers," IEEE Photon. Technol. Lett. 9, 746-748 (1997).
[CrossRef]

de Waardt, H.

S. L. Jansen, D. van den Borne, P. M. Krummrich, S. Spalter, G. D. Khoe, and H. de Waardt, "Long-Haul DWDM Transmission Systems Employing Optical Phase Conjugation," IEEE J. Lightwave Technol. 12, 505-520 (2006).

Dulkeith, E.

Ebe, H.

T. Akiyama, H. Kuatsuka, N. Hatori, Y. Nakata, H. Ebe, and M. Sugawara, "Symmetric highly efficient (~0 dB) wavelength conversion based on Four-wave mixing in quantum dot optical amplifiers," IEEE Photon. Technol. Lett. 14, 1139-1141 (2002).
[CrossRef]

Eckner, J.

A. Mecozzi, G. Contestabile, L. Graziani, F. Martelli, A. D�??Ottavi, P. Spano, R. Dall�??Ara, and J. Eckner, "Polarization-insensitive four-wave mixing in a semiconductor optical amplifier," Appl. Phys. Lett. 72, 2651-2653 (1998).
[CrossRef]

F. Girardin, J. Eckner, G. Guekos, R. Dall�??Ara, A. Mecozzi, A. D�??Ottavi, F. Martelli, S. Scotti, and P. Spano, "Low-noise and very high efficiency four-wavemixing in 1.5-mm-long semiconductor optical amplifiers," IEEE Photon. Technol. Lett. 9, 746-748 (1997).
[CrossRef]

Erasme, D.

F. G. Agis, C. Ware, D. Erasme, R. Ricken, V. Quiring, and W. Sohler, "10-GHz clock recovery using an optoelectronic phase-locked loop based on three-wave mixing in Periodically Poled Lithium Niobate," IEEE Photon. Technol. Lett. 18, 1460-1462 (2006).
[CrossRef]

Fang, A. W.

Fauchet, P. M.

Q. Lin, J. Zhang, G. Piredda, R. W. Boyd, P. M. Fauchet, and G. P. Agrawal, "Dispersion of silicon nonlinearities in the near infrared region," Appl. Phys. Lett. 91, 21111 (2007).
[CrossRef]

Ferguson, A. I.

Foster, M. A.

A. C. Turner, M. A. Foster, A. L. Gaeta, and M. Lipson, "Ultra-low power parametric frequency conversion in a silicon microring resonator," Opt. Express 16, 4881-4887 (2008).

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, "Signal regeneration using low-power four-wave mixing on silicon chip," Nature Photonics 2, 35-38 (2008).
[CrossRef]

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Shmidt, M. Lipson, and A. L. Gaeta, "Broad-band optical parametric gain on a silicon photonic chip," Nature 441, 960-962 (2006).
[CrossRef] [PubMed]

Fukuda, H.

Gaeta, A. L.

A. C. Turner, M. A. Foster, A. L. Gaeta, and M. Lipson, "Ultra-low power parametric frequency conversion in a silicon microring resonator," Opt. Express 16, 4881-4887 (2008).

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, "Signal regeneration using low-power four-wave mixing on silicon chip," Nature Photonics 2, 35-38 (2008).
[CrossRef]

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Shmidt, M. Lipson, and A. L. Gaeta, "Broad-band optical parametric gain on a silicon photonic chip," Nature 441, 960-962 (2006).
[CrossRef] [PubMed]

Geraghty, D. F.

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, "Signal regeneration using low-power four-wave mixing on silicon chip," Nature Photonics 2, 35-38 (2008).
[CrossRef]

Girardin, F.

F. Girardin, J. Eckner, G. Guekos, R. Dall�??Ara, A. Mecozzi, A. D�??Ottavi, F. Martelli, S. Scotti, and P. Spano, "Low-noise and very high efficiency four-wavemixing in 1.5-mm-long semiconductor optical amplifiers," IEEE Photon. Technol. Lett. 9, 746-748 (1997).
[CrossRef]

Graziani, L.

A. Mecozzi, G. Contestabile, L. Graziani, F. Martelli, A. D�??Ottavi, P. Spano, R. Dall�??Ara, and J. Eckner, "Polarization-insensitive four-wave mixing in a semiconductor optical amplifier," Appl. Phys. Lett. 72, 2651-2653 (1998).
[CrossRef]

Guekos, G.

F. Girardin, J. Eckner, G. Guekos, R. Dall�??Ara, A. Mecozzi, A. D�??Ottavi, F. Martelli, S. Scotti, and P. Spano, "Low-noise and very high efficiency four-wavemixing in 1.5-mm-long semiconductor optical amplifiers," IEEE Photon. Technol. Lett. 9, 746-748 (1997).
[CrossRef]

Hak, D.

R. Jones, H. Rong, A. Liu, A. W. Fang, M. J. Paniccia, D. Hak, and O. Cohen, "Net continuous wave optical gain in a low loss silicon-on-insulator waveguide by stimulated Raman scattering," Opt. Express 13, 519-525 (2005).
[CrossRef] [PubMed]

H. Rong, A. Liu, R. Nicolaescu, M. Paniccia, O. Cohen, and D. Hak, "Raman gain and nonlinear optical absorption measurements in a low-loss silicon waveguide," Appl. Phys. Lett. 85, 2196-2198 (2004).

Hansryd, J.

J. Hansryd, A. Andrekson, M. Westlund, J. Li, and P. Hedekvist, "Fiber-based optical parametric amplifiers and their applications," IEEE J. Sel. Top. Quantum Electron. 8, 506 (2002).

Hatori, N.

T. Akiyama, H. Kuatsuka, N. Hatori, Y. Nakata, H. Ebe, and M. Sugawara, "Symmetric highly efficient (~0 dB) wavelength conversion based on Four-wave mixing in quantum dot optical amplifiers," IEEE Photon. Technol. Lett. 14, 1139-1141 (2002).
[CrossRef]

Hedekvist, P.

J. Hansryd, A. Andrekson, M. Westlund, J. Li, and P. Hedekvist, "Fiber-based optical parametric amplifiers and their applications," IEEE J. Sel. Top. Quantum Electron. 8, 506 (2002).

Horton, T. U.

R. Salem, G. E. Tudury, T. U. Horton, G. M. Carter, and T. E. Murphy, "Polarization-insensitive optical clock recovery at 80 Gb/s using a silicon photodiode," IEEE Photon. Technol. Lett. 17, 1968-1970 (2005).
[CrossRef]

Indukuri, T.

Itabashi, S.

Jalali, B.

Jansen, S. L.

S. L. Jansen, D. van den Borne, P. M. Krummrich, S. Spalter, G. D. Khoe, and H. de Waardt, "Long-Haul DWDM Transmission Systems Employing Optical Phase Conjugation," IEEE J. Lightwave Technol. 12, 505-520 (2006).

Jones, R.

Kawahara, M.

C. Q. Xu, H. Okayama, and M. Kawahara, "1.5 μm band efficient broadband wavelength conversion by difference frequency generation in a periodically domain-inverted LiNbO3 channel waveguide," Appl. Phys. Lett. 63, 3559-3561 (1993).
[CrossRef]

Kelly, T.

D. Nesset, T. Kelly, and D. Marcenac, "All-optical wavelength conversion using SOA nonlinearities," IEEE Commun. Mag. 36, 56-61 (1998).
[CrossRef]

Khoe, G. D.

S. L. Jansen, D. van den Borne, P. M. Krummrich, S. Spalter, G. D. Khoe, and H. de Waardt, "Long-Haul DWDM Transmission Systems Employing Optical Phase Conjugation," IEEE J. Lightwave Technol. 12, 505-520 (2006).

Krummrich, P. M.

S. L. Jansen, D. van den Borne, P. M. Krummrich, S. Spalter, G. D. Khoe, and H. de Waardt, "Long-Haul DWDM Transmission Systems Employing Optical Phase Conjugation," IEEE J. Lightwave Technol. 12, 505-520 (2006).

Kuatsuka, H.

T. Akiyama, H. Kuatsuka, N. Hatori, Y. Nakata, H. Ebe, and M. Sugawara, "Symmetric highly efficient (~0 dB) wavelength conversion based on Four-wave mixing in quantum dot optical amplifiers," IEEE Photon. Technol. Lett. 14, 1139-1141 (2002).
[CrossRef]

Kuo, S. Y. -H.

Kuo, Y.-H.

Li, J.

J. Hansryd, A. Andrekson, M. Westlund, J. Li, and P. Hedekvist, "Fiber-based optical parametric amplifiers and their applications," IEEE J. Sel. Top. Quantum Electron. 8, 506 (2002).

Lin, Q.

Q. Lin, J. Zhang, G. Piredda, R. W. Boyd, P. M. Fauchet, and G. P. Agrawal, "Dispersion of silicon nonlinearities in the near infrared region," Appl. Phys. Lett. 91, 21111 (2007).
[CrossRef]

Lipson, M.

A. C. Turner, M. A. Foster, A. L. Gaeta, and M. Lipson, "Ultra-low power parametric frequency conversion in a silicon microring resonator," Opt. Express 16, 4881-4887 (2008).

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, "Signal regeneration using low-power four-wave mixing on silicon chip," Nature Photonics 2, 35-38 (2008).
[CrossRef]

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Shmidt, M. Lipson, and A. L. Gaeta, "Broad-band optical parametric gain on a silicon photonic chip," Nature 441, 960-962 (2006).
[CrossRef] [PubMed]

Liu, A.

Marcenac, D.

D. Nesset, T. Kelly, and D. Marcenac, "All-optical wavelength conversion using SOA nonlinearities," IEEE Commun. Mag. 36, 56-61 (1998).
[CrossRef]

Martelli, F.

A. Mecozzi, G. Contestabile, L. Graziani, F. Martelli, A. D�??Ottavi, P. Spano, R. Dall�??Ara, and J. Eckner, "Polarization-insensitive four-wave mixing in a semiconductor optical amplifier," Appl. Phys. Lett. 72, 2651-2653 (1998).
[CrossRef]

F. Girardin, J. Eckner, G. Guekos, R. Dall�??Ara, A. Mecozzi, A. D�??Ottavi, F. Martelli, S. Scotti, and P. Spano, "Low-noise and very high efficiency four-wavemixing in 1.5-mm-long semiconductor optical amplifiers," IEEE Photon. Technol. Lett. 9, 746-748 (1997).
[CrossRef]

McConnell, G.

Mecozzi, A.

A. Mecozzi, G. Contestabile, L. Graziani, F. Martelli, A. D�??Ottavi, P. Spano, R. Dall�??Ara, and J. Eckner, "Polarization-insensitive four-wave mixing in a semiconductor optical amplifier," Appl. Phys. Lett. 72, 2651-2653 (1998).
[CrossRef]

F. Girardin, J. Eckner, G. Guekos, R. Dall�??Ara, A. Mecozzi, A. D�??Ottavi, F. Martelli, S. Scotti, and P. Spano, "Low-noise and very high efficiency four-wavemixing in 1.5-mm-long semiconductor optical amplifiers," IEEE Photon. Technol. Lett. 9, 746-748 (1997).
[CrossRef]

Murphy, T. E.

R. Salem, G. E. Tudury, T. U. Horton, G. M. Carter, and T. E. Murphy, "Polarization-insensitive optical clock recovery at 80 Gb/s using a silicon photodiode," IEEE Photon. Technol. Lett. 17, 1968-1970 (2005).
[CrossRef]

Nakata, Y.

T. Akiyama, H. Kuatsuka, N. Hatori, Y. Nakata, H. Ebe, and M. Sugawara, "Symmetric highly efficient (~0 dB) wavelength conversion based on Four-wave mixing in quantum dot optical amplifiers," IEEE Photon. Technol. Lett. 14, 1139-1141 (2002).
[CrossRef]

Nesset, D.

D. Nesset, T. Kelly, and D. Marcenac, "All-optical wavelength conversion using SOA nonlinearities," IEEE Commun. Mag. 36, 56-61 (1998).
[CrossRef]

Nicolaescu, R.

H. Rong, A. Liu, R. Nicolaescu, M. Paniccia, O. Cohen, and D. Hak, "Raman gain and nonlinear optical absorption measurements in a low-loss silicon waveguide," Appl. Phys. Lett. 85, 2196-2198 (2004).

Okayama, H.

C. Q. Xu, H. Okayama, and M. Kawahara, "1.5 μm band efficient broadband wavelength conversion by difference frequency generation in a periodically domain-inverted LiNbO3 channel waveguide," Appl. Phys. Lett. 63, 3559-3561 (1993).
[CrossRef]

Olsson, N. A.

N. A. Olsson, "Lightwave systems with optical amplifiers," IEEE J. Lightwave Technol. 7, 1071-1082 (1989).

Osgood, R. M.

Paniccia, M.

Paniccia, M. J.

Panoiu, N. C.

Piredda, G.

Q. Lin, J. Zhang, G. Piredda, R. W. Boyd, P. M. Fauchet, and G. P. Agrawal, "Dispersion of silicon nonlinearities in the near infrared region," Appl. Phys. Lett. 91, 21111 (2007).
[CrossRef]

Quiring, V.

F. G. Agis, C. Ware, D. Erasme, R. Ricken, V. Quiring, and W. Sohler, "10-GHz clock recovery using an optoelectronic phase-locked loop based on three-wave mixing in Periodically Poled Lithium Niobate," IEEE Photon. Technol. Lett. 18, 1460-1462 (2006).
[CrossRef]

Ricken, R.

F. G. Agis, C. Ware, D. Erasme, R. Ricken, V. Quiring, and W. Sohler, "10-GHz clock recovery using an optoelectronic phase-locked loop based on three-wave mixing in Periodically Poled Lithium Niobate," IEEE Photon. Technol. Lett. 18, 1460-1462 (2006).
[CrossRef]

Rong, H.

Rotenberg, N.

A. D. Bristow, N. Rotenberg, and H. M. van Driel, "Two-photon absorption and Kerr coefficients of silicon for 850-2200 nm," Appl. Phys. Lett. 90, 191104 (2007).
[CrossRef] [PubMed]

Salem, R.

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, "Signal regeneration using low-power four-wave mixing on silicon chip," Nature Photonics 2, 35-38 (2008).
[CrossRef]

R. Salem, G. E. Tudury, T. U. Horton, G. M. Carter, and T. E. Murphy, "Polarization-insensitive optical clock recovery at 80 Gb/s using a silicon photodiode," IEEE Photon. Technol. Lett. 17, 1968-1970 (2005).
[CrossRef]

Scotti, S.

F. Girardin, J. Eckner, G. Guekos, R. Dall�??Ara, A. Mecozzi, A. D�??Ottavi, F. Martelli, S. Scotti, and P. Spano, "Low-noise and very high efficiency four-wavemixing in 1.5-mm-long semiconductor optical amplifiers," IEEE Photon. Technol. Lett. 9, 746-748 (1997).
[CrossRef]

Sharping, J. E.

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Shmidt, M. Lipson, and A. L. Gaeta, "Broad-band optical parametric gain on a silicon photonic chip," Nature 441, 960-962 (2006).
[CrossRef] [PubMed]

Shmidt, B. S.

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Shmidt, M. Lipson, and A. L. Gaeta, "Broad-band optical parametric gain on a silicon photonic chip," Nature 441, 960-962 (2006).
[CrossRef] [PubMed]

Shoji, T.

Sih, V.

Sohler, W.

F. G. Agis, C. Ware, D. Erasme, R. Ricken, V. Quiring, and W. Sohler, "10-GHz clock recovery using an optoelectronic phase-locked loop based on three-wave mixing in Periodically Poled Lithium Niobate," IEEE Photon. Technol. Lett. 18, 1460-1462 (2006).
[CrossRef]

Spalter, S.

S. L. Jansen, D. van den Borne, P. M. Krummrich, S. Spalter, G. D. Khoe, and H. de Waardt, "Long-Haul DWDM Transmission Systems Employing Optical Phase Conjugation," IEEE J. Lightwave Technol. 12, 505-520 (2006).

Spano, P.

A. Mecozzi, G. Contestabile, L. Graziani, F. Martelli, A. D�??Ottavi, P. Spano, R. Dall�??Ara, and J. Eckner, "Polarization-insensitive four-wave mixing in a semiconductor optical amplifier," Appl. Phys. Lett. 72, 2651-2653 (1998).
[CrossRef]

F. Girardin, J. Eckner, G. Guekos, R. Dall�??Ara, A. Mecozzi, A. D�??Ottavi, F. Martelli, S. Scotti, and P. Spano, "Low-noise and very high efficiency four-wavemixing in 1.5-mm-long semiconductor optical amplifiers," IEEE Photon. Technol. Lett. 9, 746-748 (1997).
[CrossRef]

Sugawara, M.

T. Akiyama, H. Kuatsuka, N. Hatori, Y. Nakata, H. Ebe, and M. Sugawara, "Symmetric highly efficient (~0 dB) wavelength conversion based on Four-wave mixing in quantum dot optical amplifiers," IEEE Photon. Technol. Lett. 14, 1139-1141 (2002).
[CrossRef]

Takahashi, J.

Takahashi, M.

Tsuchizawa, T.

Tudury, G. E.

R. Salem, G. E. Tudury, T. U. Horton, G. M. Carter, and T. E. Murphy, "Polarization-insensitive optical clock recovery at 80 Gb/s using a silicon photodiode," IEEE Photon. Technol. Lett. 17, 1968-1970 (2005).
[CrossRef]

Turner, A. C.

A. C. Turner, M. A. Foster, A. L. Gaeta, and M. Lipson, "Ultra-low power parametric frequency conversion in a silicon microring resonator," Opt. Express 16, 4881-4887 (2008).

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, "Signal regeneration using low-power four-wave mixing on silicon chip," Nature Photonics 2, 35-38 (2008).
[CrossRef]

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Shmidt, M. Lipson, and A. L. Gaeta, "Broad-band optical parametric gain on a silicon photonic chip," Nature 441, 960-962 (2006).
[CrossRef] [PubMed]

van den Borne, D.

S. L. Jansen, D. van den Borne, P. M. Krummrich, S. Spalter, G. D. Khoe, and H. de Waardt, "Long-Haul DWDM Transmission Systems Employing Optical Phase Conjugation," IEEE J. Lightwave Technol. 12, 505-520 (2006).

van Driel, H. M.

A. D. Bristow, N. Rotenberg, and H. M. van Driel, "Two-photon absorption and Kerr coefficients of silicon for 850-2200 nm," Appl. Phys. Lett. 90, 191104 (2007).
[CrossRef] [PubMed]

Vlasov, Y. A.

Ware, C.

F. G. Agis, C. Ware, D. Erasme, R. Ricken, V. Quiring, and W. Sohler, "10-GHz clock recovery using an optoelectronic phase-locked loop based on three-wave mixing in Periodically Poled Lithium Niobate," IEEE Photon. Technol. Lett. 18, 1460-1462 (2006).
[CrossRef]

Watanabe, T.

Westlund, M.

J. Hansryd, A. Andrekson, M. Westlund, J. Li, and P. Hedekvist, "Fiber-based optical parametric amplifiers and their applications," IEEE J. Sel. Top. Quantum Electron. 8, 506 (2002).

Xu, C. Q.

C. Q. Xu, H. Okayama, and M. Kawahara, "1.5 μm band efficient broadband wavelength conversion by difference frequency generation in a periodically domain-inverted LiNbO3 channel waveguide," Appl. Phys. Lett. 63, 3559-3561 (1993).
[CrossRef]

Xu, S.

Yamada, K.

Zhang, J.

Q. Lin, J. Zhang, G. Piredda, R. W. Boyd, P. M. Fauchet, and G. P. Agrawal, "Dispersion of silicon nonlinearities in the near infrared region," Appl. Phys. Lett. 91, 21111 (2007).
[CrossRef]

Appl. Phys. Lett.

C. Q. Xu, H. Okayama, and M. Kawahara, "1.5 μm band efficient broadband wavelength conversion by difference frequency generation in a periodically domain-inverted LiNbO3 channel waveguide," Appl. Phys. Lett. 63, 3559-3561 (1993).
[CrossRef]

A. Mecozzi, G. Contestabile, L. Graziani, F. Martelli, A. D�??Ottavi, P. Spano, R. Dall�??Ara, and J. Eckner, "Polarization-insensitive four-wave mixing in a semiconductor optical amplifier," Appl. Phys. Lett. 72, 2651-2653 (1998).
[CrossRef]

H. Rong, A. Liu, R. Nicolaescu, M. Paniccia, O. Cohen, and D. Hak, "Raman gain and nonlinear optical absorption measurements in a low-loss silicon waveguide," Appl. Phys. Lett. 85, 2196-2198 (2004).

A. D. Bristow, N. Rotenberg, and H. M. van Driel, "Two-photon absorption and Kerr coefficients of silicon for 850-2200 nm," Appl. Phys. Lett. 90, 191104 (2007).
[CrossRef] [PubMed]

Q. Lin, J. Zhang, G. Piredda, R. W. Boyd, P. M. Fauchet, and G. P. Agrawal, "Dispersion of silicon nonlinearities in the near infrared region," Appl. Phys. Lett. 91, 21111 (2007).
[CrossRef]

Electron. Lett.

S. Ayotte, S. Xu, H. Rong, and M. J. Paniccia, "Dispersion compensation by optical phase conjugation in silicon waveguide," Electron. Lett. 43, 1037-1039 (2007).
[CrossRef]

IEEE Commun. Mag.

D. Nesset, T. Kelly, and D. Marcenac, "All-optical wavelength conversion using SOA nonlinearities," IEEE Commun. Mag. 36, 56-61 (1998).
[CrossRef]

IEEE J. Lightwave Technol.

S. L. Jansen, D. van den Borne, P. M. Krummrich, S. Spalter, G. D. Khoe, and H. de Waardt, "Long-Haul DWDM Transmission Systems Employing Optical Phase Conjugation," IEEE J. Lightwave Technol. 12, 505-520 (2006).

N. A. Olsson, "Lightwave systems with optical amplifiers," IEEE J. Lightwave Technol. 7, 1071-1082 (1989).

IEEE J. Sel. Top. Quantum Electron.

J. Hansryd, A. Andrekson, M. Westlund, J. Li, and P. Hedekvist, "Fiber-based optical parametric amplifiers and their applications," IEEE J. Sel. Top. Quantum Electron. 8, 506 (2002).

IEEE Photon. Technol. Lett.

R. Salem, G. E. Tudury, T. U. Horton, G. M. Carter, and T. E. Murphy, "Polarization-insensitive optical clock recovery at 80 Gb/s using a silicon photodiode," IEEE Photon. Technol. Lett. 17, 1968-1970 (2005).
[CrossRef]

F. Girardin, J. Eckner, G. Guekos, R. Dall�??Ara, A. Mecozzi, A. D�??Ottavi, F. Martelli, S. Scotti, and P. Spano, "Low-noise and very high efficiency four-wavemixing in 1.5-mm-long semiconductor optical amplifiers," IEEE Photon. Technol. Lett. 9, 746-748 (1997).
[CrossRef]

T. Akiyama, H. Kuatsuka, N. Hatori, Y. Nakata, H. Ebe, and M. Sugawara, "Symmetric highly efficient (~0 dB) wavelength conversion based on Four-wave mixing in quantum dot optical amplifiers," IEEE Photon. Technol. Lett. 14, 1139-1141 (2002).
[CrossRef]

F. G. Agis, C. Ware, D. Erasme, R. Ricken, V. Quiring, and W. Sohler, "10-GHz clock recovery using an optoelectronic phase-locked loop based on three-wave mixing in Periodically Poled Lithium Niobate," IEEE Photon. Technol. Lett. 18, 1460-1462 (2006).
[CrossRef]

Nature

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Shmidt, M. Lipson, and A. L. Gaeta, "Broad-band optical parametric gain on a silicon photonic chip," Nature 441, 960-962 (2006).
[CrossRef] [PubMed]

Nature Photonics

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, "Signal regeneration using low-power four-wave mixing on silicon chip," Nature Photonics 2, 35-38 (2008).
[CrossRef]

Opt. Express

S. Y. -H. Kuo, H. Rong, V. Sih, S. Xu, M. Paniccia, and O. Cohen, "Demonstration of wavelength conversion at 40 Gb/s data rate in silicon waveguides," Opt. Express 14, 11721 (2006).
[CrossRef] [PubMed]

H. Rong, Y.-H. Kuo, A. Liu, M. Paniccia, and O. Cohen, "High efficiency wavelength conversion of 10 Gb/s data in silicon waveguides," Opt. Express 14, 1182-1188 (2006).
[CrossRef] [PubMed]

G. McConnell and A. I. Ferguson, "Simultaneous stimulated Raman scattering and second harmonic generation in periodically poled lithium niobate," Opt. Express 13, 2099-2104 (2005).
[CrossRef]

R. Jones, H. Rong, A. Liu, A. W. Fang, M. J. Paniccia, D. Hak, and O. Cohen, "Net continuous wave optical gain in a low loss silicon-on-insulator waveguide by stimulated Raman scattering," Opt. Express 13, 519-525 (2005).
[CrossRef] [PubMed]

A. C. Turner, M. A. Foster, A. L. Gaeta, and M. Lipson, "Ultra-low power parametric frequency conversion in a silicon microring resonator," Opt. Express 16, 4881-4887 (2008).

E. Dulkeith, Y. A. Vlasov, X. Chen, N. C. Panoiu, and R. M. Osgood, "Self-phase-modulation in submicron silicon-on-insulator photonic wires, " Opt. Express 14, 5524-5534 (2006).
[CrossRef]

O. Boyraz, T. Indukuri, and B. Jalali, "Self-phase-modulation induced spectral broadening in silicon waveguides," Opt. Express 12, 829-834 (2004).
[CrossRef]

H. Fukuda, K. Yamada, T. Shoji, M. Takahashi, T. Tsuchizawa, T. Watanabe, J. Takahashi, and S. Itabashi, "Four-wave mixing in silicon wire waveguides," Opt. Express 13, 4629-4637 (2005).
[CrossRef] [PubMed]

Opt. Lett.

Other

L. Pavesi and D. J. Lockwood, Silicon Photonics (Spronger-Verlag, New York, 2004).

G. T. Reed and A. P. Knights, Silicon Photonics: An Introduction (John Wiley, Chichester, UK, 2004).
[CrossRef]

G. P. Agrawal, Nonlinear Fiber Optics, 3nd edition (Academic Press, New York, 2001).
[CrossRef] [PubMed]

Details are available at http://www.photond.com.

T. Borghesani, "Semiconductor optical amplifiers for advanced optical applications," ICTON, paper Tu.C1.3, (2006).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

Left: Scanning electron microscope image of the waveguide used in the experiment. Right: mode effective area versus the waveguide width W. Insets are the TE mode profiles of the waveguides with different widths.

Fig. 2.
Fig. 2.

Experimental setup: A/D: Add/Drop multiplexer; PC: Polarization Controller; Blue triangle represents EDFA.

Fig. 3.
Fig. 3.

(a) Spectrum of the output beam from a 2.5 cm long waveguide. Coupled pump power is 25 dBm, and the conversion efficiency is -5.5 dB. (b) Spectra at output of the SOI device (blue) and the SOA (red) for the 2 active channels case.

Fig. 4.
Fig. 4.

Conversion efficiency as function of the detuning; (▪) for SOA and (∙) for silicon.

Fig. 5.
Fig. 5.

(a) BER using SOA and (b) using silicon: (▪) are for back to back, (∙) are for Ch. 29 when only one channel is active, (▾) and (▴) are for Ch.30 and Ch. 29 respectively when both channels are on.

Fig. 6.
Fig. 6.

Experimental and simulation fits (dashed lines) of (a) the pump transmission for 4 different waveguides. (b) conversion efficiency as a function of the coupled pump power.

Fig. 7.
Fig. 7.

Simulated maximal conversion efficiency as a function of the waveguide width. Coupled pump power is 380 mW. Signal power is 5 mW.

Fig. 8.
Fig. 8.

Efficiency versus the effective carrier lifetime for various pump powers.

Fig. 9.
Fig. 9.

(a) Measured conversion efficiency versus signal and pump detuning for 4 waveguide widths. (b) Measured and simulated (using eq. 4) conversion bandwidth versus waveguide width. Coupled pump power: 380 mW; signal power: 5 mW.

Fig. 10.
Fig. 10.

Group velocity dispersionβ2 versus wavelength and waveguide width. H=340 nm and h=130 nm.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

d A p ( z ) dz = [ α p 2 β TPA 2 A eff ( A p 2 ( z ) + 2 A s 2 ( z ) + 2 A c 2 ( z ) ) σ p 2 β TPA τ 2 h p c A eff 2 ( λ p A p 4 ( z ) + λ s A s 4 ( z ) + λ c A c 4 ( z ) ) ] A p ( z ) +
2 π λ p 2 n 2 A eff A p ( z ) A s ( z ) A c ( z )
d A s ( z ) dz = [ α s 2 β TPA 2 A eff ( 2 A p 2 ( z ) + A s 2 ( z ) + 2 A c 2 ( z ) ) σ s 2 β TPA τ 2 h p c A eff 2 ( λ p A p 4 ( z ) + λ s A s 4 ( z ) + λ c A c 4 ( z ) ) ] A s ( z ) +
2 π λ s 2 n 2 A eff A p 2 ( z ) A c ( z )
d A c ( z ) dz = [ α c 2 β TPA 2 A eff ( 2 A p 2 ( z ) + 2 A p 2 ( z ) + A c 2 ( z ) ) σ c 2 β TPA τ 2 h p c A eff 2 ( λ p A p 4 ( z ) + λ s A s 4 ( z ) + λ c A c 4 ( z ) ) ] A c ( z ) +
2 π λ c 2 n 2 A eff A p 2 ( z ) A s ( z )
η = [ 2 π n 2 P pump λ A eff sinh ( gL ) g ] 2
g = [ 2 π n 2 P pump λ p A eff β 2 ( Δ ω ) 2 ( β 2 ( Δ ω ) 2 2 ) 2 ] 1 2

Metrics