Abstract

We are reporting on a novel self-aligned non-dispersive external cavity laser (ECL) based on thick volume holographic gratings (VHG). The ECL is tunable and operates with single mode and broad area multimode laser diodes. We experimentally demonstrate tunable single frequency operation at 405 nm and 785 nm. The tunable ECL concept is also experimentally tested with high power broad area laser diodes near 780 nm. The passive alignment feature of the cavity is expected to reduce the assembly cost of tunable ECLs.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Lecomte et. al. "Self-aligned extended-cavity diode laser stabilized by the Zeeman effect on the Cesium D2 line," Appl. Opt. 39, 1426-1429 (2000).
    [CrossRef]
  2. P. Zorabedian et. al. "Alignment-stabilized grating-tuned external cavity semi-conductor laser," Opt. Lett. 15, 483-485 (1990).
    [CrossRef] [PubMed]
  3. P. Zorabedian "Characteristics of grating-external-cavity semiconductor laser containing intracavity beam expanders," J. Lightwave Technol. 10, 330-335 (1992).
    [CrossRef]
  4. J. D. Berger et al, "Widely tunable external cavity diode laser using a MEMS electrostatic rotary actuator," in Digest of the LEOS Summer Topical Meetings pp 46-48. (Copper Mountain, CO, USA, 2001).
  5. P. Mills "Single mode operation of 1.55 μm semi-conductor laser using a volume holographic grating," Electron. Lett. 21, 648-649 (1985).
    [CrossRef]
  6. US patent 5,691,989.
  7. B. Volodin et. al "Holographic volume Bragg gratings stabilize laser diode performance," Photonic Spectra 37, 68-70 (2003).
  8. G. Steckman et. al. "Volume holographic grating wavelength stabilized laser diodes," J. Sel. Top. Quantum Electron. 13, 672-678 (2007).
    [CrossRef]
  9. L. Glebov et al "High-brightness narrow-line laser diode source with volume Bragg-grating feedback," Proc. SPIE 5711, 166-76 (2005).
  10. Y. Cunyun "Tunable External Cavity Diode Lasers," (World Scientific Press, 2004), p. 80.
  11. H. Kogelnik, "Coupled waved theory for thick hologram gratings," Bell Syst. Tech. J. 48, 2909-2947 (1969).
  12. F. W. Hersman et al "Optical Pumping System Design for Large Production of Hyperpolarized 129Xe," Phys. Rev. Lett. 96, 1-4 (2006).
  13. S. Ouellette et al "Multi-notch holographic filters for atmospheric lines suppression," Proc. SPIE. 5494, 554-561 (2004).
    [CrossRef]
  14. P. Zorabedian, Tunable lasers handbook, (Academic Press, 1995), Chap. 8.

2006 (1)

F. W. Hersman et al "Optical Pumping System Design for Large Production of Hyperpolarized 129Xe," Phys. Rev. Lett. 96, 1-4 (2006).

1992 (1)

P. Zorabedian "Characteristics of grating-external-cavity semiconductor laser containing intracavity beam expanders," J. Lightwave Technol. 10, 330-335 (1992).
[CrossRef]

Hersman, F. W.

F. W. Hersman et al "Optical Pumping System Design for Large Production of Hyperpolarized 129Xe," Phys. Rev. Lett. 96, 1-4 (2006).

Kogelnik, H.

H. Kogelnik, "Coupled waved theory for thick hologram gratings," Bell Syst. Tech. J. 48, 2909-2947 (1969).

Lecomte, S.

S. Lecomte et. al. "Self-aligned extended-cavity diode laser stabilized by the Zeeman effect on the Cesium D2 line," Appl. Opt. 39, 1426-1429 (2000).
[CrossRef]

Mills, P.

P. Mills "Single mode operation of 1.55 μm semi-conductor laser using a volume holographic grating," Electron. Lett. 21, 648-649 (1985).
[CrossRef]

Steckman, G.

G. Steckman et. al. "Volume holographic grating wavelength stabilized laser diodes," J. Sel. Top. Quantum Electron. 13, 672-678 (2007).
[CrossRef]

Volodin, B.

B. Volodin et. al "Holographic volume Bragg gratings stabilize laser diode performance," Photonic Spectra 37, 68-70 (2003).

Zorabedian, P.

P. Zorabedian "Characteristics of grating-external-cavity semiconductor laser containing intracavity beam expanders," J. Lightwave Technol. 10, 330-335 (1992).
[CrossRef]

P. Zorabedian et. al. "Alignment-stabilized grating-tuned external cavity semi-conductor laser," Opt. Lett. 15, 483-485 (1990).
[CrossRef] [PubMed]

J. Lightwave Technol. (1)

P. Zorabedian "Characteristics of grating-external-cavity semiconductor laser containing intracavity beam expanders," J. Lightwave Technol. 10, 330-335 (1992).
[CrossRef]

Phys. Rev. Lett. (1)

F. W. Hersman et al "Optical Pumping System Design for Large Production of Hyperpolarized 129Xe," Phys. Rev. Lett. 96, 1-4 (2006).

Other (12)

S. Ouellette et al "Multi-notch holographic filters for atmospheric lines suppression," Proc. SPIE. 5494, 554-561 (2004).
[CrossRef]

P. Zorabedian, Tunable lasers handbook, (Academic Press, 1995), Chap. 8.

S. Lecomte et. al. "Self-aligned extended-cavity diode laser stabilized by the Zeeman effect on the Cesium D2 line," Appl. Opt. 39, 1426-1429 (2000).
[CrossRef]

P. Zorabedian et. al. "Alignment-stabilized grating-tuned external cavity semi-conductor laser," Opt. Lett. 15, 483-485 (1990).
[CrossRef] [PubMed]

J. D. Berger et al, "Widely tunable external cavity diode laser using a MEMS electrostatic rotary actuator," in Digest of the LEOS Summer Topical Meetings pp 46-48. (Copper Mountain, CO, USA, 2001).

P. Mills "Single mode operation of 1.55 μm semi-conductor laser using a volume holographic grating," Electron. Lett. 21, 648-649 (1985).
[CrossRef]

US patent 5,691,989.

B. Volodin et. al "Holographic volume Bragg gratings stabilize laser diode performance," Photonic Spectra 37, 68-70 (2003).

G. Steckman et. al. "Volume holographic grating wavelength stabilized laser diodes," J. Sel. Top. Quantum Electron. 13, 672-678 (2007).
[CrossRef]

L. Glebov et al "High-brightness narrow-line laser diode source with volume Bragg-grating feedback," Proc. SPIE 5711, 166-76 (2005).

Y. Cunyun "Tunable External Cavity Diode Lasers," (World Scientific Press, 2004), p. 80.

H. Kogelnik, "Coupled waved theory for thick hologram gratings," Bell Syst. Tech. J. 48, 2909-2947 (1969).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a) Littrow ECL with dispersive grating (b) ECL based on non-dispersive VHGs.

Fig. 2.
Fig. 2.

(a) Self-aligned External Cavity architecture. (b) Single frequency mode spectra of the solitary laser and for two rotation angles of the VHG (c) Picture of the collimated ECL with a VHG mounted on top in a fixed wavelength configuration.

Fig. 3.
Fig. 3.

Self-aligned ECL with high power multimode broad area laser

Fig. 4.
Fig. 4.

(a) Extended wavelength tuning range self-aligned ECL based on multiplexed gratings and LCD tuning control. Experimental demonstration of the concept with a single line VHG and a reflective mirror in place of the LCD (b) angular wavelength tuning of the VHG in the plane of Fig. 4(a) (c) original diode spectrum (d) spectra of the ECL at different VHG angles.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Δ λ Littrow = λ 2 π · D o tan β ,
Δ λ VHG = λ 2 π · L ,

Metrics