Abstract

This paper presents the design and experimental study of a coupled-cavity laser based on the micromachining technology for wide tuning range and improved spectral purity. The core part of this design utilizes a deep-etched movable parabolic mirror to couple two identical Fabry-Pérot chips and thus allows the active adjustment of the cavity gap so as to optimize the mode selection and to increase the tuning range as well. In experiment, the laser achieves the single longitudinal mode output over 51.3 nm and an average side-mode-suppression ratio of 22 dB when the tuning current varies from 5.7–10.8 mA. The measured wavelength tuning speed is 1.2 µs and the single mode output is stable at any wavelength when the tuning current is varied within ±0.06 mA. Compared with the conventional fixed cavity gap coupled-cavity lasers, such design overcomes the phase mismatching and mode instability problems while maintaining the merit of high-speed wavelength tuning using electrical current.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Bruce, "Tunable lasers," IEEE Spectrum 39, 35-39 (2002).
  2. L. A. Coldren, "Monolithic tunable diode lasers," IEEE J. Sel. Top. Quantum Electron. 6, 988-999 (2000).
    [CrossRef]
  3. M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, "A nanoelectromechanical tunable laser," Nat. Photonics 2, 180-184 (2008).
    [CrossRef]
  4. N. P. Caponio, M. Goano, I. Maio, M. Meliga G. P. Bava, G. D. Anis, and I. Montrosset, "Analysis and Design criteria of Three-section DBR tunable lasers," IEEE. J. Sel. Areas Commun. 8, 1203-1213 (1990)).
    [CrossRef]
  5. C. W. Wilmsen, H. Temkin, and L. A. Coldren, Vertical-Cavity Surface emitting lasers: Design, Fabrication, Characterization, and Applications (Cambridge Univ. Press, New York, 1999).
  6. P. M. Anandarajah, R. Maher, and L. P. Barry,  et al., "Characterization of frequency drift of sampled-grating DBR laser module under direct modulation." IEEE Photon. Technol. Lett. 20, 239-241 (2008).
    [CrossRef]
  7. Y. Tohmori, Y. Yoshikuni, and H. Ishii, "Broad-range wavelength-tunable superstructure grating (SSG) DBR lasers," IEEE J. Quantum Electron. 29, 1817-1823 (1993).
    [CrossRef]
  8. M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, "A surface-emitting laser incorporating a high-index-contrast subwavelength grating," Nat. Photonics 1, 119-122 (2007).
    [CrossRef]
  9. M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, "Nano electro-mechanical optoelectronic tunable VCSEL," Opt. Express 15, 1222-1227, (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-3-1222.
    [CrossRef] [PubMed]
  10. L. A. Coldren, B. I. Miller, K. Iga, and J. A. Rentschler, "Monolithic two-section GaInAsP/InP active-optical-resonator devices formed by reactive-ion-etching," Appl. Phys. Lett. 38, 315-317 (1981).
    [CrossRef]
  11. W. T. Tsang, N. A. Olsson, and R. A. Logan, "High-speed direct single-frequency modulation with large tuning rate and frequency excursion in cleaved-coupled-cavity semiconductor lasers," Appl. Phys. Lett. 42, 650-652 (1983).
    [CrossRef]
  12. L. A. Coldren and T. L. Koch, "Analysis and design of coupled-cavity lasers," IEEE J. Quantum Electron. 20, 659-682 (1984).
    [CrossRef]
  13. T. L. koch and L. A. Coldren, "Optimum coupling junction and cavity length for coupled-cavity semiconductor lasers," J. Appl. Phys. 57, 742-754 (1985).
    [CrossRef]
  14. R. J. Lang and A. Yariv, "An exact formulation of coupled-mode theory for coupled-cavity lasers," IEEE J. Quantum Electron. 24, 66-72 (1988).
    [CrossRef]
  15. A. Q. Liu, X. M. Zhang, H. Cai, A. B. Yu, and C. Lu, "Retro-axial VOA using parabolic mirror pair" IEEE Photon. Technol. Lett. 19, 692-694 (2007).
    [CrossRef]
  16. X. M. Zhang, A. Q. Liu, D. Y. Tang and C. Lu, "Discrete wavelength tunable laser using microelectromechanical systems technology," Appl. Phys. Lett. 84, 329-331 (2004)
    [CrossRef]
  17. A. Q. Liu, X. M. Zhang, D. Y. Tang and C. Lu, "Tunable laser using micromachined grating with continuous wavelength tuning," Appl. Phys. Lett. 85, 3684-3686 (2004).
    [CrossRef]
  18. A. Q. Liu and X. M. Zhang, "A review of MEMS external-cavity tunable lasers," J. Micromech. Microengin. 17, R1-R13 (2007).
    [CrossRef]
  19. A. E. Siegman, Lasers (University Science Books, CA, 1986).
  20. Y. Sidorin and D. Howe, "Laser-diode wavelength tuning based on butt coupling into an optical fiber," Opt. Lett. 22, 802-804 (1997).
    [CrossRef] [PubMed]

2008 (2)

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, "A nanoelectromechanical tunable laser," Nat. Photonics 2, 180-184 (2008).
[CrossRef]

P. M. Anandarajah, R. Maher, and L. P. Barry,  et al., "Characterization of frequency drift of sampled-grating DBR laser module under direct modulation." IEEE Photon. Technol. Lett. 20, 239-241 (2008).
[CrossRef]

2007 (4)

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, "A surface-emitting laser incorporating a high-index-contrast subwavelength grating," Nat. Photonics 1, 119-122 (2007).
[CrossRef]

A. Q. Liu, X. M. Zhang, H. Cai, A. B. Yu, and C. Lu, "Retro-axial VOA using parabolic mirror pair" IEEE Photon. Technol. Lett. 19, 692-694 (2007).
[CrossRef]

A. Q. Liu and X. M. Zhang, "A review of MEMS external-cavity tunable lasers," J. Micromech. Microengin. 17, R1-R13 (2007).
[CrossRef]

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, "Nano electro-mechanical optoelectronic tunable VCSEL," Opt. Express 15, 1222-1227, (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-3-1222.
[CrossRef] [PubMed]

2004 (2)

X. M. Zhang, A. Q. Liu, D. Y. Tang and C. Lu, "Discrete wavelength tunable laser using microelectromechanical systems technology," Appl. Phys. Lett. 84, 329-331 (2004)
[CrossRef]

A. Q. Liu, X. M. Zhang, D. Y. Tang and C. Lu, "Tunable laser using micromachined grating with continuous wavelength tuning," Appl. Phys. Lett. 85, 3684-3686 (2004).
[CrossRef]

2002 (1)

E. Bruce, "Tunable lasers," IEEE Spectrum 39, 35-39 (2002).

2000 (1)

L. A. Coldren, "Monolithic tunable diode lasers," IEEE J. Sel. Top. Quantum Electron. 6, 988-999 (2000).
[CrossRef]

1997 (1)

1993 (1)

Y. Tohmori, Y. Yoshikuni, and H. Ishii, "Broad-range wavelength-tunable superstructure grating (SSG) DBR lasers," IEEE J. Quantum Electron. 29, 1817-1823 (1993).
[CrossRef]

1990 (1)

N. P. Caponio, M. Goano, I. Maio, M. Meliga G. P. Bava, G. D. Anis, and I. Montrosset, "Analysis and Design criteria of Three-section DBR tunable lasers," IEEE. J. Sel. Areas Commun. 8, 1203-1213 (1990)).
[CrossRef]

1988 (1)

R. J. Lang and A. Yariv, "An exact formulation of coupled-mode theory for coupled-cavity lasers," IEEE J. Quantum Electron. 24, 66-72 (1988).
[CrossRef]

1985 (1)

T. L. koch and L. A. Coldren, "Optimum coupling junction and cavity length for coupled-cavity semiconductor lasers," J. Appl. Phys. 57, 742-754 (1985).
[CrossRef]

1984 (1)

L. A. Coldren and T. L. Koch, "Analysis and design of coupled-cavity lasers," IEEE J. Quantum Electron. 20, 659-682 (1984).
[CrossRef]

1983 (1)

W. T. Tsang, N. A. Olsson, and R. A. Logan, "High-speed direct single-frequency modulation with large tuning rate and frequency excursion in cleaved-coupled-cavity semiconductor lasers," Appl. Phys. Lett. 42, 650-652 (1983).
[CrossRef]

1981 (1)

L. A. Coldren, B. I. Miller, K. Iga, and J. A. Rentschler, "Monolithic two-section GaInAsP/InP active-optical-resonator devices formed by reactive-ion-etching," Appl. Phys. Lett. 38, 315-317 (1981).
[CrossRef]

Anandarajah, P. M.

P. M. Anandarajah, R. Maher, and L. P. Barry,  et al., "Characterization of frequency drift of sampled-grating DBR laser module under direct modulation." IEEE Photon. Technol. Lett. 20, 239-241 (2008).
[CrossRef]

Barry, L. P.

P. M. Anandarajah, R. Maher, and L. P. Barry,  et al., "Characterization of frequency drift of sampled-grating DBR laser module under direct modulation." IEEE Photon. Technol. Lett. 20, 239-241 (2008).
[CrossRef]

Bruce, E.

E. Bruce, "Tunable lasers," IEEE Spectrum 39, 35-39 (2002).

Cai, H.

A. Q. Liu, X. M. Zhang, H. Cai, A. B. Yu, and C. Lu, "Retro-axial VOA using parabolic mirror pair" IEEE Photon. Technol. Lett. 19, 692-694 (2007).
[CrossRef]

Caponio, N. P.

N. P. Caponio, M. Goano, I. Maio, M. Meliga G. P. Bava, G. D. Anis, and I. Montrosset, "Analysis and Design criteria of Three-section DBR tunable lasers," IEEE. J. Sel. Areas Commun. 8, 1203-1213 (1990)).
[CrossRef]

Chang-Hasnain, C. J.

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, "A nanoelectromechanical tunable laser," Nat. Photonics 2, 180-184 (2008).
[CrossRef]

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, "Nano electro-mechanical optoelectronic tunable VCSEL," Opt. Express 15, 1222-1227, (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-3-1222.
[CrossRef] [PubMed]

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, "A surface-emitting laser incorporating a high-index-contrast subwavelength grating," Nat. Photonics 1, 119-122 (2007).
[CrossRef]

Coldren, L. A.

L. A. Coldren, "Monolithic tunable diode lasers," IEEE J. Sel. Top. Quantum Electron. 6, 988-999 (2000).
[CrossRef]

L. A. Coldren and T. L. Koch, "Analysis and design of coupled-cavity lasers," IEEE J. Quantum Electron. 20, 659-682 (1984).
[CrossRef]

L. A. Coldren, B. I. Miller, K. Iga, and J. A. Rentschler, "Monolithic two-section GaInAsP/InP active-optical-resonator devices formed by reactive-ion-etching," Appl. Phys. Lett. 38, 315-317 (1981).
[CrossRef]

Goano, M.

N. P. Caponio, M. Goano, I. Maio, M. Meliga G. P. Bava, G. D. Anis, and I. Montrosset, "Analysis and Design criteria of Three-section DBR tunable lasers," IEEE. J. Sel. Areas Commun. 8, 1203-1213 (1990)).
[CrossRef]

Howe, D.

Huang, M. C. Y.

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, "A nanoelectromechanical tunable laser," Nat. Photonics 2, 180-184 (2008).
[CrossRef]

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, "Nano electro-mechanical optoelectronic tunable VCSEL," Opt. Express 15, 1222-1227, (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-3-1222.
[CrossRef] [PubMed]

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, "A surface-emitting laser incorporating a high-index-contrast subwavelength grating," Nat. Photonics 1, 119-122 (2007).
[CrossRef]

Iga, K.

L. A. Coldren, B. I. Miller, K. Iga, and J. A. Rentschler, "Monolithic two-section GaInAsP/InP active-optical-resonator devices formed by reactive-ion-etching," Appl. Phys. Lett. 38, 315-317 (1981).
[CrossRef]

Ishii, H.

Y. Tohmori, Y. Yoshikuni, and H. Ishii, "Broad-range wavelength-tunable superstructure grating (SSG) DBR lasers," IEEE J. Quantum Electron. 29, 1817-1823 (1993).
[CrossRef]

Koch, T. L.

L. A. Coldren and T. L. Koch, "Analysis and design of coupled-cavity lasers," IEEE J. Quantum Electron. 20, 659-682 (1984).
[CrossRef]

Lang, R. J.

R. J. Lang and A. Yariv, "An exact formulation of coupled-mode theory for coupled-cavity lasers," IEEE J. Quantum Electron. 24, 66-72 (1988).
[CrossRef]

Liu, A. Q.

A. Q. Liu and X. M. Zhang, "A review of MEMS external-cavity tunable lasers," J. Micromech. Microengin. 17, R1-R13 (2007).
[CrossRef]

A. Q. Liu, X. M. Zhang, H. Cai, A. B. Yu, and C. Lu, "Retro-axial VOA using parabolic mirror pair" IEEE Photon. Technol. Lett. 19, 692-694 (2007).
[CrossRef]

A. Q. Liu, X. M. Zhang, D. Y. Tang and C. Lu, "Tunable laser using micromachined grating with continuous wavelength tuning," Appl. Phys. Lett. 85, 3684-3686 (2004).
[CrossRef]

X. M. Zhang, A. Q. Liu, D. Y. Tang and C. Lu, "Discrete wavelength tunable laser using microelectromechanical systems technology," Appl. Phys. Lett. 84, 329-331 (2004)
[CrossRef]

Logan, R. A.

W. T. Tsang, N. A. Olsson, and R. A. Logan, "High-speed direct single-frequency modulation with large tuning rate and frequency excursion in cleaved-coupled-cavity semiconductor lasers," Appl. Phys. Lett. 42, 650-652 (1983).
[CrossRef]

Lu, C.

A. Q. Liu, X. M. Zhang, H. Cai, A. B. Yu, and C. Lu, "Retro-axial VOA using parabolic mirror pair" IEEE Photon. Technol. Lett. 19, 692-694 (2007).
[CrossRef]

A. Q. Liu, X. M. Zhang, D. Y. Tang and C. Lu, "Tunable laser using micromachined grating with continuous wavelength tuning," Appl. Phys. Lett. 85, 3684-3686 (2004).
[CrossRef]

X. M. Zhang, A. Q. Liu, D. Y. Tang and C. Lu, "Discrete wavelength tunable laser using microelectromechanical systems technology," Appl. Phys. Lett. 84, 329-331 (2004)
[CrossRef]

Maher, R.

P. M. Anandarajah, R. Maher, and L. P. Barry,  et al., "Characterization of frequency drift of sampled-grating DBR laser module under direct modulation." IEEE Photon. Technol. Lett. 20, 239-241 (2008).
[CrossRef]

Maio, I.

N. P. Caponio, M. Goano, I. Maio, M. Meliga G. P. Bava, G. D. Anis, and I. Montrosset, "Analysis and Design criteria of Three-section DBR tunable lasers," IEEE. J. Sel. Areas Commun. 8, 1203-1213 (1990)).
[CrossRef]

Miller, B. I.

L. A. Coldren, B. I. Miller, K. Iga, and J. A. Rentschler, "Monolithic two-section GaInAsP/InP active-optical-resonator devices formed by reactive-ion-etching," Appl. Phys. Lett. 38, 315-317 (1981).
[CrossRef]

Olsson, N. A.

W. T. Tsang, N. A. Olsson, and R. A. Logan, "High-speed direct single-frequency modulation with large tuning rate and frequency excursion in cleaved-coupled-cavity semiconductor lasers," Appl. Phys. Lett. 42, 650-652 (1983).
[CrossRef]

Rentschler, J. A.

L. A. Coldren, B. I. Miller, K. Iga, and J. A. Rentschler, "Monolithic two-section GaInAsP/InP active-optical-resonator devices formed by reactive-ion-etching," Appl. Phys. Lett. 38, 315-317 (1981).
[CrossRef]

Sidorin, Y.

Tang, D. Y.

X. M. Zhang, A. Q. Liu, D. Y. Tang and C. Lu, "Discrete wavelength tunable laser using microelectromechanical systems technology," Appl. Phys. Lett. 84, 329-331 (2004)
[CrossRef]

A. Q. Liu, X. M. Zhang, D. Y. Tang and C. Lu, "Tunable laser using micromachined grating with continuous wavelength tuning," Appl. Phys. Lett. 85, 3684-3686 (2004).
[CrossRef]

Tohmori, Y.

Y. Tohmori, Y. Yoshikuni, and H. Ishii, "Broad-range wavelength-tunable superstructure grating (SSG) DBR lasers," IEEE J. Quantum Electron. 29, 1817-1823 (1993).
[CrossRef]

Tsang, W. T.

W. T. Tsang, N. A. Olsson, and R. A. Logan, "High-speed direct single-frequency modulation with large tuning rate and frequency excursion in cleaved-coupled-cavity semiconductor lasers," Appl. Phys. Lett. 42, 650-652 (1983).
[CrossRef]

Yariv, A.

R. J. Lang and A. Yariv, "An exact formulation of coupled-mode theory for coupled-cavity lasers," IEEE J. Quantum Electron. 24, 66-72 (1988).
[CrossRef]

Yoshikuni, Y.

Y. Tohmori, Y. Yoshikuni, and H. Ishii, "Broad-range wavelength-tunable superstructure grating (SSG) DBR lasers," IEEE J. Quantum Electron. 29, 1817-1823 (1993).
[CrossRef]

Yu, A. B.

A. Q. Liu, X. M. Zhang, H. Cai, A. B. Yu, and C. Lu, "Retro-axial VOA using parabolic mirror pair" IEEE Photon. Technol. Lett. 19, 692-694 (2007).
[CrossRef]

Zhang, X. M.

A. Q. Liu, X. M. Zhang, H. Cai, A. B. Yu, and C. Lu, "Retro-axial VOA using parabolic mirror pair" IEEE Photon. Technol. Lett. 19, 692-694 (2007).
[CrossRef]

A. Q. Liu and X. M. Zhang, "A review of MEMS external-cavity tunable lasers," J. Micromech. Microengin. 17, R1-R13 (2007).
[CrossRef]

X. M. Zhang, A. Q. Liu, D. Y. Tang and C. Lu, "Discrete wavelength tunable laser using microelectromechanical systems technology," Appl. Phys. Lett. 84, 329-331 (2004)
[CrossRef]

A. Q. Liu, X. M. Zhang, D. Y. Tang and C. Lu, "Tunable laser using micromachined grating with continuous wavelength tuning," Appl. Phys. Lett. 85, 3684-3686 (2004).
[CrossRef]

Zhou, Y.

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, "A nanoelectromechanical tunable laser," Nat. Photonics 2, 180-184 (2008).
[CrossRef]

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, "Nano electro-mechanical optoelectronic tunable VCSEL," Opt. Express 15, 1222-1227, (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-3-1222.
[CrossRef] [PubMed]

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, "A surface-emitting laser incorporating a high-index-contrast subwavelength grating," Nat. Photonics 1, 119-122 (2007).
[CrossRef]

Appl. Phys. Lett. (4)

L. A. Coldren, B. I. Miller, K. Iga, and J. A. Rentschler, "Monolithic two-section GaInAsP/InP active-optical-resonator devices formed by reactive-ion-etching," Appl. Phys. Lett. 38, 315-317 (1981).
[CrossRef]

W. T. Tsang, N. A. Olsson, and R. A. Logan, "High-speed direct single-frequency modulation with large tuning rate and frequency excursion in cleaved-coupled-cavity semiconductor lasers," Appl. Phys. Lett. 42, 650-652 (1983).
[CrossRef]

X. M. Zhang, A. Q. Liu, D. Y. Tang and C. Lu, "Discrete wavelength tunable laser using microelectromechanical systems technology," Appl. Phys. Lett. 84, 329-331 (2004)
[CrossRef]

A. Q. Liu, X. M. Zhang, D. Y. Tang and C. Lu, "Tunable laser using micromachined grating with continuous wavelength tuning," Appl. Phys. Lett. 85, 3684-3686 (2004).
[CrossRef]

IEEE J. Quantum Electron. (3)

L. A. Coldren and T. L. Koch, "Analysis and design of coupled-cavity lasers," IEEE J. Quantum Electron. 20, 659-682 (1984).
[CrossRef]

Y. Tohmori, Y. Yoshikuni, and H. Ishii, "Broad-range wavelength-tunable superstructure grating (SSG) DBR lasers," IEEE J. Quantum Electron. 29, 1817-1823 (1993).
[CrossRef]

R. J. Lang and A. Yariv, "An exact formulation of coupled-mode theory for coupled-cavity lasers," IEEE J. Quantum Electron. 24, 66-72 (1988).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

L. A. Coldren, "Monolithic tunable diode lasers," IEEE J. Sel. Top. Quantum Electron. 6, 988-999 (2000).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

P. M. Anandarajah, R. Maher, and L. P. Barry,  et al., "Characterization of frequency drift of sampled-grating DBR laser module under direct modulation." IEEE Photon. Technol. Lett. 20, 239-241 (2008).
[CrossRef]

A. Q. Liu, X. M. Zhang, H. Cai, A. B. Yu, and C. Lu, "Retro-axial VOA using parabolic mirror pair" IEEE Photon. Technol. Lett. 19, 692-694 (2007).
[CrossRef]

IEEE Spectrum (1)

E. Bruce, "Tunable lasers," IEEE Spectrum 39, 35-39 (2002).

J. Appl. Phys. (1)

T. L. koch and L. A. Coldren, "Optimum coupling junction and cavity length for coupled-cavity semiconductor lasers," J. Appl. Phys. 57, 742-754 (1985).
[CrossRef]

J. Micromech. Microengin. (1)

A. Q. Liu and X. M. Zhang, "A review of MEMS external-cavity tunable lasers," J. Micromech. Microengin. 17, R1-R13 (2007).
[CrossRef]

J. Sel. Areas Commun. (1)

N. P. Caponio, M. Goano, I. Maio, M. Meliga G. P. Bava, G. D. Anis, and I. Montrosset, "Analysis and Design criteria of Three-section DBR tunable lasers," IEEE. J. Sel. Areas Commun. 8, 1203-1213 (1990)).
[CrossRef]

Nat. Photonics (2)

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, "A nanoelectromechanical tunable laser," Nat. Photonics 2, 180-184 (2008).
[CrossRef]

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, "A surface-emitting laser incorporating a high-index-contrast subwavelength grating," Nat. Photonics 1, 119-122 (2007).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Other (2)

C. W. Wilmsen, H. Temkin, and L. A. Coldren, Vertical-Cavity Surface emitting lasers: Design, Fabrication, Characterization, and Applications (Cambridge Univ. Press, New York, 1999).

A. E. Siegman, Lasers (University Science Books, CA, 1986).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Schematic diagram of micromachined tunable coupled-cavity laser.

Fig. 2.
Fig. 2.

Mechanism of the wavelength tuning in the coupled-cavity laser, the solid and dashed lines correspond to the different injection current applied to the tuning chip. (a). Possible modes of the lasing chip; (b). possible modes of the tuning chip; (c). coincident modes of the coupled-cavity; (d). laser gain profile; and (e). coupled-cavity laser output spectrum.

Fig. 3.
Fig. 3.

Analytical model of micromachined coupled-cavity laser. (a) Two Fabry-Pérot cavities based coupled-cavity model; and (b) simplified equivalent single-cavity model

Fig. 4.
Fig. 4.

Threshold gain modulation as a function of the wavelength. (a) Threshold gain versus the wavelength; and (b) shift of the threshold gain with the change of effective refractive index by the variation of the tuning current.

Fig. 5.
Fig. 5.

Scanning electron micrograph of the micromachined coupled-cavity laser. (a) Overview of the device; and (b) close-up of the comb-drive microactuator.

Fig. 6.
Fig. 6.

Comparison of the output spectra of the micromachined CCL in different states. (a) Original multi-mode output of the single FP chip; (b) single-mode output spectrum of the micromachined CCL when the cavity gap is optimal (i.e., d=d 0); and (c) multi-mode spectrum of the micromachined CCL chip when the cavity gap is not optimal (dd 0)

Fig. 7.
Fig. 7.

Measured wavelength tunability of the integrated MEMS coupled-cavity laser. (a) Stepwise wavelength tuning from 1540.5 to 1591.8 nm with a tuning step of ~1.3 nm; and (b) wavelength tuning from 1551.2 to 1569.1nm.

Fig. 8.
Fig. 8.

Measured output wavelengths and SMSR as a function of the tuning current.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

λ N = 2 n eff L N
Δ λ 1 = λ 0 2 2 n eff 1 L 1
Δ λ 2 = λ 0 2 2 n eff 2 L eff 2 = λ 0 2 2 ( n eff 2 ' L 2 + n air d )
Λ = Δ λ 1 · Δ λ 2 Δ λ 1 Δ λ 2 = λ 0 2 2 n eff 1 L 1 n eff 2 L eff 2
R eff = r 1 ' ( 1 r 2 r 2 ' g 2 ) g air ( r 2 r 2 ' g 2 ) 1 r 1 ' r 2 g air r 2 r 2 ' g 2 + r 1 ' r 2 ' g air g 2
g ( d , n 2 , λ ) = α m ln R R eff ( d , n 2 , λ ) / L 1

Metrics