Abstract

Light induced waveguides produced by lateral illumination of a photorefractive crystal show a complex dynamic evolution upon removal of the sustaining applied electric field. Using this effect, deflection and modulation of the guided light is realized by taking advantage of the screening and counter-screening of the space charge distribution. The spot separation upon deflection can exceed 10 times the original waveguide width. Numerical simulations of the refractive index evolution and beam propagation show a good agreement with the observations.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Ph. Dittrich, G. Montemezzani, P. Bernasconi, and P. Günter, "Fast, reconfigurable light-induced waveguides," Opt. Lett. 24, 1508-1510 (1999).
    [CrossRef]
  2. F. Juvalta, B. Koziarska-Glinka, M. Jazbinsek, G. Montemezzani, K. Kitamura and P. Günter, "Deep UV light induced, fast reconfigurable and fixed waveguides in Mg doped LiTaO3," Opt. Express 14, 8278-8289 (2006), http://www.opticsexpress.org/abstract.cfm?URI=oe-14-18-8278.
    [CrossRef] [PubMed]
  3. P. Zhang, D. Yang, J. Zhao and M. Wang, "Photo-written waveguides in iron-doped lithium niobate crystal employing binary optical masks," Opt. Eng. 45, 074603 (2006).
    [CrossRef]
  4. M. F. Shih, M. Segev, and G. Salamo, "Circular waveguides induced by two-dimensional bright steady-state photorefractive spatial screening solitons," Opt. Lett. 21, 931-933 (1996).
    [CrossRef] [PubMed]
  5. G. Roosen and G. T. Sincerbox, "Optically generated light beam deflection," J. Appl.Phys. 54, 1628-1630 (1983).
    [CrossRef]
  6. E. Voit, C. Zaldo and P. Günter, "Optically induced variable light deflection by anisotropic Bragg diffraction in photorefractive KNbO3," Opt. Lett. 11, 309-311 (1986).
    [CrossRef] [PubMed]
  7. B. Fischer and S. Sternklar, "Self Bragg matched beam steering using the double color pumped photorefractive oscillator," Appl. Phys. Lett. 51, 74-75 (1987).
    [CrossRef]
  8. M. P. Petrov, A. P. Paugurt, V. V. Bryskin, S. Wevering, B. Andreas and E. Krätzig, "Dynamic light beam deflection caused by space charge waves in photorefractive crystals," Appl. Phys. B 69, 341-344 (1999).
    [CrossRef]
  9. S. Honma, A. Okamoto and Y. Takayama, "Photorefractive duplex two-wave mixing and all-optical deflection switch," J. Opt. Soc. Am. B 18, 974-975 (2001).
    [CrossRef]
  10. D. Kip, M. Wesner, E. Krätzig, V. Shandarov and P. Moretti, "All-optical beam deflection and switching in strontium-barium-niobate waveguides," Appl. Phys. Lett. 72, 1960-1962 (1998).
    [CrossRef]
  11. W. L. She, Z. X. Yu and W. K. Lee, "Laser beam deflection in a photorefractive crystal induced by lateral beam movement," Opt. Commun. 135, 342-346 (1997).
    [CrossRef]
  12. R. Mosimann, D. Haertle, M. Jazbinsek, G. Montemezzani and P. Günter, "Determination of the absorptionconstant in the interband region by photocurrent measurements," Appl. Phys. B 83, 115-119 (2006).
    [CrossRef]
  13. K. Okamoto, Fundamentals of optical waveguides (Academic Press, San Diego, 2000).
  14. G. P. Agrawal, Nonlinear fiber optics, 4th Ed., (Academic Press, Boston, 2007).
  15. A. A. Zozulya and D. Z. Anderson, "Nonstationary self-focusing in photorefractive media," Opt. Lett. 20, 837-839 (1995).
    [CrossRef] [PubMed]
  16. R. Ryf, M. Wiki, G. Montemezzani, P. Günter, and A. A. Zozulya, "Launching one-transverse-dimension photorefractive solitons in KNbO3 crystals," Opt. Commun. 159, 339-348 (1999).
    [CrossRef]
  17. M. Klotz, H. Meng, G. J. Salamo, M. Segev, and S. R. Montgomery, "Fixing the photorefractive soliton," Opt. Lett. 24, 77-79 (1999).
    [CrossRef]
  18. I. Biaggio, "Recording speed and determination of basic materials properties," in: Photorefractive Materials and Their Applications 2: Materials, P.Günter, and J. P. Huignard, eds., (Springer, New York, 2006), pp. 51-81.
  19. N. Fressengeas, J. Maufoy and G. Kugel, "Temporal behavior of bidimensional photorefractive bright spatial solitons," Phys. Rev. E 54, 6866-6875 (1996).
    [CrossRef]
  20. S. Ducharme, J. Feinberg and R. R. Neurgaonkar, "Electrooptic and piezoelectric measurements in photorefractive barium titanate and strontium barium niobate," IEEE J. Quantum Electron. QE-23, 2116-2121 (1987).
    [CrossRef]
  21. G. Montemezzani, P. Rogin, M. Zgonik and P. Günter, "Interband photorefractive effects: Theory and experiments in KNbO3," Phys. Rev. B 49, 2484-2502 (1994).
    [CrossRef]
  22. F. Juvalta, M. Jazbinsek, P. Gunter and K. Kitamura, "Electro-optical properties of near-stoichiometric and congruent lithium tantalate at ultraviolet wavelengths," J. Opt. Soc. Am. B 23, 276-281 (2006). constant in the interband region by photocurrent measurements," Appl. Phys. B 83, 115-119 (2006).
    [CrossRef]

2006

P. Zhang, D. Yang, J. Zhao and M. Wang, "Photo-written waveguides in iron-doped lithium niobate crystal employing binary optical masks," Opt. Eng. 45, 074603 (2006).
[CrossRef]

F. Juvalta, M. Jazbinsek, P. Gunter and K. Kitamura, "Electro-optical properties of near-stoichiometric and congruent lithium tantalate at ultraviolet wavelengths," J. Opt. Soc. Am. B 23, 276-281 (2006). constant in the interband region by photocurrent measurements," Appl. Phys. B 83, 115-119 (2006).
[CrossRef]

F. Juvalta, B. Koziarska-Glinka, M. Jazbinsek, G. Montemezzani, K. Kitamura and P. Günter, "Deep UV light induced, fast reconfigurable and fixed waveguides in Mg doped LiTaO3," Opt. Express 14, 8278-8289 (2006), http://www.opticsexpress.org/abstract.cfm?URI=oe-14-18-8278.
[CrossRef] [PubMed]

2001

1999

M. Klotz, H. Meng, G. J. Salamo, M. Segev, and S. R. Montgomery, "Fixing the photorefractive soliton," Opt. Lett. 24, 77-79 (1999).
[CrossRef]

Ph. Dittrich, G. Montemezzani, P. Bernasconi, and P. Günter, "Fast, reconfigurable light-induced waveguides," Opt. Lett. 24, 1508-1510 (1999).
[CrossRef]

M. P. Petrov, A. P. Paugurt, V. V. Bryskin, S. Wevering, B. Andreas and E. Krätzig, "Dynamic light beam deflection caused by space charge waves in photorefractive crystals," Appl. Phys. B 69, 341-344 (1999).
[CrossRef]

R. Ryf, M. Wiki, G. Montemezzani, P. Günter, and A. A. Zozulya, "Launching one-transverse-dimension photorefractive solitons in KNbO3 crystals," Opt. Commun. 159, 339-348 (1999).
[CrossRef]

1998

D. Kip, M. Wesner, E. Krätzig, V. Shandarov and P. Moretti, "All-optical beam deflection and switching in strontium-barium-niobate waveguides," Appl. Phys. Lett. 72, 1960-1962 (1998).
[CrossRef]

1997

W. L. She, Z. X. Yu and W. K. Lee, "Laser beam deflection in a photorefractive crystal induced by lateral beam movement," Opt. Commun. 135, 342-346 (1997).
[CrossRef]

1996

N. Fressengeas, J. Maufoy and G. Kugel, "Temporal behavior of bidimensional photorefractive bright spatial solitons," Phys. Rev. E 54, 6866-6875 (1996).
[CrossRef]

M. F. Shih, M. Segev, and G. Salamo, "Circular waveguides induced by two-dimensional bright steady-state photorefractive spatial screening solitons," Opt. Lett. 21, 931-933 (1996).
[CrossRef] [PubMed]

1995

1994

G. Montemezzani, P. Rogin, M. Zgonik and P. Günter, "Interband photorefractive effects: Theory and experiments in KNbO3," Phys. Rev. B 49, 2484-2502 (1994).
[CrossRef]

1987

B. Fischer and S. Sternklar, "Self Bragg matched beam steering using the double color pumped photorefractive oscillator," Appl. Phys. Lett. 51, 74-75 (1987).
[CrossRef]

S. Ducharme, J. Feinberg and R. R. Neurgaonkar, "Electrooptic and piezoelectric measurements in photorefractive barium titanate and strontium barium niobate," IEEE J. Quantum Electron. QE-23, 2116-2121 (1987).
[CrossRef]

1986

1983

G. Roosen and G. T. Sincerbox, "Optically generated light beam deflection," J. Appl.Phys. 54, 1628-1630 (1983).
[CrossRef]

Anderson, D. Z.

Andreas, B.

M. P. Petrov, A. P. Paugurt, V. V. Bryskin, S. Wevering, B. Andreas and E. Krätzig, "Dynamic light beam deflection caused by space charge waves in photorefractive crystals," Appl. Phys. B 69, 341-344 (1999).
[CrossRef]

Bernasconi, P.

Bryskin, V. V.

M. P. Petrov, A. P. Paugurt, V. V. Bryskin, S. Wevering, B. Andreas and E. Krätzig, "Dynamic light beam deflection caused by space charge waves in photorefractive crystals," Appl. Phys. B 69, 341-344 (1999).
[CrossRef]

Dittrich, Ph.

Ducharme, S.

S. Ducharme, J. Feinberg and R. R. Neurgaonkar, "Electrooptic and piezoelectric measurements in photorefractive barium titanate and strontium barium niobate," IEEE J. Quantum Electron. QE-23, 2116-2121 (1987).
[CrossRef]

Feinberg, J.

S. Ducharme, J. Feinberg and R. R. Neurgaonkar, "Electrooptic and piezoelectric measurements in photorefractive barium titanate and strontium barium niobate," IEEE J. Quantum Electron. QE-23, 2116-2121 (1987).
[CrossRef]

Fischer, B.

B. Fischer and S. Sternklar, "Self Bragg matched beam steering using the double color pumped photorefractive oscillator," Appl. Phys. Lett. 51, 74-75 (1987).
[CrossRef]

Fressengeas, N.

N. Fressengeas, J. Maufoy and G. Kugel, "Temporal behavior of bidimensional photorefractive bright spatial solitons," Phys. Rev. E 54, 6866-6875 (1996).
[CrossRef]

Gunter, P.

F. Juvalta, M. Jazbinsek, P. Gunter and K. Kitamura, "Electro-optical properties of near-stoichiometric and congruent lithium tantalate at ultraviolet wavelengths," J. Opt. Soc. Am. B 23, 276-281 (2006). constant in the interband region by photocurrent measurements," Appl. Phys. B 83, 115-119 (2006).
[CrossRef]

Günter, P.

Honma, S.

Jazbinsek, M.

F. Juvalta, B. Koziarska-Glinka, M. Jazbinsek, G. Montemezzani, K. Kitamura and P. Günter, "Deep UV light induced, fast reconfigurable and fixed waveguides in Mg doped LiTaO3," Opt. Express 14, 8278-8289 (2006), http://www.opticsexpress.org/abstract.cfm?URI=oe-14-18-8278.
[CrossRef] [PubMed]

F. Juvalta, M. Jazbinsek, P. Gunter and K. Kitamura, "Electro-optical properties of near-stoichiometric and congruent lithium tantalate at ultraviolet wavelengths," J. Opt. Soc. Am. B 23, 276-281 (2006). constant in the interband region by photocurrent measurements," Appl. Phys. B 83, 115-119 (2006).
[CrossRef]

Juvalta, F.

F. Juvalta, M. Jazbinsek, P. Gunter and K. Kitamura, "Electro-optical properties of near-stoichiometric and congruent lithium tantalate at ultraviolet wavelengths," J. Opt. Soc. Am. B 23, 276-281 (2006). constant in the interband region by photocurrent measurements," Appl. Phys. B 83, 115-119 (2006).
[CrossRef]

F. Juvalta, B. Koziarska-Glinka, M. Jazbinsek, G. Montemezzani, K. Kitamura and P. Günter, "Deep UV light induced, fast reconfigurable and fixed waveguides in Mg doped LiTaO3," Opt. Express 14, 8278-8289 (2006), http://www.opticsexpress.org/abstract.cfm?URI=oe-14-18-8278.
[CrossRef] [PubMed]

Kip, D.

D. Kip, M. Wesner, E. Krätzig, V. Shandarov and P. Moretti, "All-optical beam deflection and switching in strontium-barium-niobate waveguides," Appl. Phys. Lett. 72, 1960-1962 (1998).
[CrossRef]

Kitamura, K.

F. Juvalta, B. Koziarska-Glinka, M. Jazbinsek, G. Montemezzani, K. Kitamura and P. Günter, "Deep UV light induced, fast reconfigurable and fixed waveguides in Mg doped LiTaO3," Opt. Express 14, 8278-8289 (2006), http://www.opticsexpress.org/abstract.cfm?URI=oe-14-18-8278.
[CrossRef] [PubMed]

F. Juvalta, M. Jazbinsek, P. Gunter and K. Kitamura, "Electro-optical properties of near-stoichiometric and congruent lithium tantalate at ultraviolet wavelengths," J. Opt. Soc. Am. B 23, 276-281 (2006). constant in the interband region by photocurrent measurements," Appl. Phys. B 83, 115-119 (2006).
[CrossRef]

Klotz, M.

Koziarska-Glinka, B.

Krätzig, E.

M. P. Petrov, A. P. Paugurt, V. V. Bryskin, S. Wevering, B. Andreas and E. Krätzig, "Dynamic light beam deflection caused by space charge waves in photorefractive crystals," Appl. Phys. B 69, 341-344 (1999).
[CrossRef]

D. Kip, M. Wesner, E. Krätzig, V. Shandarov and P. Moretti, "All-optical beam deflection and switching in strontium-barium-niobate waveguides," Appl. Phys. Lett. 72, 1960-1962 (1998).
[CrossRef]

Kugel, G.

N. Fressengeas, J. Maufoy and G. Kugel, "Temporal behavior of bidimensional photorefractive bright spatial solitons," Phys. Rev. E 54, 6866-6875 (1996).
[CrossRef]

Lee, W. K.

W. L. She, Z. X. Yu and W. K. Lee, "Laser beam deflection in a photorefractive crystal induced by lateral beam movement," Opt. Commun. 135, 342-346 (1997).
[CrossRef]

Maufoy, J.

N. Fressengeas, J. Maufoy and G. Kugel, "Temporal behavior of bidimensional photorefractive bright spatial solitons," Phys. Rev. E 54, 6866-6875 (1996).
[CrossRef]

Meng, H.

Montemezzani, G.

F. Juvalta, B. Koziarska-Glinka, M. Jazbinsek, G. Montemezzani, K. Kitamura and P. Günter, "Deep UV light induced, fast reconfigurable and fixed waveguides in Mg doped LiTaO3," Opt. Express 14, 8278-8289 (2006), http://www.opticsexpress.org/abstract.cfm?URI=oe-14-18-8278.
[CrossRef] [PubMed]

Ph. Dittrich, G. Montemezzani, P. Bernasconi, and P. Günter, "Fast, reconfigurable light-induced waveguides," Opt. Lett. 24, 1508-1510 (1999).
[CrossRef]

R. Ryf, M. Wiki, G. Montemezzani, P. Günter, and A. A. Zozulya, "Launching one-transverse-dimension photorefractive solitons in KNbO3 crystals," Opt. Commun. 159, 339-348 (1999).
[CrossRef]

G. Montemezzani, P. Rogin, M. Zgonik and P. Günter, "Interband photorefractive effects: Theory and experiments in KNbO3," Phys. Rev. B 49, 2484-2502 (1994).
[CrossRef]

Montgomery, S. R.

Moretti, P.

D. Kip, M. Wesner, E. Krätzig, V. Shandarov and P. Moretti, "All-optical beam deflection and switching in strontium-barium-niobate waveguides," Appl. Phys. Lett. 72, 1960-1962 (1998).
[CrossRef]

Neurgaonkar, R. R.

S. Ducharme, J. Feinberg and R. R. Neurgaonkar, "Electrooptic and piezoelectric measurements in photorefractive barium titanate and strontium barium niobate," IEEE J. Quantum Electron. QE-23, 2116-2121 (1987).
[CrossRef]

Okamoto, A.

Paugurt, A. P.

M. P. Petrov, A. P. Paugurt, V. V. Bryskin, S. Wevering, B. Andreas and E. Krätzig, "Dynamic light beam deflection caused by space charge waves in photorefractive crystals," Appl. Phys. B 69, 341-344 (1999).
[CrossRef]

Petrov, M. P.

M. P. Petrov, A. P. Paugurt, V. V. Bryskin, S. Wevering, B. Andreas and E. Krätzig, "Dynamic light beam deflection caused by space charge waves in photorefractive crystals," Appl. Phys. B 69, 341-344 (1999).
[CrossRef]

Rogin, P.

G. Montemezzani, P. Rogin, M. Zgonik and P. Günter, "Interband photorefractive effects: Theory and experiments in KNbO3," Phys. Rev. B 49, 2484-2502 (1994).
[CrossRef]

Roosen, G.

G. Roosen and G. T. Sincerbox, "Optically generated light beam deflection," J. Appl.Phys. 54, 1628-1630 (1983).
[CrossRef]

Ryf, R.

R. Ryf, M. Wiki, G. Montemezzani, P. Günter, and A. A. Zozulya, "Launching one-transverse-dimension photorefractive solitons in KNbO3 crystals," Opt. Commun. 159, 339-348 (1999).
[CrossRef]

Salamo, G.

Salamo, G. J.

Segev, M.

Shandarov, V.

D. Kip, M. Wesner, E. Krätzig, V. Shandarov and P. Moretti, "All-optical beam deflection and switching in strontium-barium-niobate waveguides," Appl. Phys. Lett. 72, 1960-1962 (1998).
[CrossRef]

She, W. L.

W. L. She, Z. X. Yu and W. K. Lee, "Laser beam deflection in a photorefractive crystal induced by lateral beam movement," Opt. Commun. 135, 342-346 (1997).
[CrossRef]

Shih, M. F.

Sincerbox, G. T.

G. Roosen and G. T. Sincerbox, "Optically generated light beam deflection," J. Appl.Phys. 54, 1628-1630 (1983).
[CrossRef]

Sternklar, S.

B. Fischer and S. Sternklar, "Self Bragg matched beam steering using the double color pumped photorefractive oscillator," Appl. Phys. Lett. 51, 74-75 (1987).
[CrossRef]

Takayama, Y.

Voit, E.

Wang, M.

P. Zhang, D. Yang, J. Zhao and M. Wang, "Photo-written waveguides in iron-doped lithium niobate crystal employing binary optical masks," Opt. Eng. 45, 074603 (2006).
[CrossRef]

Wesner, M.

D. Kip, M. Wesner, E. Krätzig, V. Shandarov and P. Moretti, "All-optical beam deflection and switching in strontium-barium-niobate waveguides," Appl. Phys. Lett. 72, 1960-1962 (1998).
[CrossRef]

Wevering, S.

M. P. Petrov, A. P. Paugurt, V. V. Bryskin, S. Wevering, B. Andreas and E. Krätzig, "Dynamic light beam deflection caused by space charge waves in photorefractive crystals," Appl. Phys. B 69, 341-344 (1999).
[CrossRef]

Wiki, M.

R. Ryf, M. Wiki, G. Montemezzani, P. Günter, and A. A. Zozulya, "Launching one-transverse-dimension photorefractive solitons in KNbO3 crystals," Opt. Commun. 159, 339-348 (1999).
[CrossRef]

Yang, D.

P. Zhang, D. Yang, J. Zhao and M. Wang, "Photo-written waveguides in iron-doped lithium niobate crystal employing binary optical masks," Opt. Eng. 45, 074603 (2006).
[CrossRef]

Yu, Z. X.

W. L. She, Z. X. Yu and W. K. Lee, "Laser beam deflection in a photorefractive crystal induced by lateral beam movement," Opt. Commun. 135, 342-346 (1997).
[CrossRef]

Zaldo, C.

Zgonik, M.

G. Montemezzani, P. Rogin, M. Zgonik and P. Günter, "Interband photorefractive effects: Theory and experiments in KNbO3," Phys. Rev. B 49, 2484-2502 (1994).
[CrossRef]

Zhang, P.

P. Zhang, D. Yang, J. Zhao and M. Wang, "Photo-written waveguides in iron-doped lithium niobate crystal employing binary optical masks," Opt. Eng. 45, 074603 (2006).
[CrossRef]

Zhao, J.

P. Zhang, D. Yang, J. Zhao and M. Wang, "Photo-written waveguides in iron-doped lithium niobate crystal employing binary optical masks," Opt. Eng. 45, 074603 (2006).
[CrossRef]

Zozulya, A. A.

R. Ryf, M. Wiki, G. Montemezzani, P. Günter, and A. A. Zozulya, "Launching one-transverse-dimension photorefractive solitons in KNbO3 crystals," Opt. Commun. 159, 339-348 (1999).
[CrossRef]

A. A. Zozulya and D. Z. Anderson, "Nonstationary self-focusing in photorefractive media," Opt. Lett. 20, 837-839 (1995).
[CrossRef] [PubMed]

Appl. Phys. B

M. P. Petrov, A. P. Paugurt, V. V. Bryskin, S. Wevering, B. Andreas and E. Krätzig, "Dynamic light beam deflection caused by space charge waves in photorefractive crystals," Appl. Phys. B 69, 341-344 (1999).
[CrossRef]

F. Juvalta, M. Jazbinsek, P. Gunter and K. Kitamura, "Electro-optical properties of near-stoichiometric and congruent lithium tantalate at ultraviolet wavelengths," J. Opt. Soc. Am. B 23, 276-281 (2006). constant in the interband region by photocurrent measurements," Appl. Phys. B 83, 115-119 (2006).
[CrossRef]

Appl. Phys. Lett.

D. Kip, M. Wesner, E. Krätzig, V. Shandarov and P. Moretti, "All-optical beam deflection and switching in strontium-barium-niobate waveguides," Appl. Phys. Lett. 72, 1960-1962 (1998).
[CrossRef]

B. Fischer and S. Sternklar, "Self Bragg matched beam steering using the double color pumped photorefractive oscillator," Appl. Phys. Lett. 51, 74-75 (1987).
[CrossRef]

IEEE J. Quantum Electron.

S. Ducharme, J. Feinberg and R. R. Neurgaonkar, "Electrooptic and piezoelectric measurements in photorefractive barium titanate and strontium barium niobate," IEEE J. Quantum Electron. QE-23, 2116-2121 (1987).
[CrossRef]

J. Appl.Phys.

G. Roosen and G. T. Sincerbox, "Optically generated light beam deflection," J. Appl.Phys. 54, 1628-1630 (1983).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Commun.

R. Ryf, M. Wiki, G. Montemezzani, P. Günter, and A. A. Zozulya, "Launching one-transverse-dimension photorefractive solitons in KNbO3 crystals," Opt. Commun. 159, 339-348 (1999).
[CrossRef]

W. L. She, Z. X. Yu and W. K. Lee, "Laser beam deflection in a photorefractive crystal induced by lateral beam movement," Opt. Commun. 135, 342-346 (1997).
[CrossRef]

Opt. Eng.

P. Zhang, D. Yang, J. Zhao and M. Wang, "Photo-written waveguides in iron-doped lithium niobate crystal employing binary optical masks," Opt. Eng. 45, 074603 (2006).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. B

G. Montemezzani, P. Rogin, M. Zgonik and P. Günter, "Interband photorefractive effects: Theory and experiments in KNbO3," Phys. Rev. B 49, 2484-2502 (1994).
[CrossRef]

Phys. Rev. E

N. Fressengeas, J. Maufoy and G. Kugel, "Temporal behavior of bidimensional photorefractive bright spatial solitons," Phys. Rev. E 54, 6866-6875 (1996).
[CrossRef]

Other

R. Mosimann, D. Haertle, M. Jazbinsek, G. Montemezzani and P. Günter, "Determination of the absorptionconstant in the interband region by photocurrent measurements," Appl. Phys. B 83, 115-119 (2006).
[CrossRef]

K. Okamoto, Fundamentals of optical waveguides (Academic Press, San Diego, 2000).

G. P. Agrawal, Nonlinear fiber optics, 4th Ed., (Academic Press, Boston, 2007).

I. Biaggio, "Recording speed and determination of basic materials properties," in: Photorefractive Materials and Their Applications 2: Materials, P.Günter, and J. P. Huignard, eds., (Springer, New York, 2006), pp. 51-81.

Supplementary Material (3)

» Media 1: MOV (1222 KB)     
» Media 2: MOV (1569 KB)     
» Media 3: MOV (1251 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

Simplified scheme of the experimental set-up. L1, L2: spherical lenses; CL1, CL2: cylindrical lenses; ND: neutral density filter. A voltage U is applied to the photorefractive crystal.

Fig. 2.
Fig. 2.

(Media 1) Waveguide splitting and relaxation upon removal of the applied electric field (E 0=4 kV/cm) in the SBN crystal. The initial photoinduced waveguide was recorded to steady state using 514 nm light. The local intensity was 125 mW/cm2 in the 25 µm wide imaged slit on the crystal lateral surface. The lateral illumination is maintained after removal of the applied field. The movie is in real time, the width of the imaged area is 410 µm.

Fig. 3.
Fig. 3.

Position of the “center of mass” of the expelled light lobes as a function of time. The initial photoinduced waveguides were recorded in SBN during 10 seconds to steady-state. The local intensity was 375 mW/cm2 in the 25 µm wide imaged slit. The curves differ by the field E 0 applied during waveguide recording and removed at time t=0. Red solid line: E 0=4 kV/cm, blue dotted line: E 0=2.4 kV/cm, green dashed line: E 0=1.6 kV/cm.

Fig. 4.
Fig. 4.

Snapshot of waveguide splitting observed at the output surface of a LiTaO3 crystal for the moment of maximum lobe separation. The electric field applied during recording of the primary waveguide was 5.5 kV/cm and the primary waveguide width was 20 µm. The UV control illumination comes from the top.

Fig. 5.
Fig. 5.

(a) Light intensity I=I 1+I 2 for the parameters 2a=25µm, d 1=10µm, d2=9.5 mm, n=2.33, α=0.26 cm-1; (b) Refractive index distribution just after removal of the applied field for I D =0.005 (red solid curve), I D =0.1 (blue dotted curve), and I D =0.0001 (green dashed curve).

Fig. 6.
Fig. 6.

(Media 2) Simulated time evolution of the waveguide splitting phenomenon after removing the sustaining applied electric field at the time t=0. The left-hand side shows the propagation of the probe beam in the SBN crystal containing the splitted photoinduced waveguide with the given color scale for its intensity. The top-right diagram shows the evolution of the refractive index profile according to Eq. (2). The bottom-right diagram shows the profile of the probe beam intensity on the output surface of the crystal. Parameters: Δn 0=3.5×10-4, I D =0.005, input waist of probe beam=18 µm. All other parameters as in Fig. 5. The time is normalized to the photorefractive response time. The temporal distance between frames is not constant.

Fig. 7.
Fig. 7.

Initial splitting of the waveguide at the normalized time t=0.3 for three values of Δn 0. (a) Δn 0=6×10-4 (E 0 ≈4 kV/cm); (b) Δn 0=3.5×10-4 (E 0 ≈2.4 kV/cm); Δn 0=2.4×10-4 (E 0 ≈1.6 kV/cm). The other parameters are as in Fig. 6.

Fig. 8.
Fig. 8.

Model calculations for the case of LiTaO3 using Eqs. (3) and (5) with the parameters Δn 0=8.8×10-5, 2a=20µm, n=2.72 and a probe beam input waist of 15 µm. (a) Probe beam propagation in the primary waveguide widened to steady-state at t=0 for I D =10-5 and d 1=45 µm. (b) Same as (a) but for the time t=5 after splitting of the waveguide. (c) and (d) Refractive index profiles for case (a) and (b), respectively. (e) Output probe beam intensity profile at three depths for t=5. The central diagram corresponds to the case (b). The upper diagram to a position 35 µm closer to the surface (I D =8.9×10-7, d 1=10 µm). The lower diagram to a position 35 µm deeper (I D =1.1×10-4, d 1=80 µm). The dashed green line is a guide for the eye evidencing the relation with the spot obliquity of Fig. 4.

Fig. 9.
Fig. 9.

(Media 3) Modulation of the output position of the probe beam under a periodic electric field. A triangularly shaped electric field with amplitude 2 kV/cm and frequency 1 Hz is applied to the crystals. The resulting waveguide-antiwaveguide alternation results in the periodically varying output position of the probe wave. The two frames shown above are separated by half a period, the corresponding displacement between the two positions is about 90 µm. SBN crystal, controlling wave intensity=0.4 W/cm2. The width of the imaged area in the multimedia file is 480 µm.

Fig. 10.
Fig. 10.

Waveguide modulation dynamics for LiTaO3 as measured by transmission of the probe wave through a pinhole (red thick line). The modulated applied field is shown by the thin blue line. a) 0.3 Hz modulation, b) 5 Hz, c) 10 Hz.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Δ n ( x ) = Δ n 0 I ( x ) I ( x ) + I D ,
Δ n ( x , t ) = Δ n 0 I ( x ) I ( x ) + I D exp [ t ( I ( x ) + I D ) ] .
I 1 ( x ) = 1 2 ( [ C ( X 2 ) C ( X 1 ) ] 2 + [ S ( X 2 ) S ( X 1 ) ] 2 ) ,
K = ( 1 n 1 + n ) 2 exp ( α d 2 ) ,
Δ n ( x , t ) = Δ n 0 I ( x ) I ( x ) + I D exp [ t ( I ( x ) + I D ) ] .

Metrics