R. L. Chern, C. C. Chang, and C. C. Chang, “Analysis of surface plasmon modes and band structures for plasmonic crystals in one and two dimensions,” Phys. Rev. E 73, 36,605 (2006).

[CrossRef]

C. Rockstuhl, U. Peschel, and F. Lederer, “Correlation between single-cylinder properties and bandgap formation in photonic structures,” Opt. Lett. 31, 1741–1743 (2006).

[CrossRef]
[PubMed]

J. Plouin, E. Richalot, O. Picon, M. Carras, and A. de Rossi, “Photonic band structures for bi-dimensional metallic mesa gratings,” Opt. Express 14, 9982–9987 (2006).

[CrossRef]
[PubMed]

R. L. Chern, C. C. Chang, C. C. Chang, and R. R. Hwang, “Two Classes of Photonic Crystals with Simultaneous Band Gaps,” Jpn. J. Appl. Phys. 43, 3484–3490 (2004).

[CrossRef]

J. Y. Ye, S. Matsuo, V. Mizeikis, and H. Misawa, “Silicon-based honeycomb photonic crystal structures with complete photonic band gap at 1.5 mm wavelength,” J. Appl. Phys. 96, 6934 (2004).

[CrossRef]

R. L. Chern, C. C. Chang, C. C. Chang, and R. R. Hwang, “Numerical Study of Three-Dimensional Photonic Crystals with Large Band Gaps,” J. Phys. Soc. Jpn. 73, 727–737 (2004).

[CrossRef]

C. C. Chang, J. Y. Chi, R. L. Chern, C. C. Chang, C. H. Lin, and C. O. Chang, “Effect of the inclusion of small metallic components in a two-dimensional dielectric photonic crystal with large full band gap,” Phys. Rev. B 70, 75,108 (2004).

[CrossRef]

R. L. Chern, C. C. Chang, C. C. Chang, and R. Hwang, “Large full band gaps for photonic crystals in two dimensions computed by an inverse method with multigrid acceleration,” Phys. Rev. E 68, 26,704 (2003).

[CrossRef]

M. Straub, M. Ventura, and M. Gu, “Multiple Higher-Order Stop Gaps in Infrared Polymer Photonic Crystals,” Phys. Rev. Lett. 91, 43,901 (2003).

[CrossRef]

L. Shen, Z. Ye, and S. He, “Design of two-dimensional photonic crystals with large absolute band gaps using a genetic algorithm,” Phys. Rev. B 68, 35,109 (2003).

[CrossRef]

J. Y. Ye, V. Mizeikis, Y. Xu, S. Matsuo, and H. Misawa, “Fabrication and optical characteristics of silicon-based two-dimensional photonic crystals with honeycomb lattice,” Opt. Commun. 211, 205–213 (2002).

[CrossRef]

L. Shen, S. He, and S. Xiao, “Large absolute band gaps in two-dimensional photonic crystals formed by large dielectric pixels,” Phys. Rev. B 66, 165,315 (2002).

[CrossRef]

E. Lidorikis, M. M. Sigalas, E. N. Economou, and C. M. Soukoulis, “Gap deformation and classical wave localization in disordered two-dimensional photonic-band-gap materials,” Phys. Rev. B 61, 458–13,464 (2000).

[CrossRef]

M. G. Salt and W. L. Barnes, “Flat photonic bands in guided modes of textured metallic microcavities,” Phys. Rev. B 61(16), 11,125–11,135 (2000).

A. Moroz and A. Tip, “Resonance-induced effects in photonic crystals,” J. Phys. Condens.Matter 11, 2503–2512 (1999).

[CrossRef]

J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals: putting a new twist on light,” Nature 386, 143–149 (1997).

[CrossRef]

C. S. Kee, J. E. Kim, and H. Y. Park, “Absolute photonic band gap in a two-dimensional square lattice of square dielectric rods in air,” Phys, Rev, E 56, 6291–6293 (1997).

[CrossRef]

M. M. Sigalas, C. M. Soukoulis, C. T. Chan, and D. Turner, “Localization of electromagnetic waves in two-dimensional disordered systems,” Phys. Rev. B 53, 8340–8348 (1996).

[CrossRef]

D. Cassagne, C. Jouanin, and D. Bertho, “Hexagonal photonic-band-gap structures,” Phys. Rev. B 53, 7134–7142 (1996).

[CrossRef]

K. Ohtaka and Y. Tanabe, “Photonic Band Using Vector Spherical Waves. I. Various Properties of Bloch Electric Fields and Heavy Photons,” J. Phys. Soc. Jpn. 65, 2265–2275 (1996).

[CrossRef]

R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, “Existence of a photonic band gap in two dimensions,” Appl. Phys. Lett. 61, 495–497 (1992).

[CrossRef]

P. R. Villeneuve and M. Piché, “Photonic band gaps in two-dimensional square and hexagonal lattices,” Phys. Rev. B 46, 4969–4972 (1992).

[CrossRef]

E. Yablonovitch, “Inhibited Spontaneous Emission in Solid-State Physics and Electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).

[CrossRef]
[PubMed]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).

[CrossRef]
[PubMed]

R. C. Kell, A. C. Greenham, and G. C. E. Olds, “High-Permittivity Temperature-Stable Ceramic Dielectrics with Low Microwave Loss,” J. Am. Ceram. Soc. 56, 352–354 (1973).

[CrossRef]

C. A. Balanis, Advanced Enginerring Electromechanics (John Wiley & Sons, New York, 1989).

M. G. Salt and W. L. Barnes, “Flat photonic bands in guided modes of textured metallic microcavities,” Phys. Rev. B 61(16), 11,125–11,135 (2000).

D. Cassagne, C. Jouanin, and D. Bertho, “Hexagonal photonic-band-gap structures,” Phys. Rev. B 53, 7134–7142 (1996).

[CrossRef]

C. F. Bohren and D. R. Huffman, Absorption and scattering of light by small particles (JohnWiley & Sons, New York, 1983).

R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, “Existence of a photonic band gap in two dimensions,” Appl. Phys. Lett. 61, 495–497 (1992).

[CrossRef]

R. D. Meade, A. M. Rappe, K. D. Brommer, and J. D. Joannopoulos, “Nature of the photonic band gap: some insights from a field analysis,” J. Opt. Soc. Am. B 10, 328–332 (1993).

D. Cassagne, C. Jouanin, and D. Bertho, “Hexagonal photonic-band-gap structures,” Phys. Rev. B 53, 7134–7142 (1996).

[CrossRef]

M. M. Sigalas, C. M. Soukoulis, C. T. Chan, and D. Turner, “Localization of electromagnetic waves in two-dimensional disordered systems,” Phys. Rev. B 53, 8340–8348 (1996).

[CrossRef]

R. L. Chern, C. C. Chang, and C. C. Chang, “Analysis of surface plasmon modes and band structures for plasmonic crystals in one and two dimensions,” Phys. Rev. E 73, 36,605 (2006).

[CrossRef]

R. L. Chern, C. C. Chang, and C. C. Chang, “Analysis of surface plasmon modes and band structures for plasmonic crystals in one and two dimensions,” Phys. Rev. E 73, 36,605 (2006).

[CrossRef]

H. K. Fu, Y. F. Chen, R. L. Chern, and C. C. Chang, “Connected hexagonal photonic crystals with largest full band gap,” Opt. Express 13, 7854–7860 (2005).

[CrossRef]
[PubMed]

R. L. Chern, C. C. Chang, C. C. Chang, and R. R. Hwang, “Two Classes of Photonic Crystals with Simultaneous Band Gaps,” Jpn. J. Appl. Phys. 43, 3484–3490 (2004).

[CrossRef]

R. L. Chern, C. C. Chang, C. C. Chang, and R. R. Hwang, “Two Classes of Photonic Crystals with Simultaneous Band Gaps,” Jpn. J. Appl. Phys. 43, 3484–3490 (2004).

[CrossRef]

C. C. Chang, J. Y. Chi, R. L. Chern, C. C. Chang, C. H. Lin, and C. O. Chang, “Effect of the inclusion of small metallic components in a two-dimensional dielectric photonic crystal with large full band gap,” Phys. Rev. B 70, 75,108 (2004).

[CrossRef]

C. C. Chang, J. Y. Chi, R. L. Chern, C. C. Chang, C. H. Lin, and C. O. Chang, “Effect of the inclusion of small metallic components in a two-dimensional dielectric photonic crystal with large full band gap,” Phys. Rev. B 70, 75,108 (2004).

[CrossRef]

R. L. Chern, C. C. Chang, C. C. Chang, and R. R. Hwang, “Numerical Study of Three-Dimensional Photonic Crystals with Large Band Gaps,” J. Phys. Soc. Jpn. 73, 727–737 (2004).

[CrossRef]

R. L. Chern, C. C. Chang, C. C. Chang, and R. R. Hwang, “Numerical Study of Three-Dimensional Photonic Crystals with Large Band Gaps,” J. Phys. Soc. Jpn. 73, 727–737 (2004).

[CrossRef]

R. L. Chern, C. C. Chang, C. C. Chang, and R. Hwang, “Large full band gaps for photonic crystals in two dimensions computed by an inverse method with multigrid acceleration,” Phys. Rev. E 68, 26,704 (2003).

[CrossRef]

R. L. Chern, C. C. Chang, C. C. Chang, and R. Hwang, “Large full band gaps for photonic crystals in two dimensions computed by an inverse method with multigrid acceleration,” Phys. Rev. E 68, 26,704 (2003).

[CrossRef]

C. C. Chang, J. Y. Chi, R. L. Chern, C. C. Chang, C. H. Lin, and C. O. Chang, “Effect of the inclusion of small metallic components in a two-dimensional dielectric photonic crystal with large full band gap,” Phys. Rev. B 70, 75,108 (2004).

[CrossRef]

R. L. Chern, C. C. Chang, and C. C. Chang, “Analysis of surface plasmon modes and band structures for plasmonic crystals in one and two dimensions,” Phys. Rev. E 73, 36,605 (2006).

[CrossRef]

H. K. Fu, Y. F. Chen, R. L. Chern, and C. C. Chang, “Connected hexagonal photonic crystals with largest full band gap,” Opt. Express 13, 7854–7860 (2005).

[CrossRef]
[PubMed]

R. L. Chern, C. C. Chang, C. C. Chang, and R. R. Hwang, “Two Classes of Photonic Crystals with Simultaneous Band Gaps,” Jpn. J. Appl. Phys. 43, 3484–3490 (2004).

[CrossRef]

C. C. Chang, J. Y. Chi, R. L. Chern, C. C. Chang, C. H. Lin, and C. O. Chang, “Effect of the inclusion of small metallic components in a two-dimensional dielectric photonic crystal with large full band gap,” Phys. Rev. B 70, 75,108 (2004).

[CrossRef]

R. L. Chern, C. C. Chang, C. C. Chang, and R. R. Hwang, “Numerical Study of Three-Dimensional Photonic Crystals with Large Band Gaps,” J. Phys. Soc. Jpn. 73, 727–737 (2004).

[CrossRef]

R. L. Chern, C. C. Chang, C. C. Chang, and R. Hwang, “Large full band gaps for photonic crystals in two dimensions computed by an inverse method with multigrid acceleration,” Phys. Rev. E 68, 26,704 (2003).

[CrossRef]

C. C. Chang, J. Y. Chi, R. L. Chern, C. C. Chang, C. H. Lin, and C. O. Chang, “Effect of the inclusion of small metallic components in a two-dimensional dielectric photonic crystal with large full band gap,” Phys. Rev. B 70, 75,108 (2004).

[CrossRef]

E. Lidorikis, M. M. Sigalas, E. N. Economou, and C. M. Soukoulis, “Gap deformation and classical wave localization in disordered two-dimensional photonic-band-gap materials,” Phys. Rev. B 61, 458–13,464 (2000).

[CrossRef]

J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals: putting a new twist on light,” Nature 386, 143–149 (1997).

[CrossRef]

R. C. Kell, A. C. Greenham, and G. C. E. Olds, “High-Permittivity Temperature-Stable Ceramic Dielectrics with Low Microwave Loss,” J. Am. Ceram. Soc. 56, 352–354 (1973).

[CrossRef]

M. Straub, M. Ventura, and M. Gu, “Multiple Higher-Order Stop Gaps in Infrared Polymer Photonic Crystals,” Phys. Rev. Lett. 91, 43,901 (2003).

[CrossRef]

L. Shen, Z. Ye, and S. He, “Design of two-dimensional photonic crystals with large absolute band gaps using a genetic algorithm,” Phys. Rev. B 68, 35,109 (2003).

[CrossRef]

L. Shen, S. He, and S. Xiao, “Large absolute band gaps in two-dimensional photonic crystals formed by large dielectric pixels,” Phys. Rev. B 66, 165,315 (2002).

[CrossRef]

C. F. Bohren and D. R. Huffman, Absorption and scattering of light by small particles (JohnWiley & Sons, New York, 1983).

R. L. Chern, C. C. Chang, C. C. Chang, and R. Hwang, “Large full band gaps for photonic crystals in two dimensions computed by an inverse method with multigrid acceleration,” Phys. Rev. E 68, 26,704 (2003).

[CrossRef]

R. L. Chern, C. C. Chang, C. C. Chang, and R. R. Hwang, “Numerical Study of Three-Dimensional Photonic Crystals with Large Band Gaps,” J. Phys. Soc. Jpn. 73, 727–737 (2004).

[CrossRef]

R. L. Chern, C. C. Chang, C. C. Chang, and R. R. Hwang, “Two Classes of Photonic Crystals with Simultaneous Band Gaps,” Jpn. J. Appl. Phys. 43, 3484–3490 (2004).

[CrossRef]

J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals: putting a new twist on light,” Nature 386, 143–149 (1997).

[CrossRef]

R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, “Existence of a photonic band gap in two dimensions,” Appl. Phys. Lett. 61, 495–497 (1992).

[CrossRef]

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton University Press, 1995).

R. D. Meade, A. M. Rappe, K. D. Brommer, and J. D. Joannopoulos, “Nature of the photonic band gap: some insights from a field analysis,” J. Opt. Soc. Am. B 10, 328–332 (1993).

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).

[CrossRef]
[PubMed]

D. Cassagne, C. Jouanin, and D. Bertho, “Hexagonal photonic-band-gap structures,” Phys. Rev. B 53, 7134–7142 (1996).

[CrossRef]

C. S. Kee, J. E. Kim, and H. Y. Park, “Absolute photonic band gap in a two-dimensional square lattice of square dielectric rods in air,” Phys, Rev, E 56, 6291–6293 (1997).

[CrossRef]

R. C. Kell, A. C. Greenham, and G. C. E. Olds, “High-Permittivity Temperature-Stable Ceramic Dielectrics with Low Microwave Loss,” J. Am. Ceram. Soc. 56, 352–354 (1973).

[CrossRef]

C. S. Kee, J. E. Kim, and H. Y. Park, “Absolute photonic band gap in a two-dimensional square lattice of square dielectric rods in air,” Phys, Rev, E 56, 6291–6293 (1997).

[CrossRef]

E. Lidorikis, M. M. Sigalas, E. N. Economou, and C. M. Soukoulis, “Gap deformation and classical wave localization in disordered two-dimensional photonic-band-gap materials,” Phys. Rev. B 61, 458–13,464 (2000).

[CrossRef]

C. C. Chang, J. Y. Chi, R. L. Chern, C. C. Chang, C. H. Lin, and C. O. Chang, “Effect of the inclusion of small metallic components in a two-dimensional dielectric photonic crystal with large full band gap,” Phys. Rev. B 70, 75,108 (2004).

[CrossRef]

J. Y. Ye, S. Matsuo, V. Mizeikis, and H. Misawa, “Silicon-based honeycomb photonic crystal structures with complete photonic band gap at 1.5 mm wavelength,” J. Appl. Phys. 96, 6934 (2004).

[CrossRef]

J. Y. Ye, V. Mizeikis, Y. Xu, S. Matsuo, and H. Misawa, “Fabrication and optical characteristics of silicon-based two-dimensional photonic crystals with honeycomb lattice,” Opt. Commun. 211, 205–213 (2002).

[CrossRef]

R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, “Existence of a photonic band gap in two dimensions,” Appl. Phys. Lett. 61, 495–497 (1992).

[CrossRef]

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton University Press, 1995).

R. D. Meade, A. M. Rappe, K. D. Brommer, and J. D. Joannopoulos, “Nature of the photonic band gap: some insights from a field analysis,” J. Opt. Soc. Am. B 10, 328–332 (1993).

J. Y. Ye, S. Matsuo, V. Mizeikis, and H. Misawa, “Silicon-based honeycomb photonic crystal structures with complete photonic band gap at 1.5 mm wavelength,” J. Appl. Phys. 96, 6934 (2004).

[CrossRef]

J. Y. Ye, V. Mizeikis, Y. Xu, S. Matsuo, and H. Misawa, “Fabrication and optical characteristics of silicon-based two-dimensional photonic crystals with honeycomb lattice,” Opt. Commun. 211, 205–213 (2002).

[CrossRef]

J. Y. Ye, S. Matsuo, V. Mizeikis, and H. Misawa, “Silicon-based honeycomb photonic crystal structures with complete photonic band gap at 1.5 mm wavelength,” J. Appl. Phys. 96, 6934 (2004).

[CrossRef]

J. Y. Ye, V. Mizeikis, Y. Xu, S. Matsuo, and H. Misawa, “Fabrication and optical characteristics of silicon-based two-dimensional photonic crystals with honeycomb lattice,” Opt. Commun. 211, 205–213 (2002).

[CrossRef]

A. Moroz and A. Tip, “Resonance-induced effects in photonic crystals,” J. Phys. Condens.Matter 11, 2503–2512 (1999).

[CrossRef]

K. Ohtaka and Y. Tanabe, “Photonic Band Using Vector Spherical Waves. I. Various Properties of Bloch Electric Fields and Heavy Photons,” J. Phys. Soc. Jpn. 65, 2265–2275 (1996).

[CrossRef]

R. C. Kell, A. C. Greenham, and G. C. E. Olds, “High-Permittivity Temperature-Stable Ceramic Dielectrics with Low Microwave Loss,” J. Am. Ceram. Soc. 56, 352–354 (1973).

[CrossRef]

C. S. Kee, J. E. Kim, and H. Y. Park, “Absolute photonic band gap in a two-dimensional square lattice of square dielectric rods in air,” Phys, Rev, E 56, 6291–6293 (1997).

[CrossRef]

P. R. Villeneuve and M. Piché, “Photonic band gaps in two-dimensional square and hexagonal lattices,” Phys. Rev. B 46, 4969–4972 (1992).

[CrossRef]

D. M. Pozar, Microwave engineering, 3rd ed. (Wiley, New York, 2005).

R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, “Existence of a photonic band gap in two dimensions,” Appl. Phys. Lett. 61, 495–497 (1992).

[CrossRef]

R. D. Meade, A. M. Rappe, K. D. Brommer, and J. D. Joannopoulos, “Nature of the photonic band gap: some insights from a field analysis,” J. Opt. Soc. Am. B 10, 328–332 (1993).

M. G. Salt and W. L. Barnes, “Flat photonic bands in guided modes of textured metallic microcavities,” Phys. Rev. B 61(16), 11,125–11,135 (2000).

L. Shen, Z. Ye, and S. He, “Design of two-dimensional photonic crystals with large absolute band gaps using a genetic algorithm,” Phys. Rev. B 68, 35,109 (2003).

[CrossRef]

L. Shen, S. He, and S. Xiao, “Large absolute band gaps in two-dimensional photonic crystals formed by large dielectric pixels,” Phys. Rev. B 66, 165,315 (2002).

[CrossRef]

E. Lidorikis, M. M. Sigalas, E. N. Economou, and C. M. Soukoulis, “Gap deformation and classical wave localization in disordered two-dimensional photonic-band-gap materials,” Phys. Rev. B 61, 458–13,464 (2000).

[CrossRef]

M. M. Sigalas, C. M. Soukoulis, C. T. Chan, and D. Turner, “Localization of electromagnetic waves in two-dimensional disordered systems,” Phys. Rev. B 53, 8340–8348 (1996).

[CrossRef]

E. Lidorikis, M. M. Sigalas, E. N. Economou, and C. M. Soukoulis, “Gap deformation and classical wave localization in disordered two-dimensional photonic-band-gap materials,” Phys. Rev. B 61, 458–13,464 (2000).

[CrossRef]

M. M. Sigalas, C. M. Soukoulis, C. T. Chan, and D. Turner, “Localization of electromagnetic waves in two-dimensional disordered systems,” Phys. Rev. B 53, 8340–8348 (1996).

[CrossRef]

M. Straub, M. Ventura, and M. Gu, “Multiple Higher-Order Stop Gaps in Infrared Polymer Photonic Crystals,” Phys. Rev. Lett. 91, 43,901 (2003).

[CrossRef]

K. Ohtaka and Y. Tanabe, “Photonic Band Using Vector Spherical Waves. I. Various Properties of Bloch Electric Fields and Heavy Photons,” J. Phys. Soc. Jpn. 65, 2265–2275 (1996).

[CrossRef]

A. Moroz and A. Tip, “Resonance-induced effects in photonic crystals,” J. Phys. Condens.Matter 11, 2503–2512 (1999).

[CrossRef]

M. M. Sigalas, C. M. Soukoulis, C. T. Chan, and D. Turner, “Localization of electromagnetic waves in two-dimensional disordered systems,” Phys. Rev. B 53, 8340–8348 (1996).

[CrossRef]

M. Straub, M. Ventura, and M. Gu, “Multiple Higher-Order Stop Gaps in Infrared Polymer Photonic Crystals,” Phys. Rev. Lett. 91, 43,901 (2003).

[CrossRef]

J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals: putting a new twist on light,” Nature 386, 143–149 (1997).

[CrossRef]

P. R. Villeneuve and M. Piché, “Photonic band gaps in two-dimensional square and hexagonal lattices,” Phys. Rev. B 46, 4969–4972 (1992).

[CrossRef]

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton University Press, 1995).

L. Shen, S. He, and S. Xiao, “Large absolute band gaps in two-dimensional photonic crystals formed by large dielectric pixels,” Phys. Rev. B 66, 165,315 (2002).

[CrossRef]

J. Y. Ye, V. Mizeikis, Y. Xu, S. Matsuo, and H. Misawa, “Fabrication and optical characteristics of silicon-based two-dimensional photonic crystals with honeycomb lattice,” Opt. Commun. 211, 205–213 (2002).

[CrossRef]

E. Yablonovitch, “Inhibited Spontaneous Emission in Solid-State Physics and Electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).

[CrossRef]
[PubMed]

J. Y. Ye, S. Matsuo, V. Mizeikis, and H. Misawa, “Silicon-based honeycomb photonic crystal structures with complete photonic band gap at 1.5 mm wavelength,” J. Appl. Phys. 96, 6934 (2004).

[CrossRef]

J. Y. Ye, V. Mizeikis, Y. Xu, S. Matsuo, and H. Misawa, “Fabrication and optical characteristics of silicon-based two-dimensional photonic crystals with honeycomb lattice,” Opt. Commun. 211, 205–213 (2002).

[CrossRef]

L. Shen, Z. Ye, and S. He, “Design of two-dimensional photonic crystals with large absolute band gaps using a genetic algorithm,” Phys. Rev. B 68, 35,109 (2003).

[CrossRef]

R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, “Existence of a photonic band gap in two dimensions,” Appl. Phys. Lett. 61, 495–497 (1992).

[CrossRef]

R. C. Kell, A. C. Greenham, and G. C. E. Olds, “High-Permittivity Temperature-Stable Ceramic Dielectrics with Low Microwave Loss,” J. Am. Ceram. Soc. 56, 352–354 (1973).

[CrossRef]

J. Y. Ye, S. Matsuo, V. Mizeikis, and H. Misawa, “Silicon-based honeycomb photonic crystal structures with complete photonic band gap at 1.5 mm wavelength,” J. Appl. Phys. 96, 6934 (2004).

[CrossRef]

A. Moroz and A. Tip, “Resonance-induced effects in photonic crystals,” J. Phys. Condens.Matter 11, 2503–2512 (1999).

[CrossRef]

R. L. Chern, C. C. Chang, C. C. Chang, and R. R. Hwang, “Numerical Study of Three-Dimensional Photonic Crystals with Large Band Gaps,” J. Phys. Soc. Jpn. 73, 727–737 (2004).

[CrossRef]

K. Ohtaka and Y. Tanabe, “Photonic Band Using Vector Spherical Waves. I. Various Properties of Bloch Electric Fields and Heavy Photons,” J. Phys. Soc. Jpn. 65, 2265–2275 (1996).

[CrossRef]

R. L. Chern, C. C. Chang, C. C. Chang, and R. R. Hwang, “Two Classes of Photonic Crystals with Simultaneous Band Gaps,” Jpn. J. Appl. Phys. 43, 3484–3490 (2004).

[CrossRef]

J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals: putting a new twist on light,” Nature 386, 143–149 (1997).

[CrossRef]

J. Y. Ye, V. Mizeikis, Y. Xu, S. Matsuo, and H. Misawa, “Fabrication and optical characteristics of silicon-based two-dimensional photonic crystals with honeycomb lattice,” Opt. Commun. 211, 205–213 (2002).

[CrossRef]

J. Plouin, E. Richalot, O. Picon, M. Carras, and A. de Rossi, “Photonic band structures for bi-dimensional metallic mesa gratings,” Opt. Express 14, 9982–9987 (2006).

[CrossRef]
[PubMed]

H. K. Fu, Y. F. Chen, R. L. Chern, and C. C. Chang, “Connected hexagonal photonic crystals with largest full band gap,” Opt. Express 13, 7854–7860 (2005).

[CrossRef]
[PubMed]

C. S. Kee, J. E. Kim, and H. Y. Park, “Absolute photonic band gap in a two-dimensional square lattice of square dielectric rods in air,” Phys, Rev, E 56, 6291–6293 (1997).

[CrossRef]

L. Shen, S. He, and S. Xiao, “Large absolute band gaps in two-dimensional photonic crystals formed by large dielectric pixels,” Phys. Rev. B 66, 165,315 (2002).

[CrossRef]

M. M. Sigalas, C. M. Soukoulis, C. T. Chan, and D. Turner, “Localization of electromagnetic waves in two-dimensional disordered systems,” Phys. Rev. B 53, 8340–8348 (1996).

[CrossRef]

L. Shen, Z. Ye, and S. He, “Design of two-dimensional photonic crystals with large absolute band gaps using a genetic algorithm,” Phys. Rev. B 68, 35,109 (2003).

[CrossRef]

C. C. Chang, J. Y. Chi, R. L. Chern, C. C. Chang, C. H. Lin, and C. O. Chang, “Effect of the inclusion of small metallic components in a two-dimensional dielectric photonic crystal with large full band gap,” Phys. Rev. B 70, 75,108 (2004).

[CrossRef]

D. Cassagne, C. Jouanin, and D. Bertho, “Hexagonal photonic-band-gap structures,” Phys. Rev. B 53, 7134–7142 (1996).

[CrossRef]

P. R. Villeneuve and M. Piché, “Photonic band gaps in two-dimensional square and hexagonal lattices,” Phys. Rev. B 46, 4969–4972 (1992).

[CrossRef]

E. Lidorikis, M. M. Sigalas, E. N. Economou, and C. M. Soukoulis, “Gap deformation and classical wave localization in disordered two-dimensional photonic-band-gap materials,” Phys. Rev. B 61, 458–13,464 (2000).

[CrossRef]

M. G. Salt and W. L. Barnes, “Flat photonic bands in guided modes of textured metallic microcavities,” Phys. Rev. B 61(16), 11,125–11,135 (2000).

R. L. Chern, C. C. Chang, and C. C. Chang, “Analysis of surface plasmon modes and band structures for plasmonic crystals in one and two dimensions,” Phys. Rev. E 73, 36,605 (2006).

[CrossRef]

R. L. Chern, C. C. Chang, C. C. Chang, and R. Hwang, “Large full band gaps for photonic crystals in two dimensions computed by an inverse method with multigrid acceleration,” Phys. Rev. E 68, 26,704 (2003).

[CrossRef]

E. Yablonovitch, “Inhibited Spontaneous Emission in Solid-State Physics and Electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).

[CrossRef]
[PubMed]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).

[CrossRef]
[PubMed]

M. Straub, M. Ventura, and M. Gu, “Multiple Higher-Order Stop Gaps in Infrared Polymer Photonic Crystals,” Phys. Rev. Lett. 91, 43,901 (2003).

[CrossRef]

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton University Press, 1995).

C. F. Bohren and D. R. Huffman, Absorption and scattering of light by small particles (JohnWiley & Sons, New York, 1983).

C. A. Balanis, Advanced Enginerring Electromechanics (John Wiley & Sons, New York, 1989).

D. M. Pozar, Microwave engineering, 3rd ed. (Wiley, New York, 2005).