Abstract

Holographic two-photon polymerization is based on a high-speed, low-loss parallel laser irradiation technique inside photosensitive materials using a computer-generated hologram displayed on a liquid crystal spatial light modulator. We demonstrated a sparse exposure technique combining parallel exposure and scanning exposure to improve the fabrication throughput and to achieve simultaneous fabrication of linear structures with different widths. We also demonstrated fabrication of space-variant structures by changing a CGH, as well as parallel fabrication of voxel structures with single femtosecond laser pulse irradiation.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Maruo, O. Nakamura, and S. Kawata, "Three-dimensional microfabrication with two-photon-absorbed photopolymerization," Opt. Lett. 22, 132-134 (1997).
    [CrossRef] [PubMed]
  2. H. -B. Sun, S. Matsuo, and H. Misawa, "Three-dimensional photonic crystal structures achieved with two-photon-absorption photopolymerization of resin," Appl. Phys. Lett. 74, 786-788 (1999).
    [CrossRef]
  3. H. -B. Sun, T. Tanaka, and S. Kawata, "Three-dimensional focal spots related to two-photon excitation," Appl. Phys. Lett. 80, 3673-3675 (2002).
    [CrossRef]
  4. H. -B. Sun, M. Maeda, K. Takada, J. W. M. Chon, M. Gu, and S. Kawata, "Experimental investigation of single voxels for laser nanofabrication via two-photon photopolymerization," Appl. Phys. Lett. 83, 819-821 (2003).
    [CrossRef]
  5. J. Serbin, A. Egbert, A. Ostendorf, B. N. Chickov, R. Houbertz, G. Domann, J. Schulz, C. Cronauer, L. Fröhlich, and M. Popall, "Femtosecond laser-induced two-photon polymerization of inorganic-organic hybrid materials for applications in photonics," Opt. Lett. 28, 301-303 (2003).
    [CrossRef] [PubMed]
  6. V. Mizeikis, K. K. Seet, S. Juodkazis, and H. Misawa, "Three-dimensional woodpile photonic crystal templates for the infrared spectral range," Opt. Lett. 29, 2061-2063 (2004).
    [CrossRef] [PubMed]
  7. S. H. Park, T. W. Lim, D. -Y. Yang, N. C. Cho, and K. -S. Lee, "Fabrication of a bunch of sub-30-nm nanofibers inside microchannels using photopolymerization via a long exposure technique," Appl. Phys. Lett. 89, 173133 (2006).
    [CrossRef]
  8. D. Tan, Y. Li, F. Qi, H. Yang, Q. Gong, X. Dong, and X. Duan, "Reduction in feature size of two-photon polymerization using SCR500," Appl. Phys. Lett. 90, 071106 (2007).
    [CrossRef]
  9. J. -F. Xing, X. -Z. Dong, W. -Q. Chen, X. -M. Duan, N. Takeyasu, T. Tanaka, and S. Kawata, "Improving spatial resolution of two-photon microfabrication by using photoinitiator with high initiating efficiency," Appl. Phys. Lett. 90, 131106 (2007).
    [CrossRef]
  10. Y. Kuroiwa, N. Takeshima, Y. Narita, S. Tanaka, and K. Hirao, "Arbitrary micropatterning method in femtosecond laser microprocessing using diffractive optical elements," Opt. Express 12, 1908-1915 (2004).
    [CrossRef]
  11. S. Matsuo, S. Juodkazis, and H. Misawa, "Femtosecond laser microfabrication of periodic structures using a microlens array," Appl. Phys. A 80, 683-685 (2005).
    [CrossRef]
  12. J. Kato, N. Takeyasu, Y. Adachi, H. -B. Sun, and S. Kawata, "Multiple-spot parallel processing for laser micronanofabrication," Appl. Phys. Lett. 86, 044102 (2005).
    [CrossRef]
  13. Y. Hayasaki, T. Sugimoto, A. Takita, and N. Nishida, "Variable holographic femtosecond laser processing by use of a spatial light modulator," Appl. Phys. Lett. 87, 031101 (2005).
    [CrossRef]
  14. S. Hasegawa, Y. Hayasaki, and N. Nishida, "Holographic femtosecond laser processing with multiplexed phase Fresnel lenses," Opt. Lett. 31, 1705-1707 (2006).
    [CrossRef] [PubMed]
  15. S. Hasegawa and Y. Hayasaki, "Holographic femtosecond laser processing with multiplexed phase fresnel lenses displayed on a liquid crystal spatial light modulator," Opt. Rev. 14, 208-213 (2007).
    [CrossRef]
  16. L. Kelemen, S. Valkai, and P. Ormos, "Parallel photopolymerisation with complex light patterns generated by diffractive optical elements," Opt. Express 15, 14488-14497 (2007).
    [CrossRef] [PubMed]
  17. Y. Igasaki, F. Li, N. Yoshida, H. Toyoda, T. Inoue, N, Mukohzaka, Y. Kobayashi, and T. Hara, "High efficiency electrically-addressable phase-only spatial light modulator," Opt. Rev. 6, 339-344 (1999).
    [CrossRef]
  18. J. Bengtsson, "Kinoform design with an optimal-rotation-angle method," Appl. Opt. 33, 6879-6884 (1994).
    [CrossRef] [PubMed]
  19. H. Takahashi, S. Hasegawa, and Y. Hayasaki, "Holographic femtosecond laser processing using optimal-rotation-angle method with compensation of spatial frequency response of liquid crystal spatial light modulator," Appl. Opt. 46, 5917-5923 (2007).
    [CrossRef] [PubMed]
  20. K. Chaen, H. Takahashi, S. Hasegawa, and Y. Hayasaki, "Display method with compensation of the spatial frequency response of a liquid crystal spatial light modulator for holographic femtosecond laser processing," Opt. Commun. 280, 165-172 (2007).
    [CrossRef]
  21. K. K. Seet, V. Mizeikis, S. Juodkazis, and H. Misawa, "Three-dimensional horizontal circular spiral photonic crystals with stop gaps below 1μm," Appl. Phys. Lett. 88, 221101 (2006).
    [CrossRef]
  22. H. Segawa, S. Yamaguchi, Y. Yamazaki, T. Yano, S. Shibata, and H. Misawa, "Top-gathering pillar array of hybrid organic-inorganic material by means of self-organization," Appl. Phys. A 83, 447-451 (2006).
    [CrossRef]

2007 (6)

D. Tan, Y. Li, F. Qi, H. Yang, Q. Gong, X. Dong, and X. Duan, "Reduction in feature size of two-photon polymerization using SCR500," Appl. Phys. Lett. 90, 071106 (2007).
[CrossRef]

J. -F. Xing, X. -Z. Dong, W. -Q. Chen, X. -M. Duan, N. Takeyasu, T. Tanaka, and S. Kawata, "Improving spatial resolution of two-photon microfabrication by using photoinitiator with high initiating efficiency," Appl. Phys. Lett. 90, 131106 (2007).
[CrossRef]

S. Hasegawa and Y. Hayasaki, "Holographic femtosecond laser processing with multiplexed phase fresnel lenses displayed on a liquid crystal spatial light modulator," Opt. Rev. 14, 208-213 (2007).
[CrossRef]

L. Kelemen, S. Valkai, and P. Ormos, "Parallel photopolymerisation with complex light patterns generated by diffractive optical elements," Opt. Express 15, 14488-14497 (2007).
[CrossRef] [PubMed]

H. Takahashi, S. Hasegawa, and Y. Hayasaki, "Holographic femtosecond laser processing using optimal-rotation-angle method with compensation of spatial frequency response of liquid crystal spatial light modulator," Appl. Opt. 46, 5917-5923 (2007).
[CrossRef] [PubMed]

K. Chaen, H. Takahashi, S. Hasegawa, and Y. Hayasaki, "Display method with compensation of the spatial frequency response of a liquid crystal spatial light modulator for holographic femtosecond laser processing," Opt. Commun. 280, 165-172 (2007).
[CrossRef]

2006 (4)

K. K. Seet, V. Mizeikis, S. Juodkazis, and H. Misawa, "Three-dimensional horizontal circular spiral photonic crystals with stop gaps below 1μm," Appl. Phys. Lett. 88, 221101 (2006).
[CrossRef]

H. Segawa, S. Yamaguchi, Y. Yamazaki, T. Yano, S. Shibata, and H. Misawa, "Top-gathering pillar array of hybrid organic-inorganic material by means of self-organization," Appl. Phys. A 83, 447-451 (2006).
[CrossRef]

S. H. Park, T. W. Lim, D. -Y. Yang, N. C. Cho, and K. -S. Lee, "Fabrication of a bunch of sub-30-nm nanofibers inside microchannels using photopolymerization via a long exposure technique," Appl. Phys. Lett. 89, 173133 (2006).
[CrossRef]

S. Hasegawa, Y. Hayasaki, and N. Nishida, "Holographic femtosecond laser processing with multiplexed phase Fresnel lenses," Opt. Lett. 31, 1705-1707 (2006).
[CrossRef] [PubMed]

2005 (3)

S. Matsuo, S. Juodkazis, and H. Misawa, "Femtosecond laser microfabrication of periodic structures using a microlens array," Appl. Phys. A 80, 683-685 (2005).
[CrossRef]

J. Kato, N. Takeyasu, Y. Adachi, H. -B. Sun, and S. Kawata, "Multiple-spot parallel processing for laser micronanofabrication," Appl. Phys. Lett. 86, 044102 (2005).
[CrossRef]

Y. Hayasaki, T. Sugimoto, A. Takita, and N. Nishida, "Variable holographic femtosecond laser processing by use of a spatial light modulator," Appl. Phys. Lett. 87, 031101 (2005).
[CrossRef]

2004 (2)

2003 (2)

H. -B. Sun, M. Maeda, K. Takada, J. W. M. Chon, M. Gu, and S. Kawata, "Experimental investigation of single voxels for laser nanofabrication via two-photon photopolymerization," Appl. Phys. Lett. 83, 819-821 (2003).
[CrossRef]

J. Serbin, A. Egbert, A. Ostendorf, B. N. Chickov, R. Houbertz, G. Domann, J. Schulz, C. Cronauer, L. Fröhlich, and M. Popall, "Femtosecond laser-induced two-photon polymerization of inorganic-organic hybrid materials for applications in photonics," Opt. Lett. 28, 301-303 (2003).
[CrossRef] [PubMed]

2002 (1)

H. -B. Sun, T. Tanaka, and S. Kawata, "Three-dimensional focal spots related to two-photon excitation," Appl. Phys. Lett. 80, 3673-3675 (2002).
[CrossRef]

1999 (2)

H. -B. Sun, S. Matsuo, and H. Misawa, "Three-dimensional photonic crystal structures achieved with two-photon-absorption photopolymerization of resin," Appl. Phys. Lett. 74, 786-788 (1999).
[CrossRef]

Y. Igasaki, F. Li, N. Yoshida, H. Toyoda, T. Inoue, N, Mukohzaka, Y. Kobayashi, and T. Hara, "High efficiency electrically-addressable phase-only spatial light modulator," Opt. Rev. 6, 339-344 (1999).
[CrossRef]

1997 (1)

1994 (1)

Adachi, Y.

J. Kato, N. Takeyasu, Y. Adachi, H. -B. Sun, and S. Kawata, "Multiple-spot parallel processing for laser micronanofabrication," Appl. Phys. Lett. 86, 044102 (2005).
[CrossRef]

Bengtsson, J.

Chaen, K.

K. Chaen, H. Takahashi, S. Hasegawa, and Y. Hayasaki, "Display method with compensation of the spatial frequency response of a liquid crystal spatial light modulator for holographic femtosecond laser processing," Opt. Commun. 280, 165-172 (2007).
[CrossRef]

Chen, W. -Q.

J. -F. Xing, X. -Z. Dong, W. -Q. Chen, X. -M. Duan, N. Takeyasu, T. Tanaka, and S. Kawata, "Improving spatial resolution of two-photon microfabrication by using photoinitiator with high initiating efficiency," Appl. Phys. Lett. 90, 131106 (2007).
[CrossRef]

Chickov, B. N.

Cho, N. C.

S. H. Park, T. W. Lim, D. -Y. Yang, N. C. Cho, and K. -S. Lee, "Fabrication of a bunch of sub-30-nm nanofibers inside microchannels using photopolymerization via a long exposure technique," Appl. Phys. Lett. 89, 173133 (2006).
[CrossRef]

Chon, J. W. M.

H. -B. Sun, M. Maeda, K. Takada, J. W. M. Chon, M. Gu, and S. Kawata, "Experimental investigation of single voxels for laser nanofabrication via two-photon photopolymerization," Appl. Phys. Lett. 83, 819-821 (2003).
[CrossRef]

Cronauer, C.

Domann, G.

Dong, X.

D. Tan, Y. Li, F. Qi, H. Yang, Q. Gong, X. Dong, and X. Duan, "Reduction in feature size of two-photon polymerization using SCR500," Appl. Phys. Lett. 90, 071106 (2007).
[CrossRef]

Dong, X. -Z.

J. -F. Xing, X. -Z. Dong, W. -Q. Chen, X. -M. Duan, N. Takeyasu, T. Tanaka, and S. Kawata, "Improving spatial resolution of two-photon microfabrication by using photoinitiator with high initiating efficiency," Appl. Phys. Lett. 90, 131106 (2007).
[CrossRef]

Duan, X.

D. Tan, Y. Li, F. Qi, H. Yang, Q. Gong, X. Dong, and X. Duan, "Reduction in feature size of two-photon polymerization using SCR500," Appl. Phys. Lett. 90, 071106 (2007).
[CrossRef]

Duan, X. -M.

J. -F. Xing, X. -Z. Dong, W. -Q. Chen, X. -M. Duan, N. Takeyasu, T. Tanaka, and S. Kawata, "Improving spatial resolution of two-photon microfabrication by using photoinitiator with high initiating efficiency," Appl. Phys. Lett. 90, 131106 (2007).
[CrossRef]

Egbert, A.

Fröhlich, L.

Gong, Q.

D. Tan, Y. Li, F. Qi, H. Yang, Q. Gong, X. Dong, and X. Duan, "Reduction in feature size of two-photon polymerization using SCR500," Appl. Phys. Lett. 90, 071106 (2007).
[CrossRef]

Gu, M.

H. -B. Sun, M. Maeda, K. Takada, J. W. M. Chon, M. Gu, and S. Kawata, "Experimental investigation of single voxels for laser nanofabrication via two-photon photopolymerization," Appl. Phys. Lett. 83, 819-821 (2003).
[CrossRef]

Hasegawa, S.

S. Hasegawa and Y. Hayasaki, "Holographic femtosecond laser processing with multiplexed phase fresnel lenses displayed on a liquid crystal spatial light modulator," Opt. Rev. 14, 208-213 (2007).
[CrossRef]

K. Chaen, H. Takahashi, S. Hasegawa, and Y. Hayasaki, "Display method with compensation of the spatial frequency response of a liquid crystal spatial light modulator for holographic femtosecond laser processing," Opt. Commun. 280, 165-172 (2007).
[CrossRef]

H. Takahashi, S. Hasegawa, and Y. Hayasaki, "Holographic femtosecond laser processing using optimal-rotation-angle method with compensation of spatial frequency response of liquid crystal spatial light modulator," Appl. Opt. 46, 5917-5923 (2007).
[CrossRef] [PubMed]

S. Hasegawa, Y. Hayasaki, and N. Nishida, "Holographic femtosecond laser processing with multiplexed phase Fresnel lenses," Opt. Lett. 31, 1705-1707 (2006).
[CrossRef] [PubMed]

Hayasaki, Y.

S. Hasegawa and Y. Hayasaki, "Holographic femtosecond laser processing with multiplexed phase fresnel lenses displayed on a liquid crystal spatial light modulator," Opt. Rev. 14, 208-213 (2007).
[CrossRef]

H. Takahashi, S. Hasegawa, and Y. Hayasaki, "Holographic femtosecond laser processing using optimal-rotation-angle method with compensation of spatial frequency response of liquid crystal spatial light modulator," Appl. Opt. 46, 5917-5923 (2007).
[CrossRef] [PubMed]

K. Chaen, H. Takahashi, S. Hasegawa, and Y. Hayasaki, "Display method with compensation of the spatial frequency response of a liquid crystal spatial light modulator for holographic femtosecond laser processing," Opt. Commun. 280, 165-172 (2007).
[CrossRef]

S. Hasegawa, Y. Hayasaki, and N. Nishida, "Holographic femtosecond laser processing with multiplexed phase Fresnel lenses," Opt. Lett. 31, 1705-1707 (2006).
[CrossRef] [PubMed]

Y. Hayasaki, T. Sugimoto, A. Takita, and N. Nishida, "Variable holographic femtosecond laser processing by use of a spatial light modulator," Appl. Phys. Lett. 87, 031101 (2005).
[CrossRef]

Hirao, K.

Houbertz, R.

Igasaki, Y.

Y. Igasaki, F. Li, N. Yoshida, H. Toyoda, T. Inoue, N, Mukohzaka, Y. Kobayashi, and T. Hara, "High efficiency electrically-addressable phase-only spatial light modulator," Opt. Rev. 6, 339-344 (1999).
[CrossRef]

Inoue, T.

Y. Igasaki, F. Li, N. Yoshida, H. Toyoda, T. Inoue, N, Mukohzaka, Y. Kobayashi, and T. Hara, "High efficiency electrically-addressable phase-only spatial light modulator," Opt. Rev. 6, 339-344 (1999).
[CrossRef]

Juodkazis, S.

K. K. Seet, V. Mizeikis, S. Juodkazis, and H. Misawa, "Three-dimensional horizontal circular spiral photonic crystals with stop gaps below 1μm," Appl. Phys. Lett. 88, 221101 (2006).
[CrossRef]

S. Matsuo, S. Juodkazis, and H. Misawa, "Femtosecond laser microfabrication of periodic structures using a microlens array," Appl. Phys. A 80, 683-685 (2005).
[CrossRef]

V. Mizeikis, K. K. Seet, S. Juodkazis, and H. Misawa, "Three-dimensional woodpile photonic crystal templates for the infrared spectral range," Opt. Lett. 29, 2061-2063 (2004).
[CrossRef] [PubMed]

Kato, J.

J. Kato, N. Takeyasu, Y. Adachi, H. -B. Sun, and S. Kawata, "Multiple-spot parallel processing for laser micronanofabrication," Appl. Phys. Lett. 86, 044102 (2005).
[CrossRef]

Kawata, S.

J. -F. Xing, X. -Z. Dong, W. -Q. Chen, X. -M. Duan, N. Takeyasu, T. Tanaka, and S. Kawata, "Improving spatial resolution of two-photon microfabrication by using photoinitiator with high initiating efficiency," Appl. Phys. Lett. 90, 131106 (2007).
[CrossRef]

J. Kato, N. Takeyasu, Y. Adachi, H. -B. Sun, and S. Kawata, "Multiple-spot parallel processing for laser micronanofabrication," Appl. Phys. Lett. 86, 044102 (2005).
[CrossRef]

H. -B. Sun, M. Maeda, K. Takada, J. W. M. Chon, M. Gu, and S. Kawata, "Experimental investigation of single voxels for laser nanofabrication via two-photon photopolymerization," Appl. Phys. Lett. 83, 819-821 (2003).
[CrossRef]

H. -B. Sun, T. Tanaka, and S. Kawata, "Three-dimensional focal spots related to two-photon excitation," Appl. Phys. Lett. 80, 3673-3675 (2002).
[CrossRef]

S. Maruo, O. Nakamura, and S. Kawata, "Three-dimensional microfabrication with two-photon-absorbed photopolymerization," Opt. Lett. 22, 132-134 (1997).
[CrossRef] [PubMed]

Kelemen, L.

Kuroiwa, Y.

Lee, K. -S.

S. H. Park, T. W. Lim, D. -Y. Yang, N. C. Cho, and K. -S. Lee, "Fabrication of a bunch of sub-30-nm nanofibers inside microchannels using photopolymerization via a long exposure technique," Appl. Phys. Lett. 89, 173133 (2006).
[CrossRef]

Li, F.

Y. Igasaki, F. Li, N. Yoshida, H. Toyoda, T. Inoue, N, Mukohzaka, Y. Kobayashi, and T. Hara, "High efficiency electrically-addressable phase-only spatial light modulator," Opt. Rev. 6, 339-344 (1999).
[CrossRef]

Li, Y.

D. Tan, Y. Li, F. Qi, H. Yang, Q. Gong, X. Dong, and X. Duan, "Reduction in feature size of two-photon polymerization using SCR500," Appl. Phys. Lett. 90, 071106 (2007).
[CrossRef]

Lim, T. W.

S. H. Park, T. W. Lim, D. -Y. Yang, N. C. Cho, and K. -S. Lee, "Fabrication of a bunch of sub-30-nm nanofibers inside microchannels using photopolymerization via a long exposure technique," Appl. Phys. Lett. 89, 173133 (2006).
[CrossRef]

Maeda, M.

H. -B. Sun, M. Maeda, K. Takada, J. W. M. Chon, M. Gu, and S. Kawata, "Experimental investigation of single voxels for laser nanofabrication via two-photon photopolymerization," Appl. Phys. Lett. 83, 819-821 (2003).
[CrossRef]

Maruo, S.

Matsuo, S.

S. Matsuo, S. Juodkazis, and H. Misawa, "Femtosecond laser microfabrication of periodic structures using a microlens array," Appl. Phys. A 80, 683-685 (2005).
[CrossRef]

H. -B. Sun, S. Matsuo, and H. Misawa, "Three-dimensional photonic crystal structures achieved with two-photon-absorption photopolymerization of resin," Appl. Phys. Lett. 74, 786-788 (1999).
[CrossRef]

Misawa, H.

K. K. Seet, V. Mizeikis, S. Juodkazis, and H. Misawa, "Three-dimensional horizontal circular spiral photonic crystals with stop gaps below 1μm," Appl. Phys. Lett. 88, 221101 (2006).
[CrossRef]

H. Segawa, S. Yamaguchi, Y. Yamazaki, T. Yano, S. Shibata, and H. Misawa, "Top-gathering pillar array of hybrid organic-inorganic material by means of self-organization," Appl. Phys. A 83, 447-451 (2006).
[CrossRef]

S. Matsuo, S. Juodkazis, and H. Misawa, "Femtosecond laser microfabrication of periodic structures using a microlens array," Appl. Phys. A 80, 683-685 (2005).
[CrossRef]

V. Mizeikis, K. K. Seet, S. Juodkazis, and H. Misawa, "Three-dimensional woodpile photonic crystal templates for the infrared spectral range," Opt. Lett. 29, 2061-2063 (2004).
[CrossRef] [PubMed]

H. -B. Sun, S. Matsuo, and H. Misawa, "Three-dimensional photonic crystal structures achieved with two-photon-absorption photopolymerization of resin," Appl. Phys. Lett. 74, 786-788 (1999).
[CrossRef]

Mizeikis, V.

K. K. Seet, V. Mizeikis, S. Juodkazis, and H. Misawa, "Three-dimensional horizontal circular spiral photonic crystals with stop gaps below 1μm," Appl. Phys. Lett. 88, 221101 (2006).
[CrossRef]

V. Mizeikis, K. K. Seet, S. Juodkazis, and H. Misawa, "Three-dimensional woodpile photonic crystal templates for the infrared spectral range," Opt. Lett. 29, 2061-2063 (2004).
[CrossRef] [PubMed]

Nakamura, O.

Narita, Y.

Nishida, N.

S. Hasegawa, Y. Hayasaki, and N. Nishida, "Holographic femtosecond laser processing with multiplexed phase Fresnel lenses," Opt. Lett. 31, 1705-1707 (2006).
[CrossRef] [PubMed]

Y. Hayasaki, T. Sugimoto, A. Takita, and N. Nishida, "Variable holographic femtosecond laser processing by use of a spatial light modulator," Appl. Phys. Lett. 87, 031101 (2005).
[CrossRef]

Ormos, P.

Ostendorf, A.

Park, S. H.

S. H. Park, T. W. Lim, D. -Y. Yang, N. C. Cho, and K. -S. Lee, "Fabrication of a bunch of sub-30-nm nanofibers inside microchannels using photopolymerization via a long exposure technique," Appl. Phys. Lett. 89, 173133 (2006).
[CrossRef]

Popall, M.

Qi, F.

D. Tan, Y. Li, F. Qi, H. Yang, Q. Gong, X. Dong, and X. Duan, "Reduction in feature size of two-photon polymerization using SCR500," Appl. Phys. Lett. 90, 071106 (2007).
[CrossRef]

Schulz, J.

Seet, K. K.

K. K. Seet, V. Mizeikis, S. Juodkazis, and H. Misawa, "Three-dimensional horizontal circular spiral photonic crystals with stop gaps below 1μm," Appl. Phys. Lett. 88, 221101 (2006).
[CrossRef]

V. Mizeikis, K. K. Seet, S. Juodkazis, and H. Misawa, "Three-dimensional woodpile photonic crystal templates for the infrared spectral range," Opt. Lett. 29, 2061-2063 (2004).
[CrossRef] [PubMed]

Segawa, H.

H. Segawa, S. Yamaguchi, Y. Yamazaki, T. Yano, S. Shibata, and H. Misawa, "Top-gathering pillar array of hybrid organic-inorganic material by means of self-organization," Appl. Phys. A 83, 447-451 (2006).
[CrossRef]

Serbin, J.

Shibata, S.

H. Segawa, S. Yamaguchi, Y. Yamazaki, T. Yano, S. Shibata, and H. Misawa, "Top-gathering pillar array of hybrid organic-inorganic material by means of self-organization," Appl. Phys. A 83, 447-451 (2006).
[CrossRef]

Sugimoto, T.

Y. Hayasaki, T. Sugimoto, A. Takita, and N. Nishida, "Variable holographic femtosecond laser processing by use of a spatial light modulator," Appl. Phys. Lett. 87, 031101 (2005).
[CrossRef]

Sun, H. -B.

J. Kato, N. Takeyasu, Y. Adachi, H. -B. Sun, and S. Kawata, "Multiple-spot parallel processing for laser micronanofabrication," Appl. Phys. Lett. 86, 044102 (2005).
[CrossRef]

H. -B. Sun, M. Maeda, K. Takada, J. W. M. Chon, M. Gu, and S. Kawata, "Experimental investigation of single voxels for laser nanofabrication via two-photon photopolymerization," Appl. Phys. Lett. 83, 819-821 (2003).
[CrossRef]

H. -B. Sun, T. Tanaka, and S. Kawata, "Three-dimensional focal spots related to two-photon excitation," Appl. Phys. Lett. 80, 3673-3675 (2002).
[CrossRef]

H. -B. Sun, S. Matsuo, and H. Misawa, "Three-dimensional photonic crystal structures achieved with two-photon-absorption photopolymerization of resin," Appl. Phys. Lett. 74, 786-788 (1999).
[CrossRef]

Takada, K.

H. -B. Sun, M. Maeda, K. Takada, J. W. M. Chon, M. Gu, and S. Kawata, "Experimental investigation of single voxels for laser nanofabrication via two-photon photopolymerization," Appl. Phys. Lett. 83, 819-821 (2003).
[CrossRef]

Takahashi, H.

K. Chaen, H. Takahashi, S. Hasegawa, and Y. Hayasaki, "Display method with compensation of the spatial frequency response of a liquid crystal spatial light modulator for holographic femtosecond laser processing," Opt. Commun. 280, 165-172 (2007).
[CrossRef]

H. Takahashi, S. Hasegawa, and Y. Hayasaki, "Holographic femtosecond laser processing using optimal-rotation-angle method with compensation of spatial frequency response of liquid crystal spatial light modulator," Appl. Opt. 46, 5917-5923 (2007).
[CrossRef] [PubMed]

Takeshima, N.

Takeyasu, N.

J. -F. Xing, X. -Z. Dong, W. -Q. Chen, X. -M. Duan, N. Takeyasu, T. Tanaka, and S. Kawata, "Improving spatial resolution of two-photon microfabrication by using photoinitiator with high initiating efficiency," Appl. Phys. Lett. 90, 131106 (2007).
[CrossRef]

J. Kato, N. Takeyasu, Y. Adachi, H. -B. Sun, and S. Kawata, "Multiple-spot parallel processing for laser micronanofabrication," Appl. Phys. Lett. 86, 044102 (2005).
[CrossRef]

Takita, A.

Y. Hayasaki, T. Sugimoto, A. Takita, and N. Nishida, "Variable holographic femtosecond laser processing by use of a spatial light modulator," Appl. Phys. Lett. 87, 031101 (2005).
[CrossRef]

Tan, D.

D. Tan, Y. Li, F. Qi, H. Yang, Q. Gong, X. Dong, and X. Duan, "Reduction in feature size of two-photon polymerization using SCR500," Appl. Phys. Lett. 90, 071106 (2007).
[CrossRef]

Tanaka, S.

Tanaka, T.

J. -F. Xing, X. -Z. Dong, W. -Q. Chen, X. -M. Duan, N. Takeyasu, T. Tanaka, and S. Kawata, "Improving spatial resolution of two-photon microfabrication by using photoinitiator with high initiating efficiency," Appl. Phys. Lett. 90, 131106 (2007).
[CrossRef]

H. -B. Sun, T. Tanaka, and S. Kawata, "Three-dimensional focal spots related to two-photon excitation," Appl. Phys. Lett. 80, 3673-3675 (2002).
[CrossRef]

Toyoda, H.

Y. Igasaki, F. Li, N. Yoshida, H. Toyoda, T. Inoue, N, Mukohzaka, Y. Kobayashi, and T. Hara, "High efficiency electrically-addressable phase-only spatial light modulator," Opt. Rev. 6, 339-344 (1999).
[CrossRef]

Valkai, S.

Xing, J. -F.

J. -F. Xing, X. -Z. Dong, W. -Q. Chen, X. -M. Duan, N. Takeyasu, T. Tanaka, and S. Kawata, "Improving spatial resolution of two-photon microfabrication by using photoinitiator with high initiating efficiency," Appl. Phys. Lett. 90, 131106 (2007).
[CrossRef]

Yamaguchi, S.

H. Segawa, S. Yamaguchi, Y. Yamazaki, T. Yano, S. Shibata, and H. Misawa, "Top-gathering pillar array of hybrid organic-inorganic material by means of self-organization," Appl. Phys. A 83, 447-451 (2006).
[CrossRef]

Yamazaki, Y.

H. Segawa, S. Yamaguchi, Y. Yamazaki, T. Yano, S. Shibata, and H. Misawa, "Top-gathering pillar array of hybrid organic-inorganic material by means of self-organization," Appl. Phys. A 83, 447-451 (2006).
[CrossRef]

Yang, D. -Y.

S. H. Park, T. W. Lim, D. -Y. Yang, N. C. Cho, and K. -S. Lee, "Fabrication of a bunch of sub-30-nm nanofibers inside microchannels using photopolymerization via a long exposure technique," Appl. Phys. Lett. 89, 173133 (2006).
[CrossRef]

Yang, H.

D. Tan, Y. Li, F. Qi, H. Yang, Q. Gong, X. Dong, and X. Duan, "Reduction in feature size of two-photon polymerization using SCR500," Appl. Phys. Lett. 90, 071106 (2007).
[CrossRef]

Yano, T.

H. Segawa, S. Yamaguchi, Y. Yamazaki, T. Yano, S. Shibata, and H. Misawa, "Top-gathering pillar array of hybrid organic-inorganic material by means of self-organization," Appl. Phys. A 83, 447-451 (2006).
[CrossRef]

Yoshida, N.

Y. Igasaki, F. Li, N. Yoshida, H. Toyoda, T. Inoue, N, Mukohzaka, Y. Kobayashi, and T. Hara, "High efficiency electrically-addressable phase-only spatial light modulator," Opt. Rev. 6, 339-344 (1999).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. A (2)

S. Matsuo, S. Juodkazis, and H. Misawa, "Femtosecond laser microfabrication of periodic structures using a microlens array," Appl. Phys. A 80, 683-685 (2005).
[CrossRef]

H. Segawa, S. Yamaguchi, Y. Yamazaki, T. Yano, S. Shibata, and H. Misawa, "Top-gathering pillar array of hybrid organic-inorganic material by means of self-organization," Appl. Phys. A 83, 447-451 (2006).
[CrossRef]

Appl. Phys. Lett. (9)

K. K. Seet, V. Mizeikis, S. Juodkazis, and H. Misawa, "Three-dimensional horizontal circular spiral photonic crystals with stop gaps below 1μm," Appl. Phys. Lett. 88, 221101 (2006).
[CrossRef]

J. Kato, N. Takeyasu, Y. Adachi, H. -B. Sun, and S. Kawata, "Multiple-spot parallel processing for laser micronanofabrication," Appl. Phys. Lett. 86, 044102 (2005).
[CrossRef]

Y. Hayasaki, T. Sugimoto, A. Takita, and N. Nishida, "Variable holographic femtosecond laser processing by use of a spatial light modulator," Appl. Phys. Lett. 87, 031101 (2005).
[CrossRef]

H. -B. Sun, S. Matsuo, and H. Misawa, "Three-dimensional photonic crystal structures achieved with two-photon-absorption photopolymerization of resin," Appl. Phys. Lett. 74, 786-788 (1999).
[CrossRef]

H. -B. Sun, T. Tanaka, and S. Kawata, "Three-dimensional focal spots related to two-photon excitation," Appl. Phys. Lett. 80, 3673-3675 (2002).
[CrossRef]

H. -B. Sun, M. Maeda, K. Takada, J. W. M. Chon, M. Gu, and S. Kawata, "Experimental investigation of single voxels for laser nanofabrication via two-photon photopolymerization," Appl. Phys. Lett. 83, 819-821 (2003).
[CrossRef]

S. H. Park, T. W. Lim, D. -Y. Yang, N. C. Cho, and K. -S. Lee, "Fabrication of a bunch of sub-30-nm nanofibers inside microchannels using photopolymerization via a long exposure technique," Appl. Phys. Lett. 89, 173133 (2006).
[CrossRef]

D. Tan, Y. Li, F. Qi, H. Yang, Q. Gong, X. Dong, and X. Duan, "Reduction in feature size of two-photon polymerization using SCR500," Appl. Phys. Lett. 90, 071106 (2007).
[CrossRef]

J. -F. Xing, X. -Z. Dong, W. -Q. Chen, X. -M. Duan, N. Takeyasu, T. Tanaka, and S. Kawata, "Improving spatial resolution of two-photon microfabrication by using photoinitiator with high initiating efficiency," Appl. Phys. Lett. 90, 131106 (2007).
[CrossRef]

Opt. Commun. (1)

K. Chaen, H. Takahashi, S. Hasegawa, and Y. Hayasaki, "Display method with compensation of the spatial frequency response of a liquid crystal spatial light modulator for holographic femtosecond laser processing," Opt. Commun. 280, 165-172 (2007).
[CrossRef]

Opt. Express (2)

Opt. Lett. (4)

Opt. Rev. (2)

S. Hasegawa and Y. Hayasaki, "Holographic femtosecond laser processing with multiplexed phase fresnel lenses displayed on a liquid crystal spatial light modulator," Opt. Rev. 14, 208-213 (2007).
[CrossRef]

Y. Igasaki, F. Li, N. Yoshida, H. Toyoda, T. Inoue, N, Mukohzaka, Y. Kobayashi, and T. Hara, "High efficiency electrically-addressable phase-only spatial light modulator," Opt. Rev. 6, 339-344 (1999).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Experimental setup.

Fig. 2.
Fig. 2.

Sparse exposure technique. (a) CGH, (b) its optical reconstruction of the CGH, and (c) SEM image of three linear structures with different widths.

Fig. 3.
Fig. 3.

(a). CGH for generating ten beams, (b) its computer reconstruction, and (c) its optical reconstruction.

Fig. 4.
Fig. 4.

Optical reconstruction of the CGH for fabrication of supports. The center peak is the 0-th order beam.

Fig. 5.
Fig. 5.

SEM images of ten linear structures with four thick linear supports fabricated by holographic two-photon polymerization. (a) Top and (b) oblique views. (c) The width of the linear structures for the average irradiation energy of ten diffraction peaks. The scanning speeds of the sample stage were 6.24 µm/s (circles), 25 µm/s (triangles), and 100 µm/s (squares), respectively.

Fig. 6.
Fig. 6.

SEM images of two-dimensional structure formed by switching the 15 CGHs. (a) Top view and (b) oblique view.

Fig. 7.
Fig. 7.

(a). SEM image of ten voxels fabricated by a single laser pulse. (b). Close-up view of the region indicated by the arrow in (a). (c). The voxel diameter for the average irradiation energy of ten diffraction peaks. Close-up views of the voxels when E=10 nJ and 25 nJ, respectively.

Metrics