Abstract

In this study, we develop an ultra-fast fiber Bragg grating sensor system that is based on the Fourier domain mode-locked (FDML) swept laser. A FDML wavelength swept laser has many advantages compared to the conventional wavelength swept laser source, such as high-speed interrogation, narrow spectral sensitivity, and high phase stability. The newly developed FDML wavelength swept laser shows a superior performance of a high scan rate of 31.3 kHz and a broad scan range of over 70 nm simultaneously. The performance of the grating sensor interrogating system using a FDML wavelength swept laser is characterized in both static and dynamic strain responses.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlane, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, "Fiber grating sensors," J. Lightwave Technol. 15, 1442-1463 (1997).
    [CrossRef]
  2. S. M. Melle, K. Liu, and R. M. Measures, "A Passive Wavelength Demodulation System for Guided-Wave Bragg Grating Sensors," IEEE Photon. Technol. Lett. 4, 1539-1541 (1992).
    [CrossRef]
  3. A. D. Kersey, T. A. Berkoff, and W. W. Morey, "High-resolution fiber Grating based strain sensor with interferometric wavelength-shift detection," Electron. Lett. 28, 236-238 (1992).
    [CrossRef]
  4. A. D. Kersey, T. A. Berkoff, and W. W. Morey, "Multiplexed fiber Bragg grating strain-sensor system with a fiber Fabry-Perot wavelength filter," Opt. Lett. 18, 33-39 (1993).
    [CrossRef]
  5. C. S. Kim, T. H. Lee, Y. S. Yu, Y. G. Han, S. B. Lee, and M. Y. Jeong, "Multi-point interrogation of FBG sensors using cascaded flexible wavelength-division Sagnac loop filters," Opt. Express 14, 8546-8551 (2006).
    [CrossRef] [PubMed]
  6. S. Chung, J. Kim, B. A. Yu, and B. Lee, "A fiber Bragg grating sensor demodulation technique using a polarization maintaining fiber loop mirror," IEEE Photon. Technol. Lett. 13, 1343-1345 (2001).
    [CrossRef]
  7. M. Song, S. Yin, and P. B. Ruffin, "Fiber Bragg grating strain sensor demodulation with quadrature sampling of a Mach-Zehnder interferometer," Appl. Opt. 39, 1106-1111 (2000).
    [CrossRef]
  8. H.-J. Bang, S.-M. Jun, and C.-G. Kim, "Stabilized interrogation and multiplexing techniques for fibre Bragg grating vibration sensors," Meas. Sci. Technol. 16, 813-820 (2005).
    [CrossRef]
  9. S. H. Yun, D. J. Richardson, and B. Y. Kim, "Interrogation of fiber grating sensor arrays with a wavelength-swept fiber laser," Opt. Lett. 23, 843-845 (1998).
    [CrossRef]
  10. C.-Y. Ryu, and C.-S. Hong, "Development of fiber Bragg grating sensor system using wavelength-swept fiber laser," Smart Mater. Struct. 11, 468-473 (2002).
    [CrossRef]
  11. Y. Wang, Y. Cui, and B. Yun, "A Fiber Bragg Grating Sensor System for Simultaneously Static and Dynamic Measurements with a Wavelength-Swept Fiber Laser," IEEE Photon. Technol. Lett. 18, 1539-1541 (2006).
    [CrossRef]
  12. S.-W. Lee, C.-S. Kim, and B.-M. Kim, "External-line cavity wavelength-swept source at 850 nm for optical coherence tomography," IEEE Photon. Technol. Lett. 19, 176-178 (2007).
    [CrossRef]
  13. A. Hongo, S. Kojima, and S. Komatsuzaki, "Applications of fiber Bragg grating sensors and high-speed interrogation techniques," Struct. Control Health Monit. 12, 269-282 (2005).
    [CrossRef]
  14. D. G. Kim, W. Yoo, P. Swinehart, B. Jiang, T. Haber, and A. Mendez, "Development of an FBG-Based Low Temperature Measurement System for Cargo Containment of LNG Tankers," Proc. SPIE 6770, 1-12 (2007).
  15. M. C. Wu, and W. H. Prosser, "Simultaneous Temperature and Strain Sensing for Cryogenic Applications Using Dual-Wavelength Fiber Bragg Gratings," Proc. SPIE 5191, 208-213 (2003).
    [CrossRef]
  16. C. J. Yeager, C. McGee, M. Maklad, and P. R. Swinehart, "Cryogenic Fiber Optic Temperature Sensors Based on Fiber Bragg Gratings," Advances in cryogenic engineering: Transactions of the Cryogenic Engineering Conference-CEC.AIP Conference Proceedings 823, 267-272 (2006).
  17. P. R. Swinehart, M. Maklad, and S. S. Courts, "Cryogenic Fiber Optic Sensors Based on Fiber Bragg Gratings," CEC-ICMC Conference Proceedings 16-20 (2007).
  18. R. Huber, M. Wojtkowski, and J. G. Fujimoto, "Fourier domain mode locking (FDML): A new laser operating regime and applications for optical coherence tomography," Opt. Express 14, 3225-3237 (2006).
    [CrossRef] [PubMed]
  19. R. Huber, D. C. Adler, and J. G. Fujimoto, "Buffered Fourier domain mode locking: unidirectional swept laser sources for optical coherence tomography imaging at 370,000 lines/s," Opt. Lett. 31, 2975-2977 (2006).
    [CrossRef] [PubMed]
  20. D. C. Adler, R. Huber, and J. G. Fujimoto, "Phase-sensitive optical coherence tomography at up to 370,000 lines per second using buffered Fourier domain mode-locked lasers," Opt. Lett. 32, 626-628 (2007).
    [CrossRef] [PubMed]
  21. M. Y. Jeon, J. Zhang, Q. Wang, and Z. Chen, "High-speed and wide bandwidth Fourier domain mode-locked wavelength swept laser with multiple SOAs," Opt. Express 16, 2547-2554 (2008).
    [CrossRef] [PubMed]
  22. L. A. Kranendonk, R. Huber, J. G. Fujimoto, and S. T. Sanders, "Wavelength-agile H2O absorption spectrometer for thermometry of general combustion gases," Proc. Combust. Inst.  31, 783-790 (2007).
    [CrossRef]
  23. S. H. Yun, C. Boudoux, M. C. Pierce, J. F. de Boer, G. J. Tearney, and B. E. Bouma, "Extended-cavity semiconductor wavelength-swept laser for biomedical imaging," IEEE Photon. Technol. Lett. 16, 293-295 (2006).
    [CrossRef]
  24. R. Huber, M. Wojtkowski, K. Taira, and J. G. Fujimoto, "Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging: design and scaling principles," Opt. Express 13, 3513-3528 (2005).
    [CrossRef] [PubMed]
  25. G.  Gagliardi, M.  Salza, P.  Ferraro, and P.  De Natale, "Fiber Bragg-grating strain sensor interrogation using laser radio-frequency modulation," Opt. Express  13, 2377-2384 (2005).
    [CrossRef] [PubMed]

2008 (1)

2007 (4)

L. A. Kranendonk, R. Huber, J. G. Fujimoto, and S. T. Sanders, "Wavelength-agile H2O absorption spectrometer for thermometry of general combustion gases," Proc. Combust. Inst.  31, 783-790 (2007).
[CrossRef]

S.-W. Lee, C.-S. Kim, and B.-M. Kim, "External-line cavity wavelength-swept source at 850 nm for optical coherence tomography," IEEE Photon. Technol. Lett. 19, 176-178 (2007).
[CrossRef]

D. G. Kim, W. Yoo, P. Swinehart, B. Jiang, T. Haber, and A. Mendez, "Development of an FBG-Based Low Temperature Measurement System for Cargo Containment of LNG Tankers," Proc. SPIE 6770, 1-12 (2007).

D. C. Adler, R. Huber, and J. G. Fujimoto, "Phase-sensitive optical coherence tomography at up to 370,000 lines per second using buffered Fourier domain mode-locked lasers," Opt. Lett. 32, 626-628 (2007).
[CrossRef] [PubMed]

2006 (6)

Y. Wang, Y. Cui, and B. Yun, "A Fiber Bragg Grating Sensor System for Simultaneously Static and Dynamic Measurements with a Wavelength-Swept Fiber Laser," IEEE Photon. Technol. Lett. 18, 1539-1541 (2006).
[CrossRef]

C. J. Yeager, C. McGee, M. Maklad, and P. R. Swinehart, "Cryogenic Fiber Optic Temperature Sensors Based on Fiber Bragg Gratings," Advances in cryogenic engineering: Transactions of the Cryogenic Engineering Conference-CEC.AIP Conference Proceedings 823, 267-272 (2006).

R. Huber, M. Wojtkowski, and J. G. Fujimoto, "Fourier domain mode locking (FDML): A new laser operating regime and applications for optical coherence tomography," Opt. Express 14, 3225-3237 (2006).
[CrossRef] [PubMed]

R. Huber, D. C. Adler, and J. G. Fujimoto, "Buffered Fourier domain mode locking: unidirectional swept laser sources for optical coherence tomography imaging at 370,000 lines/s," Opt. Lett. 31, 2975-2977 (2006).
[CrossRef] [PubMed]

C. S. Kim, T. H. Lee, Y. S. Yu, Y. G. Han, S. B. Lee, and M. Y. Jeong, "Multi-point interrogation of FBG sensors using cascaded flexible wavelength-division Sagnac loop filters," Opt. Express 14, 8546-8551 (2006).
[CrossRef] [PubMed]

S. H. Yun, C. Boudoux, M. C. Pierce, J. F. de Boer, G. J. Tearney, and B. E. Bouma, "Extended-cavity semiconductor wavelength-swept laser for biomedical imaging," IEEE Photon. Technol. Lett. 16, 293-295 (2006).
[CrossRef]

2005 (4)

R. Huber, M. Wojtkowski, K. Taira, and J. G. Fujimoto, "Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging: design and scaling principles," Opt. Express 13, 3513-3528 (2005).
[CrossRef] [PubMed]

G.  Gagliardi, M.  Salza, P.  Ferraro, and P.  De Natale, "Fiber Bragg-grating strain sensor interrogation using laser radio-frequency modulation," Opt. Express  13, 2377-2384 (2005).
[CrossRef] [PubMed]

H.-J. Bang, S.-M. Jun, and C.-G. Kim, "Stabilized interrogation and multiplexing techniques for fibre Bragg grating vibration sensors," Meas. Sci. Technol. 16, 813-820 (2005).
[CrossRef]

A. Hongo, S. Kojima, and S. Komatsuzaki, "Applications of fiber Bragg grating sensors and high-speed interrogation techniques," Struct. Control Health Monit. 12, 269-282 (2005).
[CrossRef]

2003 (1)

M. C. Wu, and W. H. Prosser, "Simultaneous Temperature and Strain Sensing for Cryogenic Applications Using Dual-Wavelength Fiber Bragg Gratings," Proc. SPIE 5191, 208-213 (2003).
[CrossRef]

2002 (1)

C.-Y. Ryu, and C.-S. Hong, "Development of fiber Bragg grating sensor system using wavelength-swept fiber laser," Smart Mater. Struct. 11, 468-473 (2002).
[CrossRef]

2001 (1)

S. Chung, J. Kim, B. A. Yu, and B. Lee, "A fiber Bragg grating sensor demodulation technique using a polarization maintaining fiber loop mirror," IEEE Photon. Technol. Lett. 13, 1343-1345 (2001).
[CrossRef]

2000 (1)

1998 (1)

1997 (1)

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlane, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, "Fiber grating sensors," J. Lightwave Technol. 15, 1442-1463 (1997).
[CrossRef]

1993 (1)

A. D. Kersey, T. A. Berkoff, and W. W. Morey, "Multiplexed fiber Bragg grating strain-sensor system with a fiber Fabry-Perot wavelength filter," Opt. Lett. 18, 33-39 (1993).
[CrossRef]

1992 (2)

S. M. Melle, K. Liu, and R. M. Measures, "A Passive Wavelength Demodulation System for Guided-Wave Bragg Grating Sensors," IEEE Photon. Technol. Lett. 4, 1539-1541 (1992).
[CrossRef]

A. D. Kersey, T. A. Berkoff, and W. W. Morey, "High-resolution fiber Grating based strain sensor with interferometric wavelength-shift detection," Electron. Lett. 28, 236-238 (1992).
[CrossRef]

Adler, D. C.

Askins, C. G.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlane, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, "Fiber grating sensors," J. Lightwave Technol. 15, 1442-1463 (1997).
[CrossRef]

Bang, H.-J.

H.-J. Bang, S.-M. Jun, and C.-G. Kim, "Stabilized interrogation and multiplexing techniques for fibre Bragg grating vibration sensors," Meas. Sci. Technol. 16, 813-820 (2005).
[CrossRef]

Berkoff, T. A.

A. D. Kersey, T. A. Berkoff, and W. W. Morey, "Multiplexed fiber Bragg grating strain-sensor system with a fiber Fabry-Perot wavelength filter," Opt. Lett. 18, 33-39 (1993).
[CrossRef]

A. D. Kersey, T. A. Berkoff, and W. W. Morey, "High-resolution fiber Grating based strain sensor with interferometric wavelength-shift detection," Electron. Lett. 28, 236-238 (1992).
[CrossRef]

Boudoux, C.

S. H. Yun, C. Boudoux, M. C. Pierce, J. F. de Boer, G. J. Tearney, and B. E. Bouma, "Extended-cavity semiconductor wavelength-swept laser for biomedical imaging," IEEE Photon. Technol. Lett. 16, 293-295 (2006).
[CrossRef]

Bouma, B. E.

S. H. Yun, C. Boudoux, M. C. Pierce, J. F. de Boer, G. J. Tearney, and B. E. Bouma, "Extended-cavity semiconductor wavelength-swept laser for biomedical imaging," IEEE Photon. Technol. Lett. 16, 293-295 (2006).
[CrossRef]

Chen, Z.

Chung, S.

S. Chung, J. Kim, B. A. Yu, and B. Lee, "A fiber Bragg grating sensor demodulation technique using a polarization maintaining fiber loop mirror," IEEE Photon. Technol. Lett. 13, 1343-1345 (2001).
[CrossRef]

Cui, Y.

Y. Wang, Y. Cui, and B. Yun, "A Fiber Bragg Grating Sensor System for Simultaneously Static and Dynamic Measurements with a Wavelength-Swept Fiber Laser," IEEE Photon. Technol. Lett. 18, 1539-1541 (2006).
[CrossRef]

Davis, M. A.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlane, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, "Fiber grating sensors," J. Lightwave Technol. 15, 1442-1463 (1997).
[CrossRef]

de Boer, J. F.

S. H. Yun, C. Boudoux, M. C. Pierce, J. F. de Boer, G. J. Tearney, and B. E. Bouma, "Extended-cavity semiconductor wavelength-swept laser for biomedical imaging," IEEE Photon. Technol. Lett. 16, 293-295 (2006).
[CrossRef]

De Natale, P.

Ferraro, P.

Friebele, E. J.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlane, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, "Fiber grating sensors," J. Lightwave Technol. 15, 1442-1463 (1997).
[CrossRef]

Fujimoto, J. G.

Gagliardi, G.

Haber, T.

D. G. Kim, W. Yoo, P. Swinehart, B. Jiang, T. Haber, and A. Mendez, "Development of an FBG-Based Low Temperature Measurement System for Cargo Containment of LNG Tankers," Proc. SPIE 6770, 1-12 (2007).

Han, Y. G.

Hong, C.-S.

C.-Y. Ryu, and C.-S. Hong, "Development of fiber Bragg grating sensor system using wavelength-swept fiber laser," Smart Mater. Struct. 11, 468-473 (2002).
[CrossRef]

Hongo, A.

A. Hongo, S. Kojima, and S. Komatsuzaki, "Applications of fiber Bragg grating sensors and high-speed interrogation techniques," Struct. Control Health Monit. 12, 269-282 (2005).
[CrossRef]

Huber, R.

Jeon, M. Y.

Jeong, M. Y.

Jiang, B.

D. G. Kim, W. Yoo, P. Swinehart, B. Jiang, T. Haber, and A. Mendez, "Development of an FBG-Based Low Temperature Measurement System for Cargo Containment of LNG Tankers," Proc. SPIE 6770, 1-12 (2007).

Jun, S.-M.

H.-J. Bang, S.-M. Jun, and C.-G. Kim, "Stabilized interrogation and multiplexing techniques for fibre Bragg grating vibration sensors," Meas. Sci. Technol. 16, 813-820 (2005).
[CrossRef]

Kersey, A. D.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlane, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, "Fiber grating sensors," J. Lightwave Technol. 15, 1442-1463 (1997).
[CrossRef]

A. D. Kersey, T. A. Berkoff, and W. W. Morey, "Multiplexed fiber Bragg grating strain-sensor system with a fiber Fabry-Perot wavelength filter," Opt. Lett. 18, 33-39 (1993).
[CrossRef]

A. D. Kersey, T. A. Berkoff, and W. W. Morey, "High-resolution fiber Grating based strain sensor with interferometric wavelength-shift detection," Electron. Lett. 28, 236-238 (1992).
[CrossRef]

Kim, B. Y.

Kim, B.-M.

S.-W. Lee, C.-S. Kim, and B.-M. Kim, "External-line cavity wavelength-swept source at 850 nm for optical coherence tomography," IEEE Photon. Technol. Lett. 19, 176-178 (2007).
[CrossRef]

Kim, C. S.

Kim, C.-G.

H.-J. Bang, S.-M. Jun, and C.-G. Kim, "Stabilized interrogation and multiplexing techniques for fibre Bragg grating vibration sensors," Meas. Sci. Technol. 16, 813-820 (2005).
[CrossRef]

Kim, C.-S.

S.-W. Lee, C.-S. Kim, and B.-M. Kim, "External-line cavity wavelength-swept source at 850 nm for optical coherence tomography," IEEE Photon. Technol. Lett. 19, 176-178 (2007).
[CrossRef]

Kim, D. G.

D. G. Kim, W. Yoo, P. Swinehart, B. Jiang, T. Haber, and A. Mendez, "Development of an FBG-Based Low Temperature Measurement System for Cargo Containment of LNG Tankers," Proc. SPIE 6770, 1-12 (2007).

Kim, J.

S. Chung, J. Kim, B. A. Yu, and B. Lee, "A fiber Bragg grating sensor demodulation technique using a polarization maintaining fiber loop mirror," IEEE Photon. Technol. Lett. 13, 1343-1345 (2001).
[CrossRef]

Kojima, S.

A. Hongo, S. Kojima, and S. Komatsuzaki, "Applications of fiber Bragg grating sensors and high-speed interrogation techniques," Struct. Control Health Monit. 12, 269-282 (2005).
[CrossRef]

Komatsuzaki, S.

A. Hongo, S. Kojima, and S. Komatsuzaki, "Applications of fiber Bragg grating sensors and high-speed interrogation techniques," Struct. Control Health Monit. 12, 269-282 (2005).
[CrossRef]

Koo, K. P.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlane, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, "Fiber grating sensors," J. Lightwave Technol. 15, 1442-1463 (1997).
[CrossRef]

Kranendonk, L. A.

L. A. Kranendonk, R. Huber, J. G. Fujimoto, and S. T. Sanders, "Wavelength-agile H2O absorption spectrometer for thermometry of general combustion gases," Proc. Combust. Inst.  31, 783-790 (2007).
[CrossRef]

LeBlane, M.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlane, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, "Fiber grating sensors," J. Lightwave Technol. 15, 1442-1463 (1997).
[CrossRef]

Lee, B.

S. Chung, J. Kim, B. A. Yu, and B. Lee, "A fiber Bragg grating sensor demodulation technique using a polarization maintaining fiber loop mirror," IEEE Photon. Technol. Lett. 13, 1343-1345 (2001).
[CrossRef]

Lee, S. B.

Lee, S.-W.

S.-W. Lee, C.-S. Kim, and B.-M. Kim, "External-line cavity wavelength-swept source at 850 nm for optical coherence tomography," IEEE Photon. Technol. Lett. 19, 176-178 (2007).
[CrossRef]

Lee, T. H.

Liu, K.

S. M. Melle, K. Liu, and R. M. Measures, "A Passive Wavelength Demodulation System for Guided-Wave Bragg Grating Sensors," IEEE Photon. Technol. Lett. 4, 1539-1541 (1992).
[CrossRef]

Maklad, M.

C. J. Yeager, C. McGee, M. Maklad, and P. R. Swinehart, "Cryogenic Fiber Optic Temperature Sensors Based on Fiber Bragg Gratings," Advances in cryogenic engineering: Transactions of the Cryogenic Engineering Conference-CEC.AIP Conference Proceedings 823, 267-272 (2006).

McGee, C.

C. J. Yeager, C. McGee, M. Maklad, and P. R. Swinehart, "Cryogenic Fiber Optic Temperature Sensors Based on Fiber Bragg Gratings," Advances in cryogenic engineering: Transactions of the Cryogenic Engineering Conference-CEC.AIP Conference Proceedings 823, 267-272 (2006).

Measures, R. M.

S. M. Melle, K. Liu, and R. M. Measures, "A Passive Wavelength Demodulation System for Guided-Wave Bragg Grating Sensors," IEEE Photon. Technol. Lett. 4, 1539-1541 (1992).
[CrossRef]

Melle, S. M.

S. M. Melle, K. Liu, and R. M. Measures, "A Passive Wavelength Demodulation System for Guided-Wave Bragg Grating Sensors," IEEE Photon. Technol. Lett. 4, 1539-1541 (1992).
[CrossRef]

Mendez, A.

D. G. Kim, W. Yoo, P. Swinehart, B. Jiang, T. Haber, and A. Mendez, "Development of an FBG-Based Low Temperature Measurement System for Cargo Containment of LNG Tankers," Proc. SPIE 6770, 1-12 (2007).

Morey, W. W.

A. D. Kersey, T. A. Berkoff, and W. W. Morey, "Multiplexed fiber Bragg grating strain-sensor system with a fiber Fabry-Perot wavelength filter," Opt. Lett. 18, 33-39 (1993).
[CrossRef]

A. D. Kersey, T. A. Berkoff, and W. W. Morey, "High-resolution fiber Grating based strain sensor with interferometric wavelength-shift detection," Electron. Lett. 28, 236-238 (1992).
[CrossRef]

Patrick, H. J.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlane, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, "Fiber grating sensors," J. Lightwave Technol. 15, 1442-1463 (1997).
[CrossRef]

Pierce, M. C.

S. H. Yun, C. Boudoux, M. C. Pierce, J. F. de Boer, G. J. Tearney, and B. E. Bouma, "Extended-cavity semiconductor wavelength-swept laser for biomedical imaging," IEEE Photon. Technol. Lett. 16, 293-295 (2006).
[CrossRef]

Prosser, W. H.

M. C. Wu, and W. H. Prosser, "Simultaneous Temperature and Strain Sensing for Cryogenic Applications Using Dual-Wavelength Fiber Bragg Gratings," Proc. SPIE 5191, 208-213 (2003).
[CrossRef]

Putnam, M. A.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlane, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, "Fiber grating sensors," J. Lightwave Technol. 15, 1442-1463 (1997).
[CrossRef]

Richardson, D. J.

Ruffin, P. B.

Ryu, C.-Y.

C.-Y. Ryu, and C.-S. Hong, "Development of fiber Bragg grating sensor system using wavelength-swept fiber laser," Smart Mater. Struct. 11, 468-473 (2002).
[CrossRef]

Salza, M.

Sanders, S. T.

L. A. Kranendonk, R. Huber, J. G. Fujimoto, and S. T. Sanders, "Wavelength-agile H2O absorption spectrometer for thermometry of general combustion gases," Proc. Combust. Inst.  31, 783-790 (2007).
[CrossRef]

Song, M.

Swinehart, P.

D. G. Kim, W. Yoo, P. Swinehart, B. Jiang, T. Haber, and A. Mendez, "Development of an FBG-Based Low Temperature Measurement System for Cargo Containment of LNG Tankers," Proc. SPIE 6770, 1-12 (2007).

Swinehart, P. R.

C. J. Yeager, C. McGee, M. Maklad, and P. R. Swinehart, "Cryogenic Fiber Optic Temperature Sensors Based on Fiber Bragg Gratings," Advances in cryogenic engineering: Transactions of the Cryogenic Engineering Conference-CEC.AIP Conference Proceedings 823, 267-272 (2006).

Taira, K.

Tearney, G. J.

S. H. Yun, C. Boudoux, M. C. Pierce, J. F. de Boer, G. J. Tearney, and B. E. Bouma, "Extended-cavity semiconductor wavelength-swept laser for biomedical imaging," IEEE Photon. Technol. Lett. 16, 293-295 (2006).
[CrossRef]

Wang, Q.

Wang, Y.

Y. Wang, Y. Cui, and B. Yun, "A Fiber Bragg Grating Sensor System for Simultaneously Static and Dynamic Measurements with a Wavelength-Swept Fiber Laser," IEEE Photon. Technol. Lett. 18, 1539-1541 (2006).
[CrossRef]

Wojtkowski, M.

Wu, M. C.

M. C. Wu, and W. H. Prosser, "Simultaneous Temperature and Strain Sensing for Cryogenic Applications Using Dual-Wavelength Fiber Bragg Gratings," Proc. SPIE 5191, 208-213 (2003).
[CrossRef]

Yeager, C. J.

C. J. Yeager, C. McGee, M. Maklad, and P. R. Swinehart, "Cryogenic Fiber Optic Temperature Sensors Based on Fiber Bragg Gratings," Advances in cryogenic engineering: Transactions of the Cryogenic Engineering Conference-CEC.AIP Conference Proceedings 823, 267-272 (2006).

Yin, S.

Yoo, W.

D. G. Kim, W. Yoo, P. Swinehart, B. Jiang, T. Haber, and A. Mendez, "Development of an FBG-Based Low Temperature Measurement System for Cargo Containment of LNG Tankers," Proc. SPIE 6770, 1-12 (2007).

Yu, B. A.

S. Chung, J. Kim, B. A. Yu, and B. Lee, "A fiber Bragg grating sensor demodulation technique using a polarization maintaining fiber loop mirror," IEEE Photon. Technol. Lett. 13, 1343-1345 (2001).
[CrossRef]

Yu, Y. S.

Yun, B.

Y. Wang, Y. Cui, and B. Yun, "A Fiber Bragg Grating Sensor System for Simultaneously Static and Dynamic Measurements with a Wavelength-Swept Fiber Laser," IEEE Photon. Technol. Lett. 18, 1539-1541 (2006).
[CrossRef]

Yun, S. H.

S. H. Yun, C. Boudoux, M. C. Pierce, J. F. de Boer, G. J. Tearney, and B. E. Bouma, "Extended-cavity semiconductor wavelength-swept laser for biomedical imaging," IEEE Photon. Technol. Lett. 16, 293-295 (2006).
[CrossRef]

S. H. Yun, D. J. Richardson, and B. Y. Kim, "Interrogation of fiber grating sensor arrays with a wavelength-swept fiber laser," Opt. Lett. 23, 843-845 (1998).
[CrossRef]

Zhang, J.

AIP Conference Proceedings (1)

C. J. Yeager, C. McGee, M. Maklad, and P. R. Swinehart, "Cryogenic Fiber Optic Temperature Sensors Based on Fiber Bragg Gratings," Advances in cryogenic engineering: Transactions of the Cryogenic Engineering Conference-CEC.AIP Conference Proceedings 823, 267-272 (2006).

Appl. Opt. (1)

Electron. Lett. (1)

A. D. Kersey, T. A. Berkoff, and W. W. Morey, "High-resolution fiber Grating based strain sensor with interferometric wavelength-shift detection," Electron. Lett. 28, 236-238 (1992).
[CrossRef]

IEEE Photon. Technol. Lett. (5)

S. M. Melle, K. Liu, and R. M. Measures, "A Passive Wavelength Demodulation System for Guided-Wave Bragg Grating Sensors," IEEE Photon. Technol. Lett. 4, 1539-1541 (1992).
[CrossRef]

S. Chung, J. Kim, B. A. Yu, and B. Lee, "A fiber Bragg grating sensor demodulation technique using a polarization maintaining fiber loop mirror," IEEE Photon. Technol. Lett. 13, 1343-1345 (2001).
[CrossRef]

Y. Wang, Y. Cui, and B. Yun, "A Fiber Bragg Grating Sensor System for Simultaneously Static and Dynamic Measurements with a Wavelength-Swept Fiber Laser," IEEE Photon. Technol. Lett. 18, 1539-1541 (2006).
[CrossRef]

S.-W. Lee, C.-S. Kim, and B.-M. Kim, "External-line cavity wavelength-swept source at 850 nm for optical coherence tomography," IEEE Photon. Technol. Lett. 19, 176-178 (2007).
[CrossRef]

S. H. Yun, C. Boudoux, M. C. Pierce, J. F. de Boer, G. J. Tearney, and B. E. Bouma, "Extended-cavity semiconductor wavelength-swept laser for biomedical imaging," IEEE Photon. Technol. Lett. 16, 293-295 (2006).
[CrossRef]

J. Lightwave Technol. (1)

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlane, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, "Fiber grating sensors," J. Lightwave Technol. 15, 1442-1463 (1997).
[CrossRef]

Meas. Sci. Technol. (1)

H.-J. Bang, S.-M. Jun, and C.-G. Kim, "Stabilized interrogation and multiplexing techniques for fibre Bragg grating vibration sensors," Meas. Sci. Technol. 16, 813-820 (2005).
[CrossRef]

Opt. Express (5)

Opt. Lett. (4)

Proc. Combust. Inst. (1)

L. A. Kranendonk, R. Huber, J. G. Fujimoto, and S. T. Sanders, "Wavelength-agile H2O absorption spectrometer for thermometry of general combustion gases," Proc. Combust. Inst.  31, 783-790 (2007).
[CrossRef]

Proc. SPIE (2)

D. G. Kim, W. Yoo, P. Swinehart, B. Jiang, T. Haber, and A. Mendez, "Development of an FBG-Based Low Temperature Measurement System for Cargo Containment of LNG Tankers," Proc. SPIE 6770, 1-12 (2007).

M. C. Wu, and W. H. Prosser, "Simultaneous Temperature and Strain Sensing for Cryogenic Applications Using Dual-Wavelength Fiber Bragg Gratings," Proc. SPIE 5191, 208-213 (2003).
[CrossRef]

Smart Mater. Struct. (1)

C.-Y. Ryu, and C.-S. Hong, "Development of fiber Bragg grating sensor system using wavelength-swept fiber laser," Smart Mater. Struct. 11, 468-473 (2002).
[CrossRef]

Struct. Control Health Monit. (1)

A. Hongo, S. Kojima, and S. Komatsuzaki, "Applications of fiber Bragg grating sensors and high-speed interrogation techniques," Struct. Control Health Monit. 12, 269-282 (2005).
[CrossRef]

Other (1)

P. R. Swinehart, M. Maklad, and S. S. Courts, "Cryogenic Fiber Optic Sensors Based on Fiber Bragg Gratings," CEC-ICMC Conference Proceedings 16-20 (2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Schematic of (a) conventional wavelength swept laser and (b) FDML wavelength swept laser, which included a delayed fiber.

Fig. 2.
Fig. 2.

Spectra of the conventional wavelength swept laser source at different sweeping rates.

Fig. 3.
Fig. 3.

Temporal transient intensity profiles of the conventional wavelength swept laser source at sweeping rates of (a) 0.1 kHz, (b) 1 kHz and (c) 10 kHz.

Fig. 4.
Fig. 4.

(a) Integrated output spectra (b) Temporal transient intensity profiles of the FDML wavelength swept laser source at 31.3 kHz.

Fig. 5.
Fig. 5.

Experimental set-up for the FBG sensor interrogation system based on a FDML wavelength swept laser.

Fig. 6.
Fig. 6.

Experimental measurements of the reflection spectrum of sensors array in (a) the time-domain using a FDML wavelength swept laser and a single detector and (b) the wavelength-domain using a broadband light source and an OSA.

Fig. 7.
Fig. 7.

Plot of the time delay (τ3-τ2) as a function of applied static strain.

Fig. 8.
Fig. 8.

(a) Input signal to the PZT actuator. (b) Time response of peak points from grating τ3 using the FDML wavelength swept laser at a 31.3 kHz sweep rate.

Fig. 9.
Fig. 9.

PSD FFT spectrum of the time-interval measurement data for a 100 Hz dynamic strain.

Metrics