Abstract

We propose a novel band-rejection fiber filter based on a Bragg fiber of transversal resonant structure, which can also be used as a fiber sensor. Defect layers are introduced in the periodic high/low index structure in the cladding of the Bragg fiber. Coupling between the core mode and the defect mode results in large confinement loss for some resonant wavelengths inside the band gap of the Bragg fiber. A segment of the Bragg fiber of transversal resonant structure can be used as a band-rejection fiber filter, whose characteristics are mainly determined by the defect layer. The loss peak wavelength of the Bragg fiber is dependent on the refractive index and the thickness of the defect layer which indicates its applications of refractive index and strain sensing.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. C. Knight and P. S. J. Russell, "Photonic crystal fibers: New way to guide light," Science 296, 276-277 (2002).
    [CrossRef] [PubMed]
  2. J. C. Knight, J. Broeng, T. A. Birks, and P. S. J. Russell, "Photonic band gap guidance in optical fibers," Science 282, 1476-1478 (1998).
    [CrossRef] [PubMed]
  3. T. A. Birks, J. C. Knight, and P. St.J. Russell, "Photonic crystal fibers: New way to guide light," Opt. Lett. 22, 961-963 (1997).
    [CrossRef] [PubMed]
  4. M. Ibanescu, Y. Fink, S. Fan, E. L. Thomas, and L. D. Joannopoulos, "An all-dielectric coaxial waveguide," Science 289, 415-419 (2000).
    [CrossRef] [PubMed]
  5. G. Ouyang, Y. Xu, and A. Yariv, "Theoretical study on dispersion compensation in air-core Bragg fibres," Opt. Express 10, 889-908 (2002).
  6. S. D. Hart et al., "External reflection from omnidirectional dielectric mirror fibers," Science 296, 510-513 (2002).
    [CrossRef] [PubMed]
  7. D. H. Kim and J. U. Kang, "Sagnac loop interferometer based on polarization maintaining photonic crystal fiber with reduced temperature sensitivity," Opt. Express 12, 4490-4495 (2004).
    [CrossRef] [PubMed]
  8. S. O. Konorov and A. M. Zheltikov, "Photonic-crystal fiber as a multifunctional optical sensor and sample collector," Opt. Express 13, 3454-3459 (2005).
    [CrossRef] [PubMed]
  9. G. Ouyang, Y. Xu, and A. Yariv, "Comparative study of air-core and coaxial Bragg fibres: single-mode transmission and dispersion characteristics," Opt. Express 9, 733-747 (2001).
    [CrossRef] [PubMed]
  10. B. W. Liu et al., "Tunable bandpass filter with solid-core photonic bandgap fiber and Bragg fiber," IEEE Photon. Technol. Lett. 20, 518-520 (2008).
    [CrossRef]
  11. K. O. Hill and G. Meltz, "Fiber Bragg grating technology fundamentals and overview," J. Lightwave Technol. 15, 1263-1276 (1997).
    [CrossRef]
  12. A. M. Vengsarkar et al., "Long-period fiber gratings as band-rejection filters," J. Lightwave Technol. 14, 58-65 (1996).
    [CrossRef]
  13. K. Saitoh and M. Koshiba, "Single-polarization single-mode photonic crystal fibers," IEEE Photon. Technol. Lett. 15, 1384-1386 (2003).
    [CrossRef]
  14. H. J. Patrick, A. D. Kersey, and F. Bucholtz, "Analysis of the response of long period fiber gratings to external index of refraction," J. Lightwave Technol. 16, 1606-1612 (1998).
    [CrossRef]

2008 (1)

B. W. Liu et al., "Tunable bandpass filter with solid-core photonic bandgap fiber and Bragg fiber," IEEE Photon. Technol. Lett. 20, 518-520 (2008).
[CrossRef]

2005 (1)

2004 (1)

2003 (1)

K. Saitoh and M. Koshiba, "Single-polarization single-mode photonic crystal fibers," IEEE Photon. Technol. Lett. 15, 1384-1386 (2003).
[CrossRef]

2002 (3)

J. C. Knight and P. S. J. Russell, "Photonic crystal fibers: New way to guide light," Science 296, 276-277 (2002).
[CrossRef] [PubMed]

G. Ouyang, Y. Xu, and A. Yariv, "Theoretical study on dispersion compensation in air-core Bragg fibres," Opt. Express 10, 889-908 (2002).

S. D. Hart et al., "External reflection from omnidirectional dielectric mirror fibers," Science 296, 510-513 (2002).
[CrossRef] [PubMed]

2001 (1)

2000 (1)

M. Ibanescu, Y. Fink, S. Fan, E. L. Thomas, and L. D. Joannopoulos, "An all-dielectric coaxial waveguide," Science 289, 415-419 (2000).
[CrossRef] [PubMed]

1998 (2)

J. C. Knight, J. Broeng, T. A. Birks, and P. S. J. Russell, "Photonic band gap guidance in optical fibers," Science 282, 1476-1478 (1998).
[CrossRef] [PubMed]

H. J. Patrick, A. D. Kersey, and F. Bucholtz, "Analysis of the response of long period fiber gratings to external index of refraction," J. Lightwave Technol. 16, 1606-1612 (1998).
[CrossRef]

1997 (2)

K. O. Hill and G. Meltz, "Fiber Bragg grating technology fundamentals and overview," J. Lightwave Technol. 15, 1263-1276 (1997).
[CrossRef]

T. A. Birks, J. C. Knight, and P. St.J. Russell, "Photonic crystal fibers: New way to guide light," Opt. Lett. 22, 961-963 (1997).
[CrossRef] [PubMed]

1996 (1)

A. M. Vengsarkar et al., "Long-period fiber gratings as band-rejection filters," J. Lightwave Technol. 14, 58-65 (1996).
[CrossRef]

Birks, T. A.

J. C. Knight, J. Broeng, T. A. Birks, and P. S. J. Russell, "Photonic band gap guidance in optical fibers," Science 282, 1476-1478 (1998).
[CrossRef] [PubMed]

T. A. Birks, J. C. Knight, and P. St.J. Russell, "Photonic crystal fibers: New way to guide light," Opt. Lett. 22, 961-963 (1997).
[CrossRef] [PubMed]

Broeng, J.

J. C. Knight, J. Broeng, T. A. Birks, and P. S. J. Russell, "Photonic band gap guidance in optical fibers," Science 282, 1476-1478 (1998).
[CrossRef] [PubMed]

Bucholtz, F.

Fan, S.

M. Ibanescu, Y. Fink, S. Fan, E. L. Thomas, and L. D. Joannopoulos, "An all-dielectric coaxial waveguide," Science 289, 415-419 (2000).
[CrossRef] [PubMed]

Fink, Y.

M. Ibanescu, Y. Fink, S. Fan, E. L. Thomas, and L. D. Joannopoulos, "An all-dielectric coaxial waveguide," Science 289, 415-419 (2000).
[CrossRef] [PubMed]

Hart, S. D.

S. D. Hart et al., "External reflection from omnidirectional dielectric mirror fibers," Science 296, 510-513 (2002).
[CrossRef] [PubMed]

Hill, K. O.

K. O. Hill and G. Meltz, "Fiber Bragg grating technology fundamentals and overview," J. Lightwave Technol. 15, 1263-1276 (1997).
[CrossRef]

Ibanescu, M.

M. Ibanescu, Y. Fink, S. Fan, E. L. Thomas, and L. D. Joannopoulos, "An all-dielectric coaxial waveguide," Science 289, 415-419 (2000).
[CrossRef] [PubMed]

Joannopoulos, L. D.

M. Ibanescu, Y. Fink, S. Fan, E. L. Thomas, and L. D. Joannopoulos, "An all-dielectric coaxial waveguide," Science 289, 415-419 (2000).
[CrossRef] [PubMed]

Kang, J. U.

Kersey, A. D.

Kim, D. H.

Knight, J. C.

J. C. Knight and P. S. J. Russell, "Photonic crystal fibers: New way to guide light," Science 296, 276-277 (2002).
[CrossRef] [PubMed]

J. C. Knight, J. Broeng, T. A. Birks, and P. S. J. Russell, "Photonic band gap guidance in optical fibers," Science 282, 1476-1478 (1998).
[CrossRef] [PubMed]

T. A. Birks, J. C. Knight, and P. St.J. Russell, "Photonic crystal fibers: New way to guide light," Opt. Lett. 22, 961-963 (1997).
[CrossRef] [PubMed]

Konorov, S. O.

Koshiba, M.

K. Saitoh and M. Koshiba, "Single-polarization single-mode photonic crystal fibers," IEEE Photon. Technol. Lett. 15, 1384-1386 (2003).
[CrossRef]

Liu, B. W.

B. W. Liu et al., "Tunable bandpass filter with solid-core photonic bandgap fiber and Bragg fiber," IEEE Photon. Technol. Lett. 20, 518-520 (2008).
[CrossRef]

Meltz, G.

K. O. Hill and G. Meltz, "Fiber Bragg grating technology fundamentals and overview," J. Lightwave Technol. 15, 1263-1276 (1997).
[CrossRef]

Ouyang, G.

G. Ouyang, Y. Xu, and A. Yariv, "Theoretical study on dispersion compensation in air-core Bragg fibres," Opt. Express 10, 889-908 (2002).

G. Ouyang, Y. Xu, and A. Yariv, "Comparative study of air-core and coaxial Bragg fibres: single-mode transmission and dispersion characteristics," Opt. Express 9, 733-747 (2001).
[CrossRef] [PubMed]

Patrick, H. J.

Russell, P. S. J.

J. C. Knight and P. S. J. Russell, "Photonic crystal fibers: New way to guide light," Science 296, 276-277 (2002).
[CrossRef] [PubMed]

J. C. Knight, J. Broeng, T. A. Birks, and P. S. J. Russell, "Photonic band gap guidance in optical fibers," Science 282, 1476-1478 (1998).
[CrossRef] [PubMed]

Russell, P. St.J.

Saitoh, K.

K. Saitoh and M. Koshiba, "Single-polarization single-mode photonic crystal fibers," IEEE Photon. Technol. Lett. 15, 1384-1386 (2003).
[CrossRef]

Thomas, E. L.

M. Ibanescu, Y. Fink, S. Fan, E. L. Thomas, and L. D. Joannopoulos, "An all-dielectric coaxial waveguide," Science 289, 415-419 (2000).
[CrossRef] [PubMed]

Vengsarkar, A. M.

A. M. Vengsarkar et al., "Long-period fiber gratings as band-rejection filters," J. Lightwave Technol. 14, 58-65 (1996).
[CrossRef]

Xu, Y.

G. Ouyang, Y. Xu, and A. Yariv, "Theoretical study on dispersion compensation in air-core Bragg fibres," Opt. Express 10, 889-908 (2002).

G. Ouyang, Y. Xu, and A. Yariv, "Comparative study of air-core and coaxial Bragg fibres: single-mode transmission and dispersion characteristics," Opt. Express 9, 733-747 (2001).
[CrossRef] [PubMed]

Yariv, A.

G. Ouyang, Y. Xu, and A. Yariv, "Theoretical study on dispersion compensation in air-core Bragg fibres," Opt. Express 10, 889-908 (2002).

G. Ouyang, Y. Xu, and A. Yariv, "Comparative study of air-core and coaxial Bragg fibres: single-mode transmission and dispersion characteristics," Opt. Express 9, 733-747 (2001).
[CrossRef] [PubMed]

Zheltikov, A. M.

IEEE Photon. Technol. Lett. (2)

B. W. Liu et al., "Tunable bandpass filter with solid-core photonic bandgap fiber and Bragg fiber," IEEE Photon. Technol. Lett. 20, 518-520 (2008).
[CrossRef]

K. Saitoh and M. Koshiba, "Single-polarization single-mode photonic crystal fibers," IEEE Photon. Technol. Lett. 15, 1384-1386 (2003).
[CrossRef]

J. Lightwave Technol. (3)

H. J. Patrick, A. D. Kersey, and F. Bucholtz, "Analysis of the response of long period fiber gratings to external index of refraction," J. Lightwave Technol. 16, 1606-1612 (1998).
[CrossRef]

K. O. Hill and G. Meltz, "Fiber Bragg grating technology fundamentals and overview," J. Lightwave Technol. 15, 1263-1276 (1997).
[CrossRef]

A. M. Vengsarkar et al., "Long-period fiber gratings as band-rejection filters," J. Lightwave Technol. 14, 58-65 (1996).
[CrossRef]

Opt. Express (4)

Opt. Lett. (1)

Science (4)

M. Ibanescu, Y. Fink, S. Fan, E. L. Thomas, and L. D. Joannopoulos, "An all-dielectric coaxial waveguide," Science 289, 415-419 (2000).
[CrossRef] [PubMed]

J. C. Knight and P. S. J. Russell, "Photonic crystal fibers: New way to guide light," Science 296, 276-277 (2002).
[CrossRef] [PubMed]

J. C. Knight, J. Broeng, T. A. Birks, and P. S. J. Russell, "Photonic band gap guidance in optical fibers," Science 282, 1476-1478 (1998).
[CrossRef] [PubMed]

S. D. Hart et al., "External reflection from omnidirectional dielectric mirror fibers," Science 296, 510-513 (2002).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(a). Cross section and the refractive index profile of the Bragg fiber of transversal resonant structure. (b). Band structure of the planar dielectric mirror and dispersion property for TE01 mode of the Bragg fiber of transversal resonant structure.

Fig. 2.
Fig. 2.

Confinement of the different Bragg fibers. In the left figure, the green, red and black lines correspondes to the Bragg fiber of 6 periodic two-layer structrues without defect layer, with a defect layer of d 0=1.4142Λ, and with a defect layer of d 0=2Λ, respectively. In the right figure, the green, red and black lines correspondes to the Bragg fiber of 8, 7, an 6 periodic two-layer structrues with a defect layer of d 0=2Λ, respectively. Inset of the right figure shows the transmission spectrum of a 10-cm Bragg fiber with 8 periodic two-layer structures and one defect layer.

Fig. 3.
Fig. 3.

One eighth-plane of the Bragg fiber’s cross section for calculation (a) and power flow profiles of TE01 modes and defect modes for wavelength of 1223nm (b), 1224nm (c), 1225nm (d), 1226nm (e) and 1227nm (f).

Fig. 4.
Fig. 4.

Confinement loss of the Bragg fibers of 7 periodic two-layer structures with a defect layer in 3rd periodic two-layer structure (a), a defect layer in 5th two-layer structure (b), and two defect layers in 3rd and 5th two-layer structures (c).

Fig. 5.
Fig. 5.

(a). Peak wavelengths of the confinement loss as a function of the refractive index of the defect layer. (b) Peak wavelengths of the confinement loss as a funchtion of the degree of deformation for thickness of the defect layer.

Metrics