Abstract

Suspended-core fibers are systematically studied. We show that confinement loss in suspended-core fibers can be effectively reduced by an increase of air-cladding width for even sub-micron core diameters and, therefore, provides a considerable simpler solution than equivalent photonic crystal fibers with a large number of air holes for a wide range of nonlinear applications. We have further demonstrated a suspended-core silica fiber with core diameters of 1.27µm and sub-dB splice loss to Hi1060. Loss at 1.55µm was measured in this fiber to be 0.078dB/m, a record for this small core diameter, limited mainly by scattering loss at the glass and air interface. The combination of high nonlinearity, low splice loss and low transmission loss of the suspended core silica fibers will enable a new class of low loss all-fiber nonlinear devices.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. K. Ranka, R. S. Windeler, and A. J. Stentz, "Visible continuum generation in air-silica micro-structured optical fibers with anomalous dispersion at 800nm," Opt. Lett. 25, 25-27 (2000).
    [CrossRef]
  2. P. St. J. Russell, "Photonic-crystal fibers," J. Lightwave. Technol. 24, 4729-4749 (2006).
    [CrossRef]
  3. R. R. Alfano and S. L. Shairo, "Emission in the region 4000 to 7000 Ǻ via four-photon coupling I n glass," Phys. Rev. Lett. 24, 592-594 (1970).
    [CrossRef]
  4. J. M. Dudley, G. Genty, and S. Coen, "Supercontinuum generation in photonic crystal fiber," Rev. Mod. Phy. 78, 1135-1184 (2006).
    [CrossRef]
  5. K. M. Kiang, K. Frampton, T. M. Monro, R. Moore, J. Tucknott, D. W. Hewak, D. J. Richardson, and H. N. Rutt, "Extruded singlemode non-silica glass holey optical fibres," Electron. Lett. 38, 546-547 (2002).
    [CrossRef]
  6. V. V. Ravi Kanth Kumar, A. K. George, J. C. Knight, and P. St. J. Russell, "Tellurite photonic crystal fiber," Opt. Express 11, 2641-2645 (2003).
    [CrossRef]
  7. P. Petropoulos, H. Ebendorff-Heidepriem, V. Finazzi, R. C. Moore, K. Frampton, D. J. Richardson, and T. M. Monro, "Highly nonlinear and anomalously dispersive lead silicate glass holey fibers," Opt. Express 11, 3568-3573 (2003).
    [CrossRef] [PubMed]
  8. P. Domachuk, N. A. Wolchover, M. Cronin-Golomb, A Wang, A. K. George, C. M. B. Cordeiro, J. C. Knight, and F. G. Omenetto, "Over 4000nm bandwidth of Mid-IR supercontinuum generation in sub-centimeter segments of highly nonlinear tellurite PCFs," Opt. Express 16, 7161-7168 (2008).
    [CrossRef] [PubMed]
  9. F. G. Omenetto and N. A. Wolchover, M. R. Wehner, M. Ross, A. Efimov, and A. J. Taylor, V. V. R. K. Kumar, A. K. George, J. C. Knight, N. Y. Joly, and P. St. J. Russell, "Spectrally smooth supercontinuum from 350 nm to 3 μm in sub-centimeter lengths of soft-glass photonic crystal fibers," Opt. Express 14, 4929-4934 (2006).
    [CrossRef]
  10. K. Mukasa, M. N. Petrovich, F. Poletti, A. Webb, J. Hayes, A. van Brakel, R. A. Correa, L. Provost, J. Sahu, P. Petropoulos and D. J. Richardson, "Novel fabrication method of highly nonlinear silica holey fibers," Optical Fiber Communications Conference, paper CMC535, Anaheim, California, March 2006.
  11. P. Yeh and A. Yariv, "Theory of Bragg fiber," J. Opt. Soc. Am. 68, 1196-1201(1978).
    [CrossRef]
  12. V. Finazzi, T. M. Monro, and D. J. Richardson, "The role of confinement loss in highly nonlinear silica holey fibers," IEEE Photon. Technol. Lett. 15, 1246-1248 (2003).
    [CrossRef]
  13. T. P White, B. T. Kuhlmey, R. C. McPhedran, D. Maystre, G. Renversez, C. Martin de Sterke and L. C. Botten, "Multipole method for microstructured optical fibers, I. formulation," J. Opt. Soc. Am B 19, 2322-2340 (2002).
    [CrossRef]
  14. A. G. Ghatak and K. Thyagarajan, Introduction to Fiber Optics, (Cambridge University Press, 1998).
  15. M. E. Lines, W. A. Reed, D. J. DiGiovanni and J. R. Hamblin, "Explanation of anomalous loss in high delta singlemode fibers," Electron. Lett. 35, 1009-1010 (1999).
    [CrossRef]
  16. I. Hartl, L. B. Fu, B. K. Thomas, L. Dong, M. E. Fermann, J. Kim, F. X. Kärtner and C. Menyuk, "Self-referenced fCEO stabilization of a low noise femtosecond fiber oscillator," Conference on Lasers and Electro-Optics, paper CTuC4, San Jose, CA, May 2008.
  17. L. Fu, B. K. Thomas and L. Dong, "Efficient supercontinuum generation in silica suspended core fibers," submitted to Opt. Express.

2008 (1)

2006 (3)

P. St. J. Russell, "Photonic-crystal fibers," J. Lightwave. Technol. 24, 4729-4749 (2006).
[CrossRef]

J. M. Dudley, G. Genty, and S. Coen, "Supercontinuum generation in photonic crystal fiber," Rev. Mod. Phy. 78, 1135-1184 (2006).
[CrossRef]

F. G. Omenetto and N. A. Wolchover, M. R. Wehner, M. Ross, A. Efimov, and A. J. Taylor, V. V. R. K. Kumar, A. K. George, J. C. Knight, N. Y. Joly, and P. St. J. Russell, "Spectrally smooth supercontinuum from 350 nm to 3 μm in sub-centimeter lengths of soft-glass photonic crystal fibers," Opt. Express 14, 4929-4934 (2006).
[CrossRef]

2003 (3)

2002 (2)

T. P White, B. T. Kuhlmey, R. C. McPhedran, D. Maystre, G. Renversez, C. Martin de Sterke and L. C. Botten, "Multipole method for microstructured optical fibers, I. formulation," J. Opt. Soc. Am B 19, 2322-2340 (2002).
[CrossRef]

K. M. Kiang, K. Frampton, T. M. Monro, R. Moore, J. Tucknott, D. W. Hewak, D. J. Richardson, and H. N. Rutt, "Extruded singlemode non-silica glass holey optical fibres," Electron. Lett. 38, 546-547 (2002).
[CrossRef]

2000 (1)

1999 (1)

M. E. Lines, W. A. Reed, D. J. DiGiovanni and J. R. Hamblin, "Explanation of anomalous loss in high delta singlemode fibers," Electron. Lett. 35, 1009-1010 (1999).
[CrossRef]

1978 (1)

1970 (1)

R. R. Alfano and S. L. Shairo, "Emission in the region 4000 to 7000 Ǻ via four-photon coupling I n glass," Phys. Rev. Lett. 24, 592-594 (1970).
[CrossRef]

Alfano, R. R.

R. R. Alfano and S. L. Shairo, "Emission in the region 4000 to 7000 Ǻ via four-photon coupling I n glass," Phys. Rev. Lett. 24, 592-594 (1970).
[CrossRef]

Botten, L. C.

T. P White, B. T. Kuhlmey, R. C. McPhedran, D. Maystre, G. Renversez, C. Martin de Sterke and L. C. Botten, "Multipole method for microstructured optical fibers, I. formulation," J. Opt. Soc. Am B 19, 2322-2340 (2002).
[CrossRef]

Coen, S.

J. M. Dudley, G. Genty, and S. Coen, "Supercontinuum generation in photonic crystal fiber," Rev. Mod. Phy. 78, 1135-1184 (2006).
[CrossRef]

Cordeiro, C. M. B.

Cronin-Golomb, M.

DiGiovanni, D. J.

M. E. Lines, W. A. Reed, D. J. DiGiovanni and J. R. Hamblin, "Explanation of anomalous loss in high delta singlemode fibers," Electron. Lett. 35, 1009-1010 (1999).
[CrossRef]

Domachuk, P.

Dong, L.

L. Fu, B. K. Thomas and L. Dong, "Efficient supercontinuum generation in silica suspended core fibers," submitted to Opt. Express.

Dudley, J. M.

J. M. Dudley, G. Genty, and S. Coen, "Supercontinuum generation in photonic crystal fiber," Rev. Mod. Phy. 78, 1135-1184 (2006).
[CrossRef]

Ebendorff-Heidepriem, H.

Efimov, A.

F. G. Omenetto and N. A. Wolchover, M. R. Wehner, M. Ross, A. Efimov, and A. J. Taylor, V. V. R. K. Kumar, A. K. George, J. C. Knight, N. Y. Joly, and P. St. J. Russell, "Spectrally smooth supercontinuum from 350 nm to 3 μm in sub-centimeter lengths of soft-glass photonic crystal fibers," Opt. Express 14, 4929-4934 (2006).
[CrossRef]

Finazzi, V.

Frampton, K.

P. Petropoulos, H. Ebendorff-Heidepriem, V. Finazzi, R. C. Moore, K. Frampton, D. J. Richardson, and T. M. Monro, "Highly nonlinear and anomalously dispersive lead silicate glass holey fibers," Opt. Express 11, 3568-3573 (2003).
[CrossRef] [PubMed]

K. M. Kiang, K. Frampton, T. M. Monro, R. Moore, J. Tucknott, D. W. Hewak, D. J. Richardson, and H. N. Rutt, "Extruded singlemode non-silica glass holey optical fibres," Electron. Lett. 38, 546-547 (2002).
[CrossRef]

Fu, L.

L. Fu, B. K. Thomas and L. Dong, "Efficient supercontinuum generation in silica suspended core fibers," submitted to Opt. Express.

Genty, G.

J. M. Dudley, G. Genty, and S. Coen, "Supercontinuum generation in photonic crystal fiber," Rev. Mod. Phy. 78, 1135-1184 (2006).
[CrossRef]

George, A. K.

P. Domachuk, N. A. Wolchover, M. Cronin-Golomb, A Wang, A. K. George, C. M. B. Cordeiro, J. C. Knight, and F. G. Omenetto, "Over 4000nm bandwidth of Mid-IR supercontinuum generation in sub-centimeter segments of highly nonlinear tellurite PCFs," Opt. Express 16, 7161-7168 (2008).
[CrossRef] [PubMed]

F. G. Omenetto and N. A. Wolchover, M. R. Wehner, M. Ross, A. Efimov, and A. J. Taylor, V. V. R. K. Kumar, A. K. George, J. C. Knight, N. Y. Joly, and P. St. J. Russell, "Spectrally smooth supercontinuum from 350 nm to 3 μm in sub-centimeter lengths of soft-glass photonic crystal fibers," Opt. Express 14, 4929-4934 (2006).
[CrossRef]

V. V. Ravi Kanth Kumar, A. K. George, J. C. Knight, and P. St. J. Russell, "Tellurite photonic crystal fiber," Opt. Express 11, 2641-2645 (2003).
[CrossRef]

Hamblin, J. R.

M. E. Lines, W. A. Reed, D. J. DiGiovanni and J. R. Hamblin, "Explanation of anomalous loss in high delta singlemode fibers," Electron. Lett. 35, 1009-1010 (1999).
[CrossRef]

Hewak, D. W.

K. M. Kiang, K. Frampton, T. M. Monro, R. Moore, J. Tucknott, D. W. Hewak, D. J. Richardson, and H. N. Rutt, "Extruded singlemode non-silica glass holey optical fibres," Electron. Lett. 38, 546-547 (2002).
[CrossRef]

Joly, N. Y.

F. G. Omenetto and N. A. Wolchover, M. R. Wehner, M. Ross, A. Efimov, and A. J. Taylor, V. V. R. K. Kumar, A. K. George, J. C. Knight, N. Y. Joly, and P. St. J. Russell, "Spectrally smooth supercontinuum from 350 nm to 3 μm in sub-centimeter lengths of soft-glass photonic crystal fibers," Opt. Express 14, 4929-4934 (2006).
[CrossRef]

Kiang, K. M.

K. M. Kiang, K. Frampton, T. M. Monro, R. Moore, J. Tucknott, D. W. Hewak, D. J. Richardson, and H. N. Rutt, "Extruded singlemode non-silica glass holey optical fibres," Electron. Lett. 38, 546-547 (2002).
[CrossRef]

Knight, J. C.

P. Domachuk, N. A. Wolchover, M. Cronin-Golomb, A Wang, A. K. George, C. M. B. Cordeiro, J. C. Knight, and F. G. Omenetto, "Over 4000nm bandwidth of Mid-IR supercontinuum generation in sub-centimeter segments of highly nonlinear tellurite PCFs," Opt. Express 16, 7161-7168 (2008).
[CrossRef] [PubMed]

F. G. Omenetto and N. A. Wolchover, M. R. Wehner, M. Ross, A. Efimov, and A. J. Taylor, V. V. R. K. Kumar, A. K. George, J. C. Knight, N. Y. Joly, and P. St. J. Russell, "Spectrally smooth supercontinuum from 350 nm to 3 μm in sub-centimeter lengths of soft-glass photonic crystal fibers," Opt. Express 14, 4929-4934 (2006).
[CrossRef]

V. V. Ravi Kanth Kumar, A. K. George, J. C. Knight, and P. St. J. Russell, "Tellurite photonic crystal fiber," Opt. Express 11, 2641-2645 (2003).
[CrossRef]

Kuhlmey, B. T.

T. P White, B. T. Kuhlmey, R. C. McPhedran, D. Maystre, G. Renversez, C. Martin de Sterke and L. C. Botten, "Multipole method for microstructured optical fibers, I. formulation," J. Opt. Soc. Am B 19, 2322-2340 (2002).
[CrossRef]

Kumar, V. V. R. K.

F. G. Omenetto and N. A. Wolchover, M. R. Wehner, M. Ross, A. Efimov, and A. J. Taylor, V. V. R. K. Kumar, A. K. George, J. C. Knight, N. Y. Joly, and P. St. J. Russell, "Spectrally smooth supercontinuum from 350 nm to 3 μm in sub-centimeter lengths of soft-glass photonic crystal fibers," Opt. Express 14, 4929-4934 (2006).
[CrossRef]

Lines, M. E.

M. E. Lines, W. A. Reed, D. J. DiGiovanni and J. R. Hamblin, "Explanation of anomalous loss in high delta singlemode fibers," Electron. Lett. 35, 1009-1010 (1999).
[CrossRef]

Martin de Sterke, C.

T. P White, B. T. Kuhlmey, R. C. McPhedran, D. Maystre, G. Renversez, C. Martin de Sterke and L. C. Botten, "Multipole method for microstructured optical fibers, I. formulation," J. Opt. Soc. Am B 19, 2322-2340 (2002).
[CrossRef]

Maystre, D.

T. P White, B. T. Kuhlmey, R. C. McPhedran, D. Maystre, G. Renversez, C. Martin de Sterke and L. C. Botten, "Multipole method for microstructured optical fibers, I. formulation," J. Opt. Soc. Am B 19, 2322-2340 (2002).
[CrossRef]

McPhedran, R. C.

T. P White, B. T. Kuhlmey, R. C. McPhedran, D. Maystre, G. Renversez, C. Martin de Sterke and L. C. Botten, "Multipole method for microstructured optical fibers, I. formulation," J. Opt. Soc. Am B 19, 2322-2340 (2002).
[CrossRef]

Monro, T. M.

V. Finazzi, T. M. Monro, and D. J. Richardson, "The role of confinement loss in highly nonlinear silica holey fibers," IEEE Photon. Technol. Lett. 15, 1246-1248 (2003).
[CrossRef]

P. Petropoulos, H. Ebendorff-Heidepriem, V. Finazzi, R. C. Moore, K. Frampton, D. J. Richardson, and T. M. Monro, "Highly nonlinear and anomalously dispersive lead silicate glass holey fibers," Opt. Express 11, 3568-3573 (2003).
[CrossRef] [PubMed]

K. M. Kiang, K. Frampton, T. M. Monro, R. Moore, J. Tucknott, D. W. Hewak, D. J. Richardson, and H. N. Rutt, "Extruded singlemode non-silica glass holey optical fibres," Electron. Lett. 38, 546-547 (2002).
[CrossRef]

Moore, R.

K. M. Kiang, K. Frampton, T. M. Monro, R. Moore, J. Tucknott, D. W. Hewak, D. J. Richardson, and H. N. Rutt, "Extruded singlemode non-silica glass holey optical fibres," Electron. Lett. 38, 546-547 (2002).
[CrossRef]

Moore, R. C.

Omenetto, F. G.

P. Domachuk, N. A. Wolchover, M. Cronin-Golomb, A Wang, A. K. George, C. M. B. Cordeiro, J. C. Knight, and F. G. Omenetto, "Over 4000nm bandwidth of Mid-IR supercontinuum generation in sub-centimeter segments of highly nonlinear tellurite PCFs," Opt. Express 16, 7161-7168 (2008).
[CrossRef] [PubMed]

F. G. Omenetto and N. A. Wolchover, M. R. Wehner, M. Ross, A. Efimov, and A. J. Taylor, V. V. R. K. Kumar, A. K. George, J. C. Knight, N. Y. Joly, and P. St. J. Russell, "Spectrally smooth supercontinuum from 350 nm to 3 μm in sub-centimeter lengths of soft-glass photonic crystal fibers," Opt. Express 14, 4929-4934 (2006).
[CrossRef]

Petropoulos, P.

Ranka, J. K.

Ravi Kanth Kumar, V. V.

Reed, W. A.

M. E. Lines, W. A. Reed, D. J. DiGiovanni and J. R. Hamblin, "Explanation of anomalous loss in high delta singlemode fibers," Electron. Lett. 35, 1009-1010 (1999).
[CrossRef]

Renversez, G.

T. P White, B. T. Kuhlmey, R. C. McPhedran, D. Maystre, G. Renversez, C. Martin de Sterke and L. C. Botten, "Multipole method for microstructured optical fibers, I. formulation," J. Opt. Soc. Am B 19, 2322-2340 (2002).
[CrossRef]

Richardson, D. J.

V. Finazzi, T. M. Monro, and D. J. Richardson, "The role of confinement loss in highly nonlinear silica holey fibers," IEEE Photon. Technol. Lett. 15, 1246-1248 (2003).
[CrossRef]

P. Petropoulos, H. Ebendorff-Heidepriem, V. Finazzi, R. C. Moore, K. Frampton, D. J. Richardson, and T. M. Monro, "Highly nonlinear and anomalously dispersive lead silicate glass holey fibers," Opt. Express 11, 3568-3573 (2003).
[CrossRef] [PubMed]

K. M. Kiang, K. Frampton, T. M. Monro, R. Moore, J. Tucknott, D. W. Hewak, D. J. Richardson, and H. N. Rutt, "Extruded singlemode non-silica glass holey optical fibres," Electron. Lett. 38, 546-547 (2002).
[CrossRef]

Ross, M.

F. G. Omenetto and N. A. Wolchover, M. R. Wehner, M. Ross, A. Efimov, and A. J. Taylor, V. V. R. K. Kumar, A. K. George, J. C. Knight, N. Y. Joly, and P. St. J. Russell, "Spectrally smooth supercontinuum from 350 nm to 3 μm in sub-centimeter lengths of soft-glass photonic crystal fibers," Opt. Express 14, 4929-4934 (2006).
[CrossRef]

Russell, P. St. J.

F. G. Omenetto and N. A. Wolchover, M. R. Wehner, M. Ross, A. Efimov, and A. J. Taylor, V. V. R. K. Kumar, A. K. George, J. C. Knight, N. Y. Joly, and P. St. J. Russell, "Spectrally smooth supercontinuum from 350 nm to 3 μm in sub-centimeter lengths of soft-glass photonic crystal fibers," Opt. Express 14, 4929-4934 (2006).
[CrossRef]

P. St. J. Russell, "Photonic-crystal fibers," J. Lightwave. Technol. 24, 4729-4749 (2006).
[CrossRef]

Rutt, H. N.

K. M. Kiang, K. Frampton, T. M. Monro, R. Moore, J. Tucknott, D. W. Hewak, D. J. Richardson, and H. N. Rutt, "Extruded singlemode non-silica glass holey optical fibres," Electron. Lett. 38, 546-547 (2002).
[CrossRef]

Shairo, S. L.

R. R. Alfano and S. L. Shairo, "Emission in the region 4000 to 7000 Ǻ via four-photon coupling I n glass," Phys. Rev. Lett. 24, 592-594 (1970).
[CrossRef]

St, P.

Stentz, A. J.

Taylor, A. J.

F. G. Omenetto and N. A. Wolchover, M. R. Wehner, M. Ross, A. Efimov, and A. J. Taylor, V. V. R. K. Kumar, A. K. George, J. C. Knight, N. Y. Joly, and P. St. J. Russell, "Spectrally smooth supercontinuum from 350 nm to 3 μm in sub-centimeter lengths of soft-glass photonic crystal fibers," Opt. Express 14, 4929-4934 (2006).
[CrossRef]

Thomas, B. K.

L. Fu, B. K. Thomas and L. Dong, "Efficient supercontinuum generation in silica suspended core fibers," submitted to Opt. Express.

Tucknott, J.

K. M. Kiang, K. Frampton, T. M. Monro, R. Moore, J. Tucknott, D. W. Hewak, D. J. Richardson, and H. N. Rutt, "Extruded singlemode non-silica glass holey optical fibres," Electron. Lett. 38, 546-547 (2002).
[CrossRef]

Wang, A

Wehner, M. R.

F. G. Omenetto and N. A. Wolchover, M. R. Wehner, M. Ross, A. Efimov, and A. J. Taylor, V. V. R. K. Kumar, A. K. George, J. C. Knight, N. Y. Joly, and P. St. J. Russell, "Spectrally smooth supercontinuum from 350 nm to 3 μm in sub-centimeter lengths of soft-glass photonic crystal fibers," Opt. Express 14, 4929-4934 (2006).
[CrossRef]

White, T. P

T. P White, B. T. Kuhlmey, R. C. McPhedran, D. Maystre, G. Renversez, C. Martin de Sterke and L. C. Botten, "Multipole method for microstructured optical fibers, I. formulation," J. Opt. Soc. Am B 19, 2322-2340 (2002).
[CrossRef]

Windeler, R. S.

Wolchover, N. A.

P. Domachuk, N. A. Wolchover, M. Cronin-Golomb, A Wang, A. K. George, C. M. B. Cordeiro, J. C. Knight, and F. G. Omenetto, "Over 4000nm bandwidth of Mid-IR supercontinuum generation in sub-centimeter segments of highly nonlinear tellurite PCFs," Opt. Express 16, 7161-7168 (2008).
[CrossRef] [PubMed]

F. G. Omenetto and N. A. Wolchover, M. R. Wehner, M. Ross, A. Efimov, and A. J. Taylor, V. V. R. K. Kumar, A. K. George, J. C. Knight, N. Y. Joly, and P. St. J. Russell, "Spectrally smooth supercontinuum from 350 nm to 3 μm in sub-centimeter lengths of soft-glass photonic crystal fibers," Opt. Express 14, 4929-4934 (2006).
[CrossRef]

Yariv, A.

Yeh, P.

Electron. Lett. (2)

K. M. Kiang, K. Frampton, T. M. Monro, R. Moore, J. Tucknott, D. W. Hewak, D. J. Richardson, and H. N. Rutt, "Extruded singlemode non-silica glass holey optical fibres," Electron. Lett. 38, 546-547 (2002).
[CrossRef]

M. E. Lines, W. A. Reed, D. J. DiGiovanni and J. R. Hamblin, "Explanation of anomalous loss in high delta singlemode fibers," Electron. Lett. 35, 1009-1010 (1999).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

V. Finazzi, T. M. Monro, and D. J. Richardson, "The role of confinement loss in highly nonlinear silica holey fibers," IEEE Photon. Technol. Lett. 15, 1246-1248 (2003).
[CrossRef]

J. Lightwave. Technol. (1)

P. St. J. Russell, "Photonic-crystal fibers," J. Lightwave. Technol. 24, 4729-4749 (2006).
[CrossRef]

J. Opt. Soc. Am B (1)

T. P White, B. T. Kuhlmey, R. C. McPhedran, D. Maystre, G. Renversez, C. Martin de Sterke and L. C. Botten, "Multipole method for microstructured optical fibers, I. formulation," J. Opt. Soc. Am B 19, 2322-2340 (2002).
[CrossRef]

J. Opt. Soc. Am. (1)

Opt. Express (4)

Opt. Express. (1)

L. Fu, B. K. Thomas and L. Dong, "Efficient supercontinuum generation in silica suspended core fibers," submitted to Opt. Express.

Opt. Lett. (1)

Phys. Rev. Lett. (1)

R. R. Alfano and S. L. Shairo, "Emission in the region 4000 to 7000 Ǻ via four-photon coupling I n glass," Phys. Rev. Lett. 24, 592-594 (1970).
[CrossRef]

Rev. Mod. Phy. (1)

J. M. Dudley, G. Genty, and S. Coen, "Supercontinuum generation in photonic crystal fiber," Rev. Mod. Phy. 78, 1135-1184 (2006).
[CrossRef]

Other (3)

I. Hartl, L. B. Fu, B. K. Thomas, L. Dong, M. E. Fermann, J. Kim, F. X. Kärtner and C. Menyuk, "Self-referenced fCEO stabilization of a low noise femtosecond fiber oscillator," Conference on Lasers and Electro-Optics, paper CTuC4, San Jose, CA, May 2008.

A. G. Ghatak and K. Thyagarajan, Introduction to Fiber Optics, (Cambridge University Press, 1998).

K. Mukasa, M. N. Petrovich, F. Poletti, A. Webb, J. Hayes, A. van Brakel, R. A. Correa, L. Provost, J. Sahu, P. Petropoulos and D. J. Richardson, "Novel fabrication method of highly nonlinear silica holey fibers," Optical Fiber Communications Conference, paper CMC535, Anaheim, California, March 2006.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

(a). MFD at 1µm versus V value for step-index fibers with various NAs, (b) MFD versus V value at various wavelengths for a step-index fiber with a NA of 1.05.

Fig. 2.
Fig. 2.

(a). Waveguide dispersion in step-index fibers with various NAs, (b) Material dispersion of fused silica, along with the minimum 1st zero dispersion wavelengths λ01 marked out by symbols for step-index fibers with various NAs. The V value of each fiber required to achieve the minimum λ01 is listed in the legends.

Fig. 3.
Fig. 3.

Confinement loss of SCFs with air-cladding width d=5, 7.5, 10, 12.5, and 15µm, lines with symbols, are shown on right vertical axis. Corresponding waveguide dispersions, lines, are shown on left vertical axis. The dispersion curves remain mostly the same with a change of d.

Fig. 4.
Fig. 4.

(a). Confinement loss versus normalized air-cladding width d/2ρ at various normalized wavelengths, λ/2ρ. Simulation is performed for 2ρ=1µm at various wavelengths. (b). Normalized field for d=15µm and 2ρ=1µm at various normalized wavelengths.

Fig. 5.
Fig. 5.

(a). Waveguide dispersion for SCFs with various core diameters. Inset shows the fiber structure studied, six air holes in a hexagonal grid with d/Λ=0.99. Core diameter 2ρ is given in the legends.

Fig. 6.
Fig. 6.

Measured loss for three fibers; SCF1: 2ρ=2.3µm, no germanium in the core; SCF2: 2ρ=2.3µm, germanium doped center of ~60% core radius, graded refractive index with NA=0.275, SCF3: 2ρ=1.27µm, with germanium-doped center similar to SCF2. Close up of SCF1 is essentially the same as SCF2. A global view is used to show the whole fiber instead. The solid line fit is of the formula: A+B/λ3.

Fig. 7.
Fig. 7.

Measured dispersion and simulated Multipole result with using six air holes as shown in the bottom inset. Index difference between the two polarization modes is also shown. A simulated mode at 1.05µm is also shown in the bottom inset. The top inset shows measured fringe pattern from interference of the two birefringence modes.

Metrics