Abstract

We characterize a strongly anisotropic waveguide consisting of alternating 80 nm layers of n+-InGaAs and i-AlInAs on InP substrate. A strong increase in the transverse magnetic (TM) reflection at λ=8.4 µm corresponds to a characteristic low-order mode cutoff for the left-handed waveguide. The subsequent decrease of TM reflection at λ=11.5 µm represents the onset of right-handed no-cutoff light guiding. Good qualitative agreement is found when the experimental results are compared to finite element and transfer-matrix frequency domain simulations.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. A. Shelby, D. R. Smith, and S. Schultz, "Experimental Verification of a Negative Index of Refraction," Science 292, 77 - 79 (2001).
    [CrossRef] [PubMed]
  2. V. M. Shalaev, "Optical negative-index metamaterials," Nat. Photonics 1, 41 - 48 (2007).
    [CrossRef]
  3. D. R. Smith and D. Schurig, "Electromagnetic Wave Propagation in Media with Indefinite Permittivity and Permeability Tensors," Phys. Rev. Lett. 90, 077405 (2003).
    [CrossRef] [PubMed]
  4. D. R. Smith, S. Schurig, J. J. Mock, P. Kolinko, and P. Rye, "Partial focusing of radiation by a slab of indefinite media," Appl. Phys. Lett. 84, 2244 - 2246 (2004).
    [CrossRef]
  5. A. J. Hoffman, L. Alekseyev, S. S. Howard, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, "Negative refraction in semiconductor metamaterials," Nat. Mater. 6, 946 - 950 (2007).
    [CrossRef] [PubMed]
  6. J. Yao, Z. Liu, Y. Liu, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, "Optical Negative Refraction in Bulk Metamaterials of Nanowires," Science 321, 930 (2008).
    [CrossRef] [PubMed]
  7. J. Elser and V. A. Podolskiy, "Scattering free plasmonic optics with anisotropic metamaterials," Phys. Rev. Lett. 100, 066402 (2008).
    [CrossRef] [PubMed]
  8. J. Elser, A. A. Govyadinov, I. Avrustky, I. Salakhutdinov, and V. A. Podolskiy, "Plasmonic nanolayer composites: coupled plasmon polaritons, effective-medium response, and subdiffraction light manipulation," J. Nanomaterials,  2007, 79469 (2007).
    [CrossRef]
  9. A. A. Govyadinov and V. A. Podolskiy, "Subdiffraction light propagation in fibers with anisotropic dielectric cores," Phys. Rev. B. 75, 155108 (2006).
  10. Z. Jacob, L. V. Alekseyev, and E. E. Narimanov, "Optical Hyperlens: Far-field imaging beyond the diffraction limit," Opt. Express 14, 8247 - 8256 (2006).
    [CrossRef] [PubMed]
  11. V. A. Podolskiy and E. E. Narimanov, "Strongly anisotropic waveguide as a nonmagnetic left-handed system," Phys. Rev. B 71, 201101 (2005).
    [CrossRef]
  12. V. G. Veselago, "Electrodynamics of substances with simultaneously negative values of sigma and mu," Sov. Phys. Usp. 10, 509 (1968).
    [CrossRef]
  13. J. B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 85, 3966 - 3969 (2000).
    [CrossRef] [PubMed]
  14. D. R. Smith and J. B. Pendry, "Homogenization of metamaterials by field averaging," J. Opt. Soc. Am. B 23, 391 (2006).
    [CrossRef]
  15. J. Elser, V. A. Podolskiy, I. Salakhutdinov, and I. Avrutsky, "Nonlocal effects in effective-medium response of nanolayered metamaterials," Appl. Phys. Lett 90, 191109 (2007).
    [CrossRef]
  16. www.comsol.com
  17. V. V. Shevchenko, Continuous transitions in open waveguides (Golem Press, Boulder, 1971).
  18. J. Elser, R. Wangber, V. A. Podolskiy, and E. E. Narimanov, "Nanowire metamaterials with extreme optical anisotropy," Appl. Phys. Lett. 89, 261102 (2006).
    [CrossRef]

2008 (2)

J. Yao, Z. Liu, Y. Liu, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, "Optical Negative Refraction in Bulk Metamaterials of Nanowires," Science 321, 930 (2008).
[CrossRef] [PubMed]

J. Elser and V. A. Podolskiy, "Scattering free plasmonic optics with anisotropic metamaterials," Phys. Rev. Lett. 100, 066402 (2008).
[CrossRef] [PubMed]

2007 (4)

J. Elser, A. A. Govyadinov, I. Avrustky, I. Salakhutdinov, and V. A. Podolskiy, "Plasmonic nanolayer composites: coupled plasmon polaritons, effective-medium response, and subdiffraction light manipulation," J. Nanomaterials,  2007, 79469 (2007).
[CrossRef]

V. M. Shalaev, "Optical negative-index metamaterials," Nat. Photonics 1, 41 - 48 (2007).
[CrossRef]

A. J. Hoffman, L. Alekseyev, S. S. Howard, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, "Negative refraction in semiconductor metamaterials," Nat. Mater. 6, 946 - 950 (2007).
[CrossRef] [PubMed]

J. Elser, V. A. Podolskiy, I. Salakhutdinov, and I. Avrutsky, "Nonlocal effects in effective-medium response of nanolayered metamaterials," Appl. Phys. Lett 90, 191109 (2007).
[CrossRef]

2006 (4)

J. Elser, R. Wangber, V. A. Podolskiy, and E. E. Narimanov, "Nanowire metamaterials with extreme optical anisotropy," Appl. Phys. Lett. 89, 261102 (2006).
[CrossRef]

D. R. Smith and J. B. Pendry, "Homogenization of metamaterials by field averaging," J. Opt. Soc. Am. B 23, 391 (2006).
[CrossRef]

A. A. Govyadinov and V. A. Podolskiy, "Subdiffraction light propagation in fibers with anisotropic dielectric cores," Phys. Rev. B. 75, 155108 (2006).

Z. Jacob, L. V. Alekseyev, and E. E. Narimanov, "Optical Hyperlens: Far-field imaging beyond the diffraction limit," Opt. Express 14, 8247 - 8256 (2006).
[CrossRef] [PubMed]

2005 (1)

V. A. Podolskiy and E. E. Narimanov, "Strongly anisotropic waveguide as a nonmagnetic left-handed system," Phys. Rev. B 71, 201101 (2005).
[CrossRef]

2004 (1)

D. R. Smith, S. Schurig, J. J. Mock, P. Kolinko, and P. Rye, "Partial focusing of radiation by a slab of indefinite media," Appl. Phys. Lett. 84, 2244 - 2246 (2004).
[CrossRef]

2003 (1)

D. R. Smith and D. Schurig, "Electromagnetic Wave Propagation in Media with Indefinite Permittivity and Permeability Tensors," Phys. Rev. Lett. 90, 077405 (2003).
[CrossRef] [PubMed]

2001 (1)

R. A. Shelby, D. R. Smith, and S. Schultz, "Experimental Verification of a Negative Index of Refraction," Science 292, 77 - 79 (2001).
[CrossRef] [PubMed]

2000 (1)

J. B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 85, 3966 - 3969 (2000).
[CrossRef] [PubMed]

1968 (1)

V. G. Veselago, "Electrodynamics of substances with simultaneously negative values of sigma and mu," Sov. Phys. Usp. 10, 509 (1968).
[CrossRef]

Alekseyev, L.

A. J. Hoffman, L. Alekseyev, S. S. Howard, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, "Negative refraction in semiconductor metamaterials," Nat. Mater. 6, 946 - 950 (2007).
[CrossRef] [PubMed]

Alekseyev, L. V.

Avrustky, I.

J. Elser, A. A. Govyadinov, I. Avrustky, I. Salakhutdinov, and V. A. Podolskiy, "Plasmonic nanolayer composites: coupled plasmon polaritons, effective-medium response, and subdiffraction light manipulation," J. Nanomaterials,  2007, 79469 (2007).
[CrossRef]

Avrutsky, I.

J. Elser, V. A. Podolskiy, I. Salakhutdinov, and I. Avrutsky, "Nonlocal effects in effective-medium response of nanolayered metamaterials," Appl. Phys. Lett 90, 191109 (2007).
[CrossRef]

Bartal, G.

J. Yao, Z. Liu, Y. Liu, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, "Optical Negative Refraction in Bulk Metamaterials of Nanowires," Science 321, 930 (2008).
[CrossRef] [PubMed]

Elser, J.

J. Elser and V. A. Podolskiy, "Scattering free plasmonic optics with anisotropic metamaterials," Phys. Rev. Lett. 100, 066402 (2008).
[CrossRef] [PubMed]

J. Elser, A. A. Govyadinov, I. Avrustky, I. Salakhutdinov, and V. A. Podolskiy, "Plasmonic nanolayer composites: coupled plasmon polaritons, effective-medium response, and subdiffraction light manipulation," J. Nanomaterials,  2007, 79469 (2007).
[CrossRef]

J. Elser, V. A. Podolskiy, I. Salakhutdinov, and I. Avrutsky, "Nonlocal effects in effective-medium response of nanolayered metamaterials," Appl. Phys. Lett 90, 191109 (2007).
[CrossRef]

J. Elser, R. Wangber, V. A. Podolskiy, and E. E. Narimanov, "Nanowire metamaterials with extreme optical anisotropy," Appl. Phys. Lett. 89, 261102 (2006).
[CrossRef]

Gmachl, C.

A. J. Hoffman, L. Alekseyev, S. S. Howard, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, "Negative refraction in semiconductor metamaterials," Nat. Mater. 6, 946 - 950 (2007).
[CrossRef] [PubMed]

Govyadinov, A. A.

J. Elser, A. A. Govyadinov, I. Avrustky, I. Salakhutdinov, and V. A. Podolskiy, "Plasmonic nanolayer composites: coupled plasmon polaritons, effective-medium response, and subdiffraction light manipulation," J. Nanomaterials,  2007, 79469 (2007).
[CrossRef]

A. A. Govyadinov and V. A. Podolskiy, "Subdiffraction light propagation in fibers with anisotropic dielectric cores," Phys. Rev. B. 75, 155108 (2006).

Hoffman, A. J.

A. J. Hoffman, L. Alekseyev, S. S. Howard, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, "Negative refraction in semiconductor metamaterials," Nat. Mater. 6, 946 - 950 (2007).
[CrossRef] [PubMed]

Howard, S. S.

A. J. Hoffman, L. Alekseyev, S. S. Howard, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, "Negative refraction in semiconductor metamaterials," Nat. Mater. 6, 946 - 950 (2007).
[CrossRef] [PubMed]

Jacob, Z.

Kolinko, P.

D. R. Smith, S. Schurig, J. J. Mock, P. Kolinko, and P. Rye, "Partial focusing of radiation by a slab of indefinite media," Appl. Phys. Lett. 84, 2244 - 2246 (2004).
[CrossRef]

Liu, Y.

J. Yao, Z. Liu, Y. Liu, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, "Optical Negative Refraction in Bulk Metamaterials of Nanowires," Science 321, 930 (2008).
[CrossRef] [PubMed]

Liu, Z.

J. Yao, Z. Liu, Y. Liu, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, "Optical Negative Refraction in Bulk Metamaterials of Nanowires," Science 321, 930 (2008).
[CrossRef] [PubMed]

Mock, J. J.

D. R. Smith, S. Schurig, J. J. Mock, P. Kolinko, and P. Rye, "Partial focusing of radiation by a slab of indefinite media," Appl. Phys. Lett. 84, 2244 - 2246 (2004).
[CrossRef]

Narimanov, E. E.

A. J. Hoffman, L. Alekseyev, S. S. Howard, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, "Negative refraction in semiconductor metamaterials," Nat. Mater. 6, 946 - 950 (2007).
[CrossRef] [PubMed]

Z. Jacob, L. V. Alekseyev, and E. E. Narimanov, "Optical Hyperlens: Far-field imaging beyond the diffraction limit," Opt. Express 14, 8247 - 8256 (2006).
[CrossRef] [PubMed]

J. Elser, R. Wangber, V. A. Podolskiy, and E. E. Narimanov, "Nanowire metamaterials with extreme optical anisotropy," Appl. Phys. Lett. 89, 261102 (2006).
[CrossRef]

V. A. Podolskiy and E. E. Narimanov, "Strongly anisotropic waveguide as a nonmagnetic left-handed system," Phys. Rev. B 71, 201101 (2005).
[CrossRef]

Pendry, J. B.

D. R. Smith and J. B. Pendry, "Homogenization of metamaterials by field averaging," J. Opt. Soc. Am. B 23, 391 (2006).
[CrossRef]

J. B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 85, 3966 - 3969 (2000).
[CrossRef] [PubMed]

Podolskiy, V. A.

J. Elser and V. A. Podolskiy, "Scattering free plasmonic optics with anisotropic metamaterials," Phys. Rev. Lett. 100, 066402 (2008).
[CrossRef] [PubMed]

J. Elser, A. A. Govyadinov, I. Avrustky, I. Salakhutdinov, and V. A. Podolskiy, "Plasmonic nanolayer composites: coupled plasmon polaritons, effective-medium response, and subdiffraction light manipulation," J. Nanomaterials,  2007, 79469 (2007).
[CrossRef]

A. J. Hoffman, L. Alekseyev, S. S. Howard, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, "Negative refraction in semiconductor metamaterials," Nat. Mater. 6, 946 - 950 (2007).
[CrossRef] [PubMed]

J. Elser, V. A. Podolskiy, I. Salakhutdinov, and I. Avrutsky, "Nonlocal effects in effective-medium response of nanolayered metamaterials," Appl. Phys. Lett 90, 191109 (2007).
[CrossRef]

J. Elser, R. Wangber, V. A. Podolskiy, and E. E. Narimanov, "Nanowire metamaterials with extreme optical anisotropy," Appl. Phys. Lett. 89, 261102 (2006).
[CrossRef]

A. A. Govyadinov and V. A. Podolskiy, "Subdiffraction light propagation in fibers with anisotropic dielectric cores," Phys. Rev. B. 75, 155108 (2006).

V. A. Podolskiy and E. E. Narimanov, "Strongly anisotropic waveguide as a nonmagnetic left-handed system," Phys. Rev. B 71, 201101 (2005).
[CrossRef]

Rye, P.

D. R. Smith, S. Schurig, J. J. Mock, P. Kolinko, and P. Rye, "Partial focusing of radiation by a slab of indefinite media," Appl. Phys. Lett. 84, 2244 - 2246 (2004).
[CrossRef]

Salakhutdinov, I.

J. Elser, A. A. Govyadinov, I. Avrustky, I. Salakhutdinov, and V. A. Podolskiy, "Plasmonic nanolayer composites: coupled plasmon polaritons, effective-medium response, and subdiffraction light manipulation," J. Nanomaterials,  2007, 79469 (2007).
[CrossRef]

J. Elser, V. A. Podolskiy, I. Salakhutdinov, and I. Avrutsky, "Nonlocal effects in effective-medium response of nanolayered metamaterials," Appl. Phys. Lett 90, 191109 (2007).
[CrossRef]

Schultz, S.

R. A. Shelby, D. R. Smith, and S. Schultz, "Experimental Verification of a Negative Index of Refraction," Science 292, 77 - 79 (2001).
[CrossRef] [PubMed]

Schurig, D.

D. R. Smith and D. Schurig, "Electromagnetic Wave Propagation in Media with Indefinite Permittivity and Permeability Tensors," Phys. Rev. Lett. 90, 077405 (2003).
[CrossRef] [PubMed]

Schurig, S.

D. R. Smith, S. Schurig, J. J. Mock, P. Kolinko, and P. Rye, "Partial focusing of radiation by a slab of indefinite media," Appl. Phys. Lett. 84, 2244 - 2246 (2004).
[CrossRef]

Shalaev, V. M.

V. M. Shalaev, "Optical negative-index metamaterials," Nat. Photonics 1, 41 - 48 (2007).
[CrossRef]

Shelby, R. A.

R. A. Shelby, D. R. Smith, and S. Schultz, "Experimental Verification of a Negative Index of Refraction," Science 292, 77 - 79 (2001).
[CrossRef] [PubMed]

Sivco, D. L.

A. J. Hoffman, L. Alekseyev, S. S. Howard, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, "Negative refraction in semiconductor metamaterials," Nat. Mater. 6, 946 - 950 (2007).
[CrossRef] [PubMed]

Smith, D. R.

D. R. Smith and J. B. Pendry, "Homogenization of metamaterials by field averaging," J. Opt. Soc. Am. B 23, 391 (2006).
[CrossRef]

D. R. Smith, S. Schurig, J. J. Mock, P. Kolinko, and P. Rye, "Partial focusing of radiation by a slab of indefinite media," Appl. Phys. Lett. 84, 2244 - 2246 (2004).
[CrossRef]

D. R. Smith and D. Schurig, "Electromagnetic Wave Propagation in Media with Indefinite Permittivity and Permeability Tensors," Phys. Rev. Lett. 90, 077405 (2003).
[CrossRef] [PubMed]

R. A. Shelby, D. R. Smith, and S. Schultz, "Experimental Verification of a Negative Index of Refraction," Science 292, 77 - 79 (2001).
[CrossRef] [PubMed]

Stacy, A. M.

J. Yao, Z. Liu, Y. Liu, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, "Optical Negative Refraction in Bulk Metamaterials of Nanowires," Science 321, 930 (2008).
[CrossRef] [PubMed]

Sun, C.

J. Yao, Z. Liu, Y. Liu, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, "Optical Negative Refraction in Bulk Metamaterials of Nanowires," Science 321, 930 (2008).
[CrossRef] [PubMed]

Veselago, V. G.

V. G. Veselago, "Electrodynamics of substances with simultaneously negative values of sigma and mu," Sov. Phys. Usp. 10, 509 (1968).
[CrossRef]

Wangber, R.

J. Elser, R. Wangber, V. A. Podolskiy, and E. E. Narimanov, "Nanowire metamaterials with extreme optical anisotropy," Appl. Phys. Lett. 89, 261102 (2006).
[CrossRef]

Wasserman, D.

A. J. Hoffman, L. Alekseyev, S. S. Howard, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, "Negative refraction in semiconductor metamaterials," Nat. Mater. 6, 946 - 950 (2007).
[CrossRef] [PubMed]

Yao, J.

J. Yao, Z. Liu, Y. Liu, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, "Optical Negative Refraction in Bulk Metamaterials of Nanowires," Science 321, 930 (2008).
[CrossRef] [PubMed]

Zhang, X.

J. Yao, Z. Liu, Y. Liu, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, "Optical Negative Refraction in Bulk Metamaterials of Nanowires," Science 321, 930 (2008).
[CrossRef] [PubMed]

Appl. Phys. Lett (1)

J. Elser, V. A. Podolskiy, I. Salakhutdinov, and I. Avrutsky, "Nonlocal effects in effective-medium response of nanolayered metamaterials," Appl. Phys. Lett 90, 191109 (2007).
[CrossRef]

Appl. Phys. Lett. (2)

J. Elser, R. Wangber, V. A. Podolskiy, and E. E. Narimanov, "Nanowire metamaterials with extreme optical anisotropy," Appl. Phys. Lett. 89, 261102 (2006).
[CrossRef]

D. R. Smith, S. Schurig, J. J. Mock, P. Kolinko, and P. Rye, "Partial focusing of radiation by a slab of indefinite media," Appl. Phys. Lett. 84, 2244 - 2246 (2004).
[CrossRef]

J. Nanomaterials (1)

J. Elser, A. A. Govyadinov, I. Avrustky, I. Salakhutdinov, and V. A. Podolskiy, "Plasmonic nanolayer composites: coupled plasmon polaritons, effective-medium response, and subdiffraction light manipulation," J. Nanomaterials,  2007, 79469 (2007).
[CrossRef]

J. Opt. Soc. Am. B (1)

Nat. Mater. (1)

A. J. Hoffman, L. Alekseyev, S. S. Howard, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, "Negative refraction in semiconductor metamaterials," Nat. Mater. 6, 946 - 950 (2007).
[CrossRef] [PubMed]

Nat. Photonics (1)

V. M. Shalaev, "Optical negative-index metamaterials," Nat. Photonics 1, 41 - 48 (2007).
[CrossRef]

Opt. Express (1)

Phys. Rev. B (1)

V. A. Podolskiy and E. E. Narimanov, "Strongly anisotropic waveguide as a nonmagnetic left-handed system," Phys. Rev. B 71, 201101 (2005).
[CrossRef]

Phys. Rev. B. (1)

A. A. Govyadinov and V. A. Podolskiy, "Subdiffraction light propagation in fibers with anisotropic dielectric cores," Phys. Rev. B. 75, 155108 (2006).

Phys. Rev. Lett. (3)

J. Elser and V. A. Podolskiy, "Scattering free plasmonic optics with anisotropic metamaterials," Phys. Rev. Lett. 100, 066402 (2008).
[CrossRef] [PubMed]

D. R. Smith and D. Schurig, "Electromagnetic Wave Propagation in Media with Indefinite Permittivity and Permeability Tensors," Phys. Rev. Lett. 90, 077405 (2003).
[CrossRef] [PubMed]

J. B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 85, 3966 - 3969 (2000).
[CrossRef] [PubMed]

Science (2)

J. Yao, Z. Liu, Y. Liu, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, "Optical Negative Refraction in Bulk Metamaterials of Nanowires," Science 321, 930 (2008).
[CrossRef] [PubMed]

R. A. Shelby, D. R. Smith, and S. Schultz, "Experimental Verification of a Negative Index of Refraction," Science 292, 77 - 79 (2001).
[CrossRef] [PubMed]

Sov. Phys. Usp. (1)

V. G. Veselago, "Electrodynamics of substances with simultaneously negative values of sigma and mu," Sov. Phys. Usp. 10, 509 (1968).
[CrossRef]

Other (2)

www.comsol.com

V. V. Shevchenko, Continuous transitions in open waveguides (Golem Press, Boulder, 1971).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Calculated values of ε and ε versus wavelength using the effective medium approximation for a metamaterial with n d =7.9×1018 cm-3. The shaded yellow region marks the spectral region where modes of sufficiently high order have negative n. The top left inset shows a schematic of the experimental setup and the bottom left inset shows a schematic of the sample used in the experiment and the definition of the coordinate system. The dashed circles show the location of the center of the incident beam for the different measurements.

Fig. 2.
Fig. 2.

(a). Measured ratio of the reflectance from the InP and metamaterial, R InP+meta , to the reflectance of the InP, R InP , for several incident angles. The solid lines are for the TM polarization and the dashed line is for the TE polarization with an incident angle of 50°. The data are linearly spaced. (b). Finite element frequency domain calculations of the ratio of the reflectance from the InP and metamaterial, R InP+meta , to the reflectance of the InP, R InP , for several incident angles. The solid lines are for the TM polarization and the dashed line is for the TE polarization with an incident angle of 50°.

Fig. 3.
Fig. 3.

Select mode profiles calculated at 10.2 µm. The boundaries between air and the metamaterial and the metamaterial and InP are at −10 and 10 µm respectively. Purple shows the 1st order mode, blue shows the 5th order mode, and red shows the 9th order mode.

Fig. 4.
Fig. 4.

(a). Real and imaginary parts of n for the first 10 modes at λ=10.2 µm. (b). Real and imaginary parts of n versus wavelength for the 5th order mode.

Metrics