Abstract

A dielectric subwavelength resonant waveguide grating was designed and fabricated in order to enhance fluorescence of biomolecules. More than 80 times higher laser-induced fluorescence yield was observed from enhanced green fluorescence protein on the structure when compared to same material on a flat surface.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Tawa, H. Hori, K. Kintaka, K. Kiyosue, Y. Tatsu, and J. Nishii, "Optical microscopic observation of fluorescence enhanced by grating-coupled surface plasmon resonance," Opt. Express 16, 9781-9790 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-13-9781.
    [CrossRef] [PubMed]
  2. F.-C. Chien, C.-Y. Lin, J.-N. Yih, K.-L. Lee, C.-W. Chang, P.-K. Wei, and S.-J. Chen, "Plasmon-enhanced optical waveguide biosensors constructed with sub-wavelength gold grating," Proc. SPIE 6323, 63230M (2006).
    [CrossRef]
  3. J. Zhang and J. R. Lakowicz, "Metal-enhanced fluorescence of an organic fluorophore using gold particles," Opt. Express 15, 2598-2606 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-5-2598.
    [CrossRef] [PubMed]
  4. N. Ganesh, W. Zhang, P. C. Mathias, and B. T. Cunningham, "Enhanced fluorescence emission from quantum dots on a photonic crystal surface," Nature Nanotech. 2, 515-520 (2007).
    [CrossRef]
  5. P. C. Mathias, N. Ganesh, L. L. Chan, and B. T. Cunningham, "Combined enhanced fluorescence and label-free biomolecular detection with a photonic crystal surface," Appl. Opt. 46, 2351-2360 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=ao-46-12-2351.
    [CrossRef] [PubMed]
  6. S. S. Wang and R. Magnusson, "Theory and applications of guided-mode resonance filters," Appl. Opt. 32, 2606-2613 (1993), http://www.opticsinfobase.org/abstract.cfm?URI=ao-32-14-2606.
    [CrossRef]
  7. T. Vallius, P. Vahimaa, and J. Turunen, "Pulse deformations at guided-mode resonance filters," Opt. Express 10, 840-843 (2002), http://www.opticsinfobase.org/abstract.cfm?URI=oe-10-16-840.
    [PubMed]
  8. M. Siltanen, S. Leivo, P. Voima, M. Kauranen, P. Karvinen, P. Vahimaa, and M. Kuittinen, "Strong enhancement of second-harmonic generation in all-dielectric resonant waveguide grating," Appl. Phys. Lett. 91, 111109 (2007).
    [CrossRef]
  9. J. Saarinen, E. Noponen, and J. Turunen, "Guided-mode resonance filters of finite aperture," Opt. Eng. 34, 2560-2566 (1995).
    [CrossRef]
  10. B. Cunningham, P. Li, B. Lin, and J. Pepper, "Colorimetric resonant reflection as a direct biochemical assay technique," Sens. Actuators B 81, 316-328 (2002).
    [CrossRef]
  11. P. Y. Li, B. Lin, J. Gerstenmaier, and B. T. Cunningham, "A new method for label-free imaging of biomolecular interactions," Sens. Actuators B 996-13 (2004).
    [CrossRef]
  12. J. Yih, Y. Chu, Y. Mao, W. Wang, F. Chien, C. Lin, K. Lee, P. Wei, and S. Chen, "Optical waveguide biosensors constructed with subwavelength gratings," Appl. Opt. 45, 1938-1942 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=ao-45-9-1938.
    [CrossRef] [PubMed]
  13. J. Turunen, "Diffraction theory of microrelief gratings," in Micro-optics: Elements, Systems and Applications, ed. H.P. Herzig, (Taylor & Fracis, London, 1997)
  14. P. Rai-Choudhury, Handbook of Microlithography, Micromachining, and Microfabrication: Volume 1: Microlithography, (SPIE-The International Society for Optical Engineering, 1997)

2008

2007

M. Siltanen, S. Leivo, P. Voima, M. Kauranen, P. Karvinen, P. Vahimaa, and M. Kuittinen, "Strong enhancement of second-harmonic generation in all-dielectric resonant waveguide grating," Appl. Phys. Lett. 91, 111109 (2007).
[CrossRef]

J. Zhang and J. R. Lakowicz, "Metal-enhanced fluorescence of an organic fluorophore using gold particles," Opt. Express 15, 2598-2606 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-5-2598.
[CrossRef] [PubMed]

N. Ganesh, W. Zhang, P. C. Mathias, and B. T. Cunningham, "Enhanced fluorescence emission from quantum dots on a photonic crystal surface," Nature Nanotech. 2, 515-520 (2007).
[CrossRef]

P. C. Mathias, N. Ganesh, L. L. Chan, and B. T. Cunningham, "Combined enhanced fluorescence and label-free biomolecular detection with a photonic crystal surface," Appl. Opt. 46, 2351-2360 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=ao-46-12-2351.
[CrossRef] [PubMed]

2006

F.-C. Chien, C.-Y. Lin, J.-N. Yih, K.-L. Lee, C.-W. Chang, P.-K. Wei, and S.-J. Chen, "Plasmon-enhanced optical waveguide biosensors constructed with sub-wavelength gold grating," Proc. SPIE 6323, 63230M (2006).
[CrossRef]

J. Yih, Y. Chu, Y. Mao, W. Wang, F. Chien, C. Lin, K. Lee, P. Wei, and S. Chen, "Optical waveguide biosensors constructed with subwavelength gratings," Appl. Opt. 45, 1938-1942 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=ao-45-9-1938.
[CrossRef] [PubMed]

2004

P. Y. Li, B. Lin, J. Gerstenmaier, and B. T. Cunningham, "A new method for label-free imaging of biomolecular interactions," Sens. Actuators B 996-13 (2004).
[CrossRef]

2002

T. Vallius, P. Vahimaa, and J. Turunen, "Pulse deformations at guided-mode resonance filters," Opt. Express 10, 840-843 (2002), http://www.opticsinfobase.org/abstract.cfm?URI=oe-10-16-840.
[PubMed]

B. Cunningham, P. Li, B. Lin, and J. Pepper, "Colorimetric resonant reflection as a direct biochemical assay technique," Sens. Actuators B 81, 316-328 (2002).
[CrossRef]

1995

J. Saarinen, E. Noponen, and J. Turunen, "Guided-mode resonance filters of finite aperture," Opt. Eng. 34, 2560-2566 (1995).
[CrossRef]

1993

Chan, L. L.

Chang, C.-W.

F.-C. Chien, C.-Y. Lin, J.-N. Yih, K.-L. Lee, C.-W. Chang, P.-K. Wei, and S.-J. Chen, "Plasmon-enhanced optical waveguide biosensors constructed with sub-wavelength gold grating," Proc. SPIE 6323, 63230M (2006).
[CrossRef]

Chen, S.

Chen, S.-J.

F.-C. Chien, C.-Y. Lin, J.-N. Yih, K.-L. Lee, C.-W. Chang, P.-K. Wei, and S.-J. Chen, "Plasmon-enhanced optical waveguide biosensors constructed with sub-wavelength gold grating," Proc. SPIE 6323, 63230M (2006).
[CrossRef]

Chien, F.

Chien, F.-C.

F.-C. Chien, C.-Y. Lin, J.-N. Yih, K.-L. Lee, C.-W. Chang, P.-K. Wei, and S.-J. Chen, "Plasmon-enhanced optical waveguide biosensors constructed with sub-wavelength gold grating," Proc. SPIE 6323, 63230M (2006).
[CrossRef]

Chu, Y.

Cunningham, B.

B. Cunningham, P. Li, B. Lin, and J. Pepper, "Colorimetric resonant reflection as a direct biochemical assay technique," Sens. Actuators B 81, 316-328 (2002).
[CrossRef]

Cunningham, B. T.

P. C. Mathias, N. Ganesh, L. L. Chan, and B. T. Cunningham, "Combined enhanced fluorescence and label-free biomolecular detection with a photonic crystal surface," Appl. Opt. 46, 2351-2360 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=ao-46-12-2351.
[CrossRef] [PubMed]

N. Ganesh, W. Zhang, P. C. Mathias, and B. T. Cunningham, "Enhanced fluorescence emission from quantum dots on a photonic crystal surface," Nature Nanotech. 2, 515-520 (2007).
[CrossRef]

P. Y. Li, B. Lin, J. Gerstenmaier, and B. T. Cunningham, "A new method for label-free imaging of biomolecular interactions," Sens. Actuators B 996-13 (2004).
[CrossRef]

Ganesh, N.

Gerstenmaier, J.

P. Y. Li, B. Lin, J. Gerstenmaier, and B. T. Cunningham, "A new method for label-free imaging of biomolecular interactions," Sens. Actuators B 996-13 (2004).
[CrossRef]

Hori, H.

Karvinen, P.

M. Siltanen, S. Leivo, P. Voima, M. Kauranen, P. Karvinen, P. Vahimaa, and M. Kuittinen, "Strong enhancement of second-harmonic generation in all-dielectric resonant waveguide grating," Appl. Phys. Lett. 91, 111109 (2007).
[CrossRef]

Kauranen, M.

M. Siltanen, S. Leivo, P. Voima, M. Kauranen, P. Karvinen, P. Vahimaa, and M. Kuittinen, "Strong enhancement of second-harmonic generation in all-dielectric resonant waveguide grating," Appl. Phys. Lett. 91, 111109 (2007).
[CrossRef]

Kintaka, K.

Kiyosue, K.

Kuittinen, M.

M. Siltanen, S. Leivo, P. Voima, M. Kauranen, P. Karvinen, P. Vahimaa, and M. Kuittinen, "Strong enhancement of second-harmonic generation in all-dielectric resonant waveguide grating," Appl. Phys. Lett. 91, 111109 (2007).
[CrossRef]

Lakowicz, J. R.

Lee, K.

Lee, K.-L.

F.-C. Chien, C.-Y. Lin, J.-N. Yih, K.-L. Lee, C.-W. Chang, P.-K. Wei, and S.-J. Chen, "Plasmon-enhanced optical waveguide biosensors constructed with sub-wavelength gold grating," Proc. SPIE 6323, 63230M (2006).
[CrossRef]

Leivo, S.

M. Siltanen, S. Leivo, P. Voima, M. Kauranen, P. Karvinen, P. Vahimaa, and M. Kuittinen, "Strong enhancement of second-harmonic generation in all-dielectric resonant waveguide grating," Appl. Phys. Lett. 91, 111109 (2007).
[CrossRef]

Li, P.

B. Cunningham, P. Li, B. Lin, and J. Pepper, "Colorimetric resonant reflection as a direct biochemical assay technique," Sens. Actuators B 81, 316-328 (2002).
[CrossRef]

Li, P. Y.

P. Y. Li, B. Lin, J. Gerstenmaier, and B. T. Cunningham, "A new method for label-free imaging of biomolecular interactions," Sens. Actuators B 996-13 (2004).
[CrossRef]

Lin, B.

P. Y. Li, B. Lin, J. Gerstenmaier, and B. T. Cunningham, "A new method for label-free imaging of biomolecular interactions," Sens. Actuators B 996-13 (2004).
[CrossRef]

B. Cunningham, P. Li, B. Lin, and J. Pepper, "Colorimetric resonant reflection as a direct biochemical assay technique," Sens. Actuators B 81, 316-328 (2002).
[CrossRef]

Lin, C.

Lin, C.-Y.

F.-C. Chien, C.-Y. Lin, J.-N. Yih, K.-L. Lee, C.-W. Chang, P.-K. Wei, and S.-J. Chen, "Plasmon-enhanced optical waveguide biosensors constructed with sub-wavelength gold grating," Proc. SPIE 6323, 63230M (2006).
[CrossRef]

Magnusson, R.

Mao, Y.

Mathias, P. C.

Nishii, J.

Noponen, E.

J. Saarinen, E. Noponen, and J. Turunen, "Guided-mode resonance filters of finite aperture," Opt. Eng. 34, 2560-2566 (1995).
[CrossRef]

Pepper, J.

B. Cunningham, P. Li, B. Lin, and J. Pepper, "Colorimetric resonant reflection as a direct biochemical assay technique," Sens. Actuators B 81, 316-328 (2002).
[CrossRef]

Saarinen, J.

J. Saarinen, E. Noponen, and J. Turunen, "Guided-mode resonance filters of finite aperture," Opt. Eng. 34, 2560-2566 (1995).
[CrossRef]

Siltanen, M.

M. Siltanen, S. Leivo, P. Voima, M. Kauranen, P. Karvinen, P. Vahimaa, and M. Kuittinen, "Strong enhancement of second-harmonic generation in all-dielectric resonant waveguide grating," Appl. Phys. Lett. 91, 111109 (2007).
[CrossRef]

Tatsu, Y.

Tawa, K.

Turunen, J.

Vahimaa, P.

M. Siltanen, S. Leivo, P. Voima, M. Kauranen, P. Karvinen, P. Vahimaa, and M. Kuittinen, "Strong enhancement of second-harmonic generation in all-dielectric resonant waveguide grating," Appl. Phys. Lett. 91, 111109 (2007).
[CrossRef]

T. Vallius, P. Vahimaa, and J. Turunen, "Pulse deformations at guided-mode resonance filters," Opt. Express 10, 840-843 (2002), http://www.opticsinfobase.org/abstract.cfm?URI=oe-10-16-840.
[PubMed]

Vallius, T.

Voima, P.

M. Siltanen, S. Leivo, P. Voima, M. Kauranen, P. Karvinen, P. Vahimaa, and M. Kuittinen, "Strong enhancement of second-harmonic generation in all-dielectric resonant waveguide grating," Appl. Phys. Lett. 91, 111109 (2007).
[CrossRef]

Wang, S. S.

Wang, W.

Wei, P.

Wei, P.-K.

F.-C. Chien, C.-Y. Lin, J.-N. Yih, K.-L. Lee, C.-W. Chang, P.-K. Wei, and S.-J. Chen, "Plasmon-enhanced optical waveguide biosensors constructed with sub-wavelength gold grating," Proc. SPIE 6323, 63230M (2006).
[CrossRef]

Yih, J.

Yih, J.-N.

F.-C. Chien, C.-Y. Lin, J.-N. Yih, K.-L. Lee, C.-W. Chang, P.-K. Wei, and S.-J. Chen, "Plasmon-enhanced optical waveguide biosensors constructed with sub-wavelength gold grating," Proc. SPIE 6323, 63230M (2006).
[CrossRef]

Zhang, J.

Zhang, W.

N. Ganesh, W. Zhang, P. C. Mathias, and B. T. Cunningham, "Enhanced fluorescence emission from quantum dots on a photonic crystal surface," Nature Nanotech. 2, 515-520 (2007).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

M. Siltanen, S. Leivo, P. Voima, M. Kauranen, P. Karvinen, P. Vahimaa, and M. Kuittinen, "Strong enhancement of second-harmonic generation in all-dielectric resonant waveguide grating," Appl. Phys. Lett. 91, 111109 (2007).
[CrossRef]

Nature Nanotechnology

N. Ganesh, W. Zhang, P. C. Mathias, and B. T. Cunningham, "Enhanced fluorescence emission from quantum dots on a photonic crystal surface," Nature Nanotech. 2, 515-520 (2007).
[CrossRef]

Opt. Eng.

J. Saarinen, E. Noponen, and J. Turunen, "Guided-mode resonance filters of finite aperture," Opt. Eng. 34, 2560-2566 (1995).
[CrossRef]

Opt. Express

Proc. SPIE

F.-C. Chien, C.-Y. Lin, J.-N. Yih, K.-L. Lee, C.-W. Chang, P.-K. Wei, and S.-J. Chen, "Plasmon-enhanced optical waveguide biosensors constructed with sub-wavelength gold grating," Proc. SPIE 6323, 63230M (2006).
[CrossRef]

Sens. Actuators B

B. Cunningham, P. Li, B. Lin, and J. Pepper, "Colorimetric resonant reflection as a direct biochemical assay technique," Sens. Actuators B 81, 316-328 (2002).
[CrossRef]

P. Y. Li, B. Lin, J. Gerstenmaier, and B. T. Cunningham, "A new method for label-free imaging of biomolecular interactions," Sens. Actuators B 996-13 (2004).
[CrossRef]

Other

J. Turunen, "Diffraction theory of microrelief gratings," in Micro-optics: Elements, Systems and Applications, ed. H.P. Herzig, (Taylor & Fracis, London, 1997)

P. Rai-Choudhury, Handbook of Microlithography, Micromachining, and Microfabrication: Volume 1: Microlithography, (SPIE-The International Society for Optical Engineering, 1997)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

A schematic diagram of the measurement setup and the sample. A RWG fabricated on SiO2 substrate is covered with fluorescent proteins (EGFP) and illuminated from the substrate side. Resulting fluorescence is detected with a CCD while the incident angle is varied (the sample is rotated).

Fig. 2.
Fig. 2.

Calculated enhancement of the energy density when compared to the incoming field. Cross-section of one period is shown on the left: white lines denote boundaries between different materials (as from left to right: SiO2 substrate, TiO2 coating and water) and dashed red and blue lines show the sections examined more closely in the plotted curves on the right. Illumination is from the left, and the angle of incidence is 2.35° in relative to the z-axis.

Fig. 3.
Fig. 3.

SEM image of the RWG structure.

Fig. 4.
Fig. 4.

Scaled intensity images (in arbitrary units) taken from (a) flat TiO2 surface, (b) the RWG structure when incident angle is outside resonance and (c) the RWG when the resonance conditions are met.

Fig. 5.
Fig. 5.

Measured gain in fluorescence when compared to unstructured surface for two similar samples (blue dots and red diamonds), and a rough theoretical estimation of the fluorescence gain made during the design step (black solid curve).

Metrics