Abstract

An extensive study of the single-step replication of form-birefringent quarter-wave plates is presented. Using rigorous diffraction theory, the fabrication parameters and tolerances are carefully studied in order to obtain ideal conditions for successful replication. The design considerations are then applied to fabricate a master element by electron-beam lithography, and to replicate quarter-wave plates using the UV-moulding process. The measurements show that the replicas behave as high-performance quarter-wave plates for the design wavelength.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge U. Press, Cambridge, UK, 1999).
  2. D. C. Flanders, “Submicrometer periodicity gratings as artificial anisotropic dielectrics,” Appl. Phys. Lett. 42, 492–494 (1983).
    [CrossRef]
  3. R. C. Enger and S. K. Case, “Optical elements with ultrahigh spatial-frequency surface corrugations,” Appl. Opt. 22, 3220–3228 (1983).
    [CrossRef] [PubMed]
  4. L. H. Cescato, E. Gluch, and N. Streibl, “Holographic quarter wave plates,” Appl. Opt. 29, 3286–3290 (1990).
    [CrossRef] [PubMed]
  5. T. Isano, Y. Kaneda, N. Iwakami, K. Ishizuka, and N. Susuki, “Fabrication of half-wave plates with subwavelength structures,” Jpn. J. Appl. Phys. 43, 5294–5296 (2004).
    [CrossRef]
  6. F. Xu, R.-C. Tyan, P.-C. Sun, Y. Fainman, C.-C. Cheng, and A. Scherer, “Fabrication, modeling, and characterization of form-birefringent nanostructures,” Opt. Lett. 20, 2457–2459 (1995).
    [CrossRef] [PubMed]
  7. D. L. Brundrett, E. N. Glytsis, and T. K. Gaylord, “Subwavelength transmission grating retarders for use at 10.6 microns,” Appl. Opt. 35, 6195–6202 (1996).
    [CrossRef] [PubMed]
  8. L. Pang, M. Nezhad, U. Levy, C-H. Tsai, and Y. Fainman, “Form-birefringence structure fabrication in GaAs by use of SU-8 as a dry-etching mask,” Appl. Opt. 44, 2377–2381 (2005).
    [CrossRef] [PubMed]
  9. T. J. Kim, G. Campbell, and R. K. Kostuk, “Volume holographic phase retardation elements,” Opt. Lett. 20, 2030–2032 (1995).
    [CrossRef] [PubMed]
  10. W. Yu, K. Satoh, H. Kikuta, T. Konishi, and T. Yotsuya, “Synthesis of wave plates using multilayered subwavelength structure,” Jpn. J. Appl. Phys. 43, L439–L441 (2004).
    [CrossRef]
  11. X. Deng, F. Liu, J. J. Wang, P. F. Sciortino, J. L. Chen, and X. Liu, “Achromatic wave plates for optical pickup units fabricated by use of imprint lithography,” Opt. Lett. 30, 2614–2616 (2005).
    [CrossRef] [PubMed]
  12. J. J. Kim, X. Deng, X. Liu, A. Nikolov, P. Sciortino, F. Liu, and L. Chen, “Ultraviolet wave plates based on monolithic integration of two fully filled and planarized nanograting layers,” Opt. Lett. 31, 1893–1895 (2006).
    [CrossRef]
  13. T. Yoshikawa, T. Konishi, M. Nakajima, H. Kikuta, H. Kawata, and Y. Hirai, “Fabrication of 1/4 wave plate by nanocasting lithography,” J. Vac. Sci. Technol. B 23, 2939–2943 (2005).
    [CrossRef]
  14. J. Pietarinen, V. Kalima, T. T. Pakkanen, and M. Kuittinen, “Improvement of UV-moulding accuracy by heat and solvent assisted process,” Microelec. Eng. 85, 263–270 (2008).
    [CrossRef]
  15. N. Passilly, K. Ventola, P. Karvinen, P. Laakkonen, J. Turunen, and J. Tervo, “Polarization conversion in conical diffraction by metallic and dielectric subwavelength gratings,” Appl. Opt. 46, 4258–4265 (2007).
    [CrossRef] [PubMed]
  16. J. Turunen, M. Kuittinen, and F. Wyrowski, “Diffractive optics: electromagnetic approach,” Progr. Opt. 40, E. Wolf, ed. (Elsevier, Amsterdam, 2000), pp. 341–387.
  17. L. Li, “A Modal Analysis of Lamellar Diffraction Gratings in Conical Mountings,” J. Mod. Opt. 40, 553–573 (1993).
    [CrossRef]
  18. L. Li, “Use of Fourier series in the analysis of discontinuous periodic structures,” J. Opt. Soc. Am. A 13, 1870–1876 (1996).
    [CrossRef]
  19. L. Li, “Note on the S-matrix propagation algorithm,” J. Opt. Soc. Am. A 20, 655–660 (2003).
    [CrossRef]
  20. M. T. Gale, “Replication,” in Micro-optics, elements, systems and applications, H. P. Herzig, ed., (Taylor & Francis, London, 1997), pp. 153–178.
  21. T. Bailey, B.L. Choi, M. Colburn, M. Meissi, S. Shaya, J.G. Ekerdt, S.V. Sreenivasan, and C.G. Willson, “Step and flash imprint lithography: Template surface treatment and defect analysis,” J. Vac. Sci. Technol. B 18, 3572–3577 (2000).
    [CrossRef]
  22. T. Levola and P. Laakkonen, “Replicated slanted gratings with a high refractive index material for in and outcoupling of light,” Opt. Express 15, 2067–2074 (2007).
    [CrossRef] [PubMed]
  23. A. Amagai, M. Shimuta, M. Takeuchi, and K. Mizuno, “Resin for optical material,” US patent6117923 (2000).
  24. The Jones matrices appearing in Eq. (1) are given, e.g., in D. S. Kliger, J.W. Lewis, and C. E. Randall, Polarized Light in Optics and Spectroscopy (Academic Press, San Diego, CA, 1990), Appendix B.

2008 (1)

J. Pietarinen, V. Kalima, T. T. Pakkanen, and M. Kuittinen, “Improvement of UV-moulding accuracy by heat and solvent assisted process,” Microelec. Eng. 85, 263–270 (2008).
[CrossRef]

2007 (2)

2006 (1)

2005 (3)

2004 (2)

T. Isano, Y. Kaneda, N. Iwakami, K. Ishizuka, and N. Susuki, “Fabrication of half-wave plates with subwavelength structures,” Jpn. J. Appl. Phys. 43, 5294–5296 (2004).
[CrossRef]

W. Yu, K. Satoh, H. Kikuta, T. Konishi, and T. Yotsuya, “Synthesis of wave plates using multilayered subwavelength structure,” Jpn. J. Appl. Phys. 43, L439–L441 (2004).
[CrossRef]

2003 (1)

2000 (3)

T. Bailey, B.L. Choi, M. Colburn, M. Meissi, S. Shaya, J.G. Ekerdt, S.V. Sreenivasan, and C.G. Willson, “Step and flash imprint lithography: Template surface treatment and defect analysis,” J. Vac. Sci. Technol. B 18, 3572–3577 (2000).
[CrossRef]

A. Amagai, M. Shimuta, M. Takeuchi, and K. Mizuno, “Resin for optical material,” US patent6117923 (2000).

J. Turunen, M. Kuittinen, and F. Wyrowski, “Diffractive optics: electromagnetic approach,” Progr. Opt. 40, E. Wolf, ed. (Elsevier, Amsterdam, 2000), pp. 341–387.

1997 (1)

M. T. Gale, “Replication,” in Micro-optics, elements, systems and applications, H. P. Herzig, ed., (Taylor & Francis, London, 1997), pp. 153–178.

1996 (2)

1995 (2)

1993 (1)

L. Li, “A Modal Analysis of Lamellar Diffraction Gratings in Conical Mountings,” J. Mod. Opt. 40, 553–573 (1993).
[CrossRef]

1990 (1)

1983 (2)

D. C. Flanders, “Submicrometer periodicity gratings as artificial anisotropic dielectrics,” Appl. Phys. Lett. 42, 492–494 (1983).
[CrossRef]

R. C. Enger and S. K. Case, “Optical elements with ultrahigh spatial-frequency surface corrugations,” Appl. Opt. 22, 3220–3228 (1983).
[CrossRef] [PubMed]

Amagai, A.

A. Amagai, M. Shimuta, M. Takeuchi, and K. Mizuno, “Resin for optical material,” US patent6117923 (2000).

Bailey, T.

T. Bailey, B.L. Choi, M. Colburn, M. Meissi, S. Shaya, J.G. Ekerdt, S.V. Sreenivasan, and C.G. Willson, “Step and flash imprint lithography: Template surface treatment and defect analysis,” J. Vac. Sci. Technol. B 18, 3572–3577 (2000).
[CrossRef]

Born, M.

M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge U. Press, Cambridge, UK, 1999).

Brundrett, D. L.

Campbell, G.

Case, S. K.

Cescato, L. H.

Chen, J. L.

Chen, L.

Cheng, C.-C.

Choi, B.L.

T. Bailey, B.L. Choi, M. Colburn, M. Meissi, S. Shaya, J.G. Ekerdt, S.V. Sreenivasan, and C.G. Willson, “Step and flash imprint lithography: Template surface treatment and defect analysis,” J. Vac. Sci. Technol. B 18, 3572–3577 (2000).
[CrossRef]

Colburn, M.

T. Bailey, B.L. Choi, M. Colburn, M. Meissi, S. Shaya, J.G. Ekerdt, S.V. Sreenivasan, and C.G. Willson, “Step and flash imprint lithography: Template surface treatment and defect analysis,” J. Vac. Sci. Technol. B 18, 3572–3577 (2000).
[CrossRef]

Deng, X.

Ekerdt, J.G.

T. Bailey, B.L. Choi, M. Colburn, M. Meissi, S. Shaya, J.G. Ekerdt, S.V. Sreenivasan, and C.G. Willson, “Step and flash imprint lithography: Template surface treatment and defect analysis,” J. Vac. Sci. Technol. B 18, 3572–3577 (2000).
[CrossRef]

Enger, R. C.

Fainman, Y.

Flanders, D. C.

D. C. Flanders, “Submicrometer periodicity gratings as artificial anisotropic dielectrics,” Appl. Phys. Lett. 42, 492–494 (1983).
[CrossRef]

Gale, M. T.

M. T. Gale, “Replication,” in Micro-optics, elements, systems and applications, H. P. Herzig, ed., (Taylor & Francis, London, 1997), pp. 153–178.

Gaylord, T. K.

Gluch, E.

Glytsis, E. N.

Hirai, Y.

T. Yoshikawa, T. Konishi, M. Nakajima, H. Kikuta, H. Kawata, and Y. Hirai, “Fabrication of 1/4 wave plate by nanocasting lithography,” J. Vac. Sci. Technol. B 23, 2939–2943 (2005).
[CrossRef]

Isano, T.

T. Isano, Y. Kaneda, N. Iwakami, K. Ishizuka, and N. Susuki, “Fabrication of half-wave plates with subwavelength structures,” Jpn. J. Appl. Phys. 43, 5294–5296 (2004).
[CrossRef]

Ishizuka, K.

T. Isano, Y. Kaneda, N. Iwakami, K. Ishizuka, and N. Susuki, “Fabrication of half-wave plates with subwavelength structures,” Jpn. J. Appl. Phys. 43, 5294–5296 (2004).
[CrossRef]

Iwakami, N.

T. Isano, Y. Kaneda, N. Iwakami, K. Ishizuka, and N. Susuki, “Fabrication of half-wave plates with subwavelength structures,” Jpn. J. Appl. Phys. 43, 5294–5296 (2004).
[CrossRef]

Kalima, V.

J. Pietarinen, V. Kalima, T. T. Pakkanen, and M. Kuittinen, “Improvement of UV-moulding accuracy by heat and solvent assisted process,” Microelec. Eng. 85, 263–270 (2008).
[CrossRef]

Kaneda, Y.

T. Isano, Y. Kaneda, N. Iwakami, K. Ishizuka, and N. Susuki, “Fabrication of half-wave plates with subwavelength structures,” Jpn. J. Appl. Phys. 43, 5294–5296 (2004).
[CrossRef]

Karvinen, P.

Kawata, H.

T. Yoshikawa, T. Konishi, M. Nakajima, H. Kikuta, H. Kawata, and Y. Hirai, “Fabrication of 1/4 wave plate by nanocasting lithography,” J. Vac. Sci. Technol. B 23, 2939–2943 (2005).
[CrossRef]

Kikuta, H.

T. Yoshikawa, T. Konishi, M. Nakajima, H. Kikuta, H. Kawata, and Y. Hirai, “Fabrication of 1/4 wave plate by nanocasting lithography,” J. Vac. Sci. Technol. B 23, 2939–2943 (2005).
[CrossRef]

W. Yu, K. Satoh, H. Kikuta, T. Konishi, and T. Yotsuya, “Synthesis of wave plates using multilayered subwavelength structure,” Jpn. J. Appl. Phys. 43, L439–L441 (2004).
[CrossRef]

Kim, J. J.

Kim, T. J.

Konishi, T.

T. Yoshikawa, T. Konishi, M. Nakajima, H. Kikuta, H. Kawata, and Y. Hirai, “Fabrication of 1/4 wave plate by nanocasting lithography,” J. Vac. Sci. Technol. B 23, 2939–2943 (2005).
[CrossRef]

W. Yu, K. Satoh, H. Kikuta, T. Konishi, and T. Yotsuya, “Synthesis of wave plates using multilayered subwavelength structure,” Jpn. J. Appl. Phys. 43, L439–L441 (2004).
[CrossRef]

Kostuk, R. K.

Kuittinen, M.

J. Pietarinen, V. Kalima, T. T. Pakkanen, and M. Kuittinen, “Improvement of UV-moulding accuracy by heat and solvent assisted process,” Microelec. Eng. 85, 263–270 (2008).
[CrossRef]

J. Turunen, M. Kuittinen, and F. Wyrowski, “Diffractive optics: electromagnetic approach,” Progr. Opt. 40, E. Wolf, ed. (Elsevier, Amsterdam, 2000), pp. 341–387.

Laakkonen, P.

Levola, T.

Levy, U.

Li, L.

Liu, F.

Liu, X.

Meissi, M.

T. Bailey, B.L. Choi, M. Colburn, M. Meissi, S. Shaya, J.G. Ekerdt, S.V. Sreenivasan, and C.G. Willson, “Step and flash imprint lithography: Template surface treatment and defect analysis,” J. Vac. Sci. Technol. B 18, 3572–3577 (2000).
[CrossRef]

Mizuno, K.

A. Amagai, M. Shimuta, M. Takeuchi, and K. Mizuno, “Resin for optical material,” US patent6117923 (2000).

Nakajima, M.

T. Yoshikawa, T. Konishi, M. Nakajima, H. Kikuta, H. Kawata, and Y. Hirai, “Fabrication of 1/4 wave plate by nanocasting lithography,” J. Vac. Sci. Technol. B 23, 2939–2943 (2005).
[CrossRef]

Nezhad, M.

Nikolov, A.

Pakkanen, T. T.

J. Pietarinen, V. Kalima, T. T. Pakkanen, and M. Kuittinen, “Improvement of UV-moulding accuracy by heat and solvent assisted process,” Microelec. Eng. 85, 263–270 (2008).
[CrossRef]

Pang, L.

Passilly, N.

Pietarinen, J.

J. Pietarinen, V. Kalima, T. T. Pakkanen, and M. Kuittinen, “Improvement of UV-moulding accuracy by heat and solvent assisted process,” Microelec. Eng. 85, 263–270 (2008).
[CrossRef]

Satoh, K.

W. Yu, K. Satoh, H. Kikuta, T. Konishi, and T. Yotsuya, “Synthesis of wave plates using multilayered subwavelength structure,” Jpn. J. Appl. Phys. 43, L439–L441 (2004).
[CrossRef]

Scherer, A.

Sciortino, P.

Sciortino, P. F.

Shaya, S.

T. Bailey, B.L. Choi, M. Colburn, M. Meissi, S. Shaya, J.G. Ekerdt, S.V. Sreenivasan, and C.G. Willson, “Step and flash imprint lithography: Template surface treatment and defect analysis,” J. Vac. Sci. Technol. B 18, 3572–3577 (2000).
[CrossRef]

Shimuta, M.

A. Amagai, M. Shimuta, M. Takeuchi, and K. Mizuno, “Resin for optical material,” US patent6117923 (2000).

Sreenivasan, S.V.

T. Bailey, B.L. Choi, M. Colburn, M. Meissi, S. Shaya, J.G. Ekerdt, S.V. Sreenivasan, and C.G. Willson, “Step and flash imprint lithography: Template surface treatment and defect analysis,” J. Vac. Sci. Technol. B 18, 3572–3577 (2000).
[CrossRef]

Streibl, N.

Sun, P.-C.

Susuki, N.

T. Isano, Y. Kaneda, N. Iwakami, K. Ishizuka, and N. Susuki, “Fabrication of half-wave plates with subwavelength structures,” Jpn. J. Appl. Phys. 43, 5294–5296 (2004).
[CrossRef]

Takeuchi, M.

A. Amagai, M. Shimuta, M. Takeuchi, and K. Mizuno, “Resin for optical material,” US patent6117923 (2000).

Tervo, J.

Tsai, C-H.

Turunen, J.

N. Passilly, K. Ventola, P. Karvinen, P. Laakkonen, J. Turunen, and J. Tervo, “Polarization conversion in conical diffraction by metallic and dielectric subwavelength gratings,” Appl. Opt. 46, 4258–4265 (2007).
[CrossRef] [PubMed]

J. Turunen, M. Kuittinen, and F. Wyrowski, “Diffractive optics: electromagnetic approach,” Progr. Opt. 40, E. Wolf, ed. (Elsevier, Amsterdam, 2000), pp. 341–387.

Tyan, R.-C.

Ventola, K.

Wang, J. J.

Willson, C.G.

T. Bailey, B.L. Choi, M. Colburn, M. Meissi, S. Shaya, J.G. Ekerdt, S.V. Sreenivasan, and C.G. Willson, “Step and flash imprint lithography: Template surface treatment and defect analysis,” J. Vac. Sci. Technol. B 18, 3572–3577 (2000).
[CrossRef]

Wolf, E.

M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge U. Press, Cambridge, UK, 1999).

Wyrowski, F.

J. Turunen, M. Kuittinen, and F. Wyrowski, “Diffractive optics: electromagnetic approach,” Progr. Opt. 40, E. Wolf, ed. (Elsevier, Amsterdam, 2000), pp. 341–387.

Xu, F.

Yoshikawa, T.

T. Yoshikawa, T. Konishi, M. Nakajima, H. Kikuta, H. Kawata, and Y. Hirai, “Fabrication of 1/4 wave plate by nanocasting lithography,” J. Vac. Sci. Technol. B 23, 2939–2943 (2005).
[CrossRef]

Yotsuya, T.

W. Yu, K. Satoh, H. Kikuta, T. Konishi, and T. Yotsuya, “Synthesis of wave plates using multilayered subwavelength structure,” Jpn. J. Appl. Phys. 43, L439–L441 (2004).
[CrossRef]

Yu, W.

W. Yu, K. Satoh, H. Kikuta, T. Konishi, and T. Yotsuya, “Synthesis of wave plates using multilayered subwavelength structure,” Jpn. J. Appl. Phys. 43, L439–L441 (2004).
[CrossRef]

Appl. Opt. (5)

Appl. Phys. Lett. (1)

D. C. Flanders, “Submicrometer periodicity gratings as artificial anisotropic dielectrics,” Appl. Phys. Lett. 42, 492–494 (1983).
[CrossRef]

in Micro-optics, elements, systems and applications (1)

M. T. Gale, “Replication,” in Micro-optics, elements, systems and applications, H. P. Herzig, ed., (Taylor & Francis, London, 1997), pp. 153–178.

J. Mod. Opt. (1)

L. Li, “A Modal Analysis of Lamellar Diffraction Gratings in Conical Mountings,” J. Mod. Opt. 40, 553–573 (1993).
[CrossRef]

J. Opt. Soc. Am. A (2)

J. Vac. Sci. Technol. B (2)

T. Yoshikawa, T. Konishi, M. Nakajima, H. Kikuta, H. Kawata, and Y. Hirai, “Fabrication of 1/4 wave plate by nanocasting lithography,” J. Vac. Sci. Technol. B 23, 2939–2943 (2005).
[CrossRef]

T. Bailey, B.L. Choi, M. Colburn, M. Meissi, S. Shaya, J.G. Ekerdt, S.V. Sreenivasan, and C.G. Willson, “Step and flash imprint lithography: Template surface treatment and defect analysis,” J. Vac. Sci. Technol. B 18, 3572–3577 (2000).
[CrossRef]

Jpn. J. Appl. Phys. (2)

W. Yu, K. Satoh, H. Kikuta, T. Konishi, and T. Yotsuya, “Synthesis of wave plates using multilayered subwavelength structure,” Jpn. J. Appl. Phys. 43, L439–L441 (2004).
[CrossRef]

T. Isano, Y. Kaneda, N. Iwakami, K. Ishizuka, and N. Susuki, “Fabrication of half-wave plates with subwavelength structures,” Jpn. J. Appl. Phys. 43, 5294–5296 (2004).
[CrossRef]

Microelec. Eng. (1)

J. Pietarinen, V. Kalima, T. T. Pakkanen, and M. Kuittinen, “Improvement of UV-moulding accuracy by heat and solvent assisted process,” Microelec. Eng. 85, 263–270 (2008).
[CrossRef]

Opt. Express (1)

Opt. Lett. (4)

Progr. Opt. (1)

J. Turunen, M. Kuittinen, and F. Wyrowski, “Diffractive optics: electromagnetic approach,” Progr. Opt. 40, E. Wolf, ed. (Elsevier, Amsterdam, 2000), pp. 341–387.

US patent (1)

A. Amagai, M. Shimuta, M. Takeuchi, and K. Mizuno, “Resin for optical material,” US patent6117923 (2000).

Other (2)

The Jones matrices appearing in Eq. (1) are given, e.g., in D. S. Kliger, J.W. Lewis, and C. E. Randall, Polarized Light in Optics and Spectroscopy (Academic Press, San Diego, CA, 1990), Appendix B.

M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge U. Press, Cambridge, UK, 1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Absolute difference between the phase retardation and the desired value 90° as a function of fill factor and the structure depth (left) and the normalized difference |T -T |/(T -T ) between the intensity transmittance coefficients (right). The cross sections plotted in Fig. 2 are marked with dashed lines.

Fig. 2.
Fig. 2.

Variations of the phaseshift when the thickness (a) and the fill factor (b) vary. The dashed curve described the case where the lowest aspect ratio has been taken as an optimization parameter while the solid curve described the case where the thickness is the optimization parameter.

Fig. 3.
Fig. 3.

The master structure of QWP fabricated to silicon dioxide by electron beam lithography and chlorine and CHF3 based etching.

Fig. 4.
Fig. 4.

Sketch of the separation or demolding issue. When the force is applied to one point, the separation boundary does not remain perpendicular to the grating lines (a) and may cause breaking of the lines (b). (c) SEM image of one of the first replicas. A more elaborated separation technique has been developed in order to avoid this kind of effects, as described in the text.

Fig. 5.
Fig. 5.

UV replica of the QWP master element.

Fig. 6.
Fig. 6.

Power measured after the analyzer. (a) without any element or with replicated elements whose introduced phase shift was measured to be around 79°, 83° and 90°. The last replica is very close to a perfect QWP, i.e. intended to create a perfectly circularly polarized beam whose transmission through a polarizer is constant when the latter is rotated. (b) without any element or from three different replicas of the best element. There are slight variations corresponding to around 3° variations of the phase retardation.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

J ( θ ) = 1 2 [ cos 2 θ cos θ sin θ cos θ sin θ sin 2 θ ] [ 1 0 0 i ] [ t + t t t t t t + t ] [ 1 0 ]
= 1 2 [ t exp ( i θ ) + t exp ( i θ ) ] [ cos θ sin θ ]
I ( θ ) = 1 4 ( t 2 + t 2 ) + 1 2 t t cos ( 2 θ Δ α ) ,

Metrics