Abstract

We found that metal-dielectric-metal plasmon waveguides with a stub structure, i.e. a branch of the waveguide with a finite length, can function as wavelength selective filters of a submicron size. It was found that the transmission characteristics of such structures depend on the phase relationship between the plasmon wave passing through the stub and the one returning to the waveguide from the stub. We also propose structures with a lossless 90o bend in a plasmon waveguide, utilizing a stub structure. Furthermore, we present a functional stub structure, e.g., a 1:1 demultiplexer and a wavelength selective demultiplexer.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Nomura, M. Ohtsu, and T. Yatsui, "Nanodot coupler with a surface plasmon polariton condenser for optical far/near-field conversion," Appl. Phys. Lett. 86, 181108 (2005).
    [CrossRef]
  2. T. Yatsui, M. Kourogi, and M. Ohtsu, "Plasmon waveguide for optical far/near-field conversion," Appl. Phys. Lett. 79, 4583-4585 (2001).
    [CrossRef]
  3. D. F. P. Pile, T. Ogawa, D. K. Gramotnev, T. Okamoto, M. Haraguchi, M. Fukui, and S. Matsuo, "Theoretical and experimental investigation of strongly localized plasmons on triangular metal wedges for subwavelength waveguiding," Appl. Phys. Lett. 87, 061106 (2005).
    [CrossRef]
  4. I. V. Novikov and A. A. Maradudin, "Channel polariton," Phys. Rev. B 66, 035403 (2002).
    [CrossRef]
  5. D. F. P. Pile and D. K. Gramotnev, "Channel plasmon-polariton in a triangular groove on a metal surface," Opt. Lett. 29, 1069-1071 (2004).
    [CrossRef] [PubMed]
  6. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, "Channel plasmon subwavelength waveguide components including interferometers and ring resonators," Nature 440, 508-511 (2006).
    [CrossRef] [PubMed]
  7. D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, "Two-dimensionally localized modes of a nanoscale gap plasmon waveguide," Appl. Phys. Lett. 87, 261114 (2005).
    [CrossRef]
  8. K. Tanaka and M. Tanaka, "Simulations of nanometric optical circuits based on surface plasmon polariton gap waveguide," Appl. Phys. Lett. 82, 1158-1160 (2003).
    [CrossRef]
  9. L. Liu, Z. Han, and S. He, "Novel surface plasmon waveguide for high integration," Opt. Exp. 13, 6645-6650, (2005).
    [CrossRef]
  10. B. Wang and G. P. Wang, "Metal heterowaveguides for nanometric focusing of light," Appl. Phys. Lett. 85, 3599-3601 (2004).
    [CrossRef]
  11. F. Kusunoki, T. Yotsuya, and J. Takahara, "Confinement and guiding of two-dimensional optical waves by low-refractive-index cores," Opt. Exp. 14, 5651-5656 (2006).
    [CrossRef]
  12. F. Kusunoki, T. Yotsuya, J. Takahara, and T. Kobayashi, "Propagation properties of guided waves in index-guided two-dimensional optical waveguides," Appl. Phys. Lett. 86, 211101 (2005).
    [CrossRef]
  13. B. Wang and G. P. Wang, "Plasmon Bragg reflectors and nanocavities on flat metallic surfaces," Appl. Phys. Lett. 87, 013107 (2005).
    [CrossRef]
  14. B. Wang and G. P. Wang, "Plasmonic waveguide ring resonator at terahertz frequencies," Appl. Phys. Lett. 89, 133106 (2006).
    [CrossRef]
  15. D. F. P. Pile and D. K. Gramotnev, "Nanoscale Fabry-Pérot Interferometer using channel plasmon-polaritons in triangular metallic grooves," Appl. Phys. Lett. 86, 161101 (2005).
    [CrossRef]
  16. R. E. Collin, Foundations for Microwave Engineering (McGraw-Hill, 1966).
  17. R. Stoffer, H. J. W. M. Hoekstra, R. M. De Ridder, E. Van Groesen, and F. P. H. Van Beckum, "Numerical studies of 2D photonic crystals: Waveguides, coupling between waveguides and filters," Opt. Quantum Electron. 32, 947-961 (2000).
    [CrossRef]
  18. K. Ogusu and K. Takayama, "Transmission characteristics of photonic crystal waveguides with stubs and their application to optical filters," Opt. Lett. 32, 2185-2187 (2007).
    [CrossRef] [PubMed]
  19. P. B. Johnson and R. W. Christy, "Optical Constants of the Noble Metals," Phys. Rev. B 6, 4370-4379 (1972).
    [CrossRef]
  20. G. Veronis and S. Fan, "Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides," Appl. Phys. Lett. 87, 131102 (2005).
    [CrossRef]

2007 (1)

2006 (3)

F. Kusunoki, T. Yotsuya, and J. Takahara, "Confinement and guiding of two-dimensional optical waves by low-refractive-index cores," Opt. Exp. 14, 5651-5656 (2006).
[CrossRef]

B. Wang and G. P. Wang, "Plasmonic waveguide ring resonator at terahertz frequencies," Appl. Phys. Lett. 89, 133106 (2006).
[CrossRef]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, "Channel plasmon subwavelength waveguide components including interferometers and ring resonators," Nature 440, 508-511 (2006).
[CrossRef] [PubMed]

2005 (8)

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, "Two-dimensionally localized modes of a nanoscale gap plasmon waveguide," Appl. Phys. Lett. 87, 261114 (2005).
[CrossRef]

L. Liu, Z. Han, and S. He, "Novel surface plasmon waveguide for high integration," Opt. Exp. 13, 6645-6650, (2005).
[CrossRef]

W. Nomura, M. Ohtsu, and T. Yatsui, "Nanodot coupler with a surface plasmon polariton condenser for optical far/near-field conversion," Appl. Phys. Lett. 86, 181108 (2005).
[CrossRef]

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, T. Okamoto, M. Haraguchi, M. Fukui, and S. Matsuo, "Theoretical and experimental investigation of strongly localized plasmons on triangular metal wedges for subwavelength waveguiding," Appl. Phys. Lett. 87, 061106 (2005).
[CrossRef]

D. F. P. Pile and D. K. Gramotnev, "Nanoscale Fabry-Pérot Interferometer using channel plasmon-polaritons in triangular metallic grooves," Appl. Phys. Lett. 86, 161101 (2005).
[CrossRef]

F. Kusunoki, T. Yotsuya, J. Takahara, and T. Kobayashi, "Propagation properties of guided waves in index-guided two-dimensional optical waveguides," Appl. Phys. Lett. 86, 211101 (2005).
[CrossRef]

B. Wang and G. P. Wang, "Plasmon Bragg reflectors and nanocavities on flat metallic surfaces," Appl. Phys. Lett. 87, 013107 (2005).
[CrossRef]

G. Veronis and S. Fan, "Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides," Appl. Phys. Lett. 87, 131102 (2005).
[CrossRef]

2004 (2)

D. F. P. Pile and D. K. Gramotnev, "Channel plasmon-polariton in a triangular groove on a metal surface," Opt. Lett. 29, 1069-1071 (2004).
[CrossRef] [PubMed]

B. Wang and G. P. Wang, "Metal heterowaveguides for nanometric focusing of light," Appl. Phys. Lett. 85, 3599-3601 (2004).
[CrossRef]

2003 (1)

K. Tanaka and M. Tanaka, "Simulations of nanometric optical circuits based on surface plasmon polariton gap waveguide," Appl. Phys. Lett. 82, 1158-1160 (2003).
[CrossRef]

2002 (1)

I. V. Novikov and A. A. Maradudin, "Channel polariton," Phys. Rev. B 66, 035403 (2002).
[CrossRef]

2001 (1)

T. Yatsui, M. Kourogi, and M. Ohtsu, "Plasmon waveguide for optical far/near-field conversion," Appl. Phys. Lett. 79, 4583-4585 (2001).
[CrossRef]

2000 (1)

R. Stoffer, H. J. W. M. Hoekstra, R. M. De Ridder, E. Van Groesen, and F. P. H. Van Beckum, "Numerical studies of 2D photonic crystals: Waveguides, coupling between waveguides and filters," Opt. Quantum Electron. 32, 947-961 (2000).
[CrossRef]

1972 (1)

P. B. Johnson and R. W. Christy, "Optical Constants of the Noble Metals," Phys. Rev. B 6, 4370-4379 (1972).
[CrossRef]

Bozhevolnyi, S. I.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, "Channel plasmon subwavelength waveguide components including interferometers and ring resonators," Nature 440, 508-511 (2006).
[CrossRef] [PubMed]

Christy, R. W.

P. B. Johnson and R. W. Christy, "Optical Constants of the Noble Metals," Phys. Rev. B 6, 4370-4379 (1972).
[CrossRef]

De Ridder, R. M.

R. Stoffer, H. J. W. M. Hoekstra, R. M. De Ridder, E. Van Groesen, and F. P. H. Van Beckum, "Numerical studies of 2D photonic crystals: Waveguides, coupling between waveguides and filters," Opt. Quantum Electron. 32, 947-961 (2000).
[CrossRef]

Devaux, E.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, "Channel plasmon subwavelength waveguide components including interferometers and ring resonators," Nature 440, 508-511 (2006).
[CrossRef] [PubMed]

Ebbesen, T. W.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, "Channel plasmon subwavelength waveguide components including interferometers and ring resonators," Nature 440, 508-511 (2006).
[CrossRef] [PubMed]

Fan, S.

G. Veronis and S. Fan, "Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides," Appl. Phys. Lett. 87, 131102 (2005).
[CrossRef]

Fukui, M.

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, "Two-dimensionally localized modes of a nanoscale gap plasmon waveguide," Appl. Phys. Lett. 87, 261114 (2005).
[CrossRef]

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, T. Okamoto, M. Haraguchi, M. Fukui, and S. Matsuo, "Theoretical and experimental investigation of strongly localized plasmons on triangular metal wedges for subwavelength waveguiding," Appl. Phys. Lett. 87, 061106 (2005).
[CrossRef]

Gramotnev, D. K.

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, T. Okamoto, M. Haraguchi, M. Fukui, and S. Matsuo, "Theoretical and experimental investigation of strongly localized plasmons on triangular metal wedges for subwavelength waveguiding," Appl. Phys. Lett. 87, 061106 (2005).
[CrossRef]

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, "Two-dimensionally localized modes of a nanoscale gap plasmon waveguide," Appl. Phys. Lett. 87, 261114 (2005).
[CrossRef]

D. F. P. Pile and D. K. Gramotnev, "Nanoscale Fabry-Pérot Interferometer using channel plasmon-polaritons in triangular metallic grooves," Appl. Phys. Lett. 86, 161101 (2005).
[CrossRef]

D. F. P. Pile and D. K. Gramotnev, "Channel plasmon-polariton in a triangular groove on a metal surface," Opt. Lett. 29, 1069-1071 (2004).
[CrossRef] [PubMed]

Han, Z.

L. Liu, Z. Han, and S. He, "Novel surface plasmon waveguide for high integration," Opt. Exp. 13, 6645-6650, (2005).
[CrossRef]

Haraguchi, M.

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, "Two-dimensionally localized modes of a nanoscale gap plasmon waveguide," Appl. Phys. Lett. 87, 261114 (2005).
[CrossRef]

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, T. Okamoto, M. Haraguchi, M. Fukui, and S. Matsuo, "Theoretical and experimental investigation of strongly localized plasmons on triangular metal wedges for subwavelength waveguiding," Appl. Phys. Lett. 87, 061106 (2005).
[CrossRef]

He, S.

L. Liu, Z. Han, and S. He, "Novel surface plasmon waveguide for high integration," Opt. Exp. 13, 6645-6650, (2005).
[CrossRef]

Hoekstra, H. J. W. M.

R. Stoffer, H. J. W. M. Hoekstra, R. M. De Ridder, E. Van Groesen, and F. P. H. Van Beckum, "Numerical studies of 2D photonic crystals: Waveguides, coupling between waveguides and filters," Opt. Quantum Electron. 32, 947-961 (2000).
[CrossRef]

Johnson, P. B.

P. B. Johnson and R. W. Christy, "Optical Constants of the Noble Metals," Phys. Rev. B 6, 4370-4379 (1972).
[CrossRef]

Kobayashi, T.

F. Kusunoki, T. Yotsuya, J. Takahara, and T. Kobayashi, "Propagation properties of guided waves in index-guided two-dimensional optical waveguides," Appl. Phys. Lett. 86, 211101 (2005).
[CrossRef]

Kourogi, M.

T. Yatsui, M. Kourogi, and M. Ohtsu, "Plasmon waveguide for optical far/near-field conversion," Appl. Phys. Lett. 79, 4583-4585 (2001).
[CrossRef]

Kusunoki, F.

F. Kusunoki, T. Yotsuya, and J. Takahara, "Confinement and guiding of two-dimensional optical waves by low-refractive-index cores," Opt. Exp. 14, 5651-5656 (2006).
[CrossRef]

F. Kusunoki, T. Yotsuya, J. Takahara, and T. Kobayashi, "Propagation properties of guided waves in index-guided two-dimensional optical waveguides," Appl. Phys. Lett. 86, 211101 (2005).
[CrossRef]

Laluet, J. Y.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, "Channel plasmon subwavelength waveguide components including interferometers and ring resonators," Nature 440, 508-511 (2006).
[CrossRef] [PubMed]

Liu, L.

L. Liu, Z. Han, and S. He, "Novel surface plasmon waveguide for high integration," Opt. Exp. 13, 6645-6650, (2005).
[CrossRef]

Maradudin, A. A.

I. V. Novikov and A. A. Maradudin, "Channel polariton," Phys. Rev. B 66, 035403 (2002).
[CrossRef]

Matsuo, S.

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, T. Okamoto, M. Haraguchi, M. Fukui, and S. Matsuo, "Theoretical and experimental investigation of strongly localized plasmons on triangular metal wedges for subwavelength waveguiding," Appl. Phys. Lett. 87, 061106 (2005).
[CrossRef]

Matsuzaki, Y.

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, "Two-dimensionally localized modes of a nanoscale gap plasmon waveguide," Appl. Phys. Lett. 87, 261114 (2005).
[CrossRef]

Nomura, W.

W. Nomura, M. Ohtsu, and T. Yatsui, "Nanodot coupler with a surface plasmon polariton condenser for optical far/near-field conversion," Appl. Phys. Lett. 86, 181108 (2005).
[CrossRef]

Novikov, I. V.

I. V. Novikov and A. A. Maradudin, "Channel polariton," Phys. Rev. B 66, 035403 (2002).
[CrossRef]

Ogawa, T.

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, T. Okamoto, M. Haraguchi, M. Fukui, and S. Matsuo, "Theoretical and experimental investigation of strongly localized plasmons on triangular metal wedges for subwavelength waveguiding," Appl. Phys. Lett. 87, 061106 (2005).
[CrossRef]

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, "Two-dimensionally localized modes of a nanoscale gap plasmon waveguide," Appl. Phys. Lett. 87, 261114 (2005).
[CrossRef]

Ogusu, K.

Ohtsu, M.

W. Nomura, M. Ohtsu, and T. Yatsui, "Nanodot coupler with a surface plasmon polariton condenser for optical far/near-field conversion," Appl. Phys. Lett. 86, 181108 (2005).
[CrossRef]

T. Yatsui, M. Kourogi, and M. Ohtsu, "Plasmon waveguide for optical far/near-field conversion," Appl. Phys. Lett. 79, 4583-4585 (2001).
[CrossRef]

Okamoto, T.

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, T. Okamoto, M. Haraguchi, M. Fukui, and S. Matsuo, "Theoretical and experimental investigation of strongly localized plasmons on triangular metal wedges for subwavelength waveguiding," Appl. Phys. Lett. 87, 061106 (2005).
[CrossRef]

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, "Two-dimensionally localized modes of a nanoscale gap plasmon waveguide," Appl. Phys. Lett. 87, 261114 (2005).
[CrossRef]

Pile, D. F. P.

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, "Two-dimensionally localized modes of a nanoscale gap plasmon waveguide," Appl. Phys. Lett. 87, 261114 (2005).
[CrossRef]

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, T. Okamoto, M. Haraguchi, M. Fukui, and S. Matsuo, "Theoretical and experimental investigation of strongly localized plasmons on triangular metal wedges for subwavelength waveguiding," Appl. Phys. Lett. 87, 061106 (2005).
[CrossRef]

D. F. P. Pile and D. K. Gramotnev, "Nanoscale Fabry-Pérot Interferometer using channel plasmon-polaritons in triangular metallic grooves," Appl. Phys. Lett. 86, 161101 (2005).
[CrossRef]

D. F. P. Pile and D. K. Gramotnev, "Channel plasmon-polariton in a triangular groove on a metal surface," Opt. Lett. 29, 1069-1071 (2004).
[CrossRef] [PubMed]

Stoffer, R.

R. Stoffer, H. J. W. M. Hoekstra, R. M. De Ridder, E. Van Groesen, and F. P. H. Van Beckum, "Numerical studies of 2D photonic crystals: Waveguides, coupling between waveguides and filters," Opt. Quantum Electron. 32, 947-961 (2000).
[CrossRef]

Takahara, J.

F. Kusunoki, T. Yotsuya, and J. Takahara, "Confinement and guiding of two-dimensional optical waves by low-refractive-index cores," Opt. Exp. 14, 5651-5656 (2006).
[CrossRef]

F. Kusunoki, T. Yotsuya, J. Takahara, and T. Kobayashi, "Propagation properties of guided waves in index-guided two-dimensional optical waveguides," Appl. Phys. Lett. 86, 211101 (2005).
[CrossRef]

Takayama, K.

Tanaka, K.

K. Tanaka and M. Tanaka, "Simulations of nanometric optical circuits based on surface plasmon polariton gap waveguide," Appl. Phys. Lett. 82, 1158-1160 (2003).
[CrossRef]

Tanaka, M.

K. Tanaka and M. Tanaka, "Simulations of nanometric optical circuits based on surface plasmon polariton gap waveguide," Appl. Phys. Lett. 82, 1158-1160 (2003).
[CrossRef]

Van Beckum, F. P. H.

R. Stoffer, H. J. W. M. Hoekstra, R. M. De Ridder, E. Van Groesen, and F. P. H. Van Beckum, "Numerical studies of 2D photonic crystals: Waveguides, coupling between waveguides and filters," Opt. Quantum Electron. 32, 947-961 (2000).
[CrossRef]

Van Groesen, E.

R. Stoffer, H. J. W. M. Hoekstra, R. M. De Ridder, E. Van Groesen, and F. P. H. Van Beckum, "Numerical studies of 2D photonic crystals: Waveguides, coupling between waveguides and filters," Opt. Quantum Electron. 32, 947-961 (2000).
[CrossRef]

Vernon, K. C.

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, "Two-dimensionally localized modes of a nanoscale gap plasmon waveguide," Appl. Phys. Lett. 87, 261114 (2005).
[CrossRef]

Veronis, G.

G. Veronis and S. Fan, "Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides," Appl. Phys. Lett. 87, 131102 (2005).
[CrossRef]

Volkov, V. S.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, "Channel plasmon subwavelength waveguide components including interferometers and ring resonators," Nature 440, 508-511 (2006).
[CrossRef] [PubMed]

Wang, B.

B. Wang and G. P. Wang, "Plasmonic waveguide ring resonator at terahertz frequencies," Appl. Phys. Lett. 89, 133106 (2006).
[CrossRef]

B. Wang and G. P. Wang, "Plasmon Bragg reflectors and nanocavities on flat metallic surfaces," Appl. Phys. Lett. 87, 013107 (2005).
[CrossRef]

B. Wang and G. P. Wang, "Metal heterowaveguides for nanometric focusing of light," Appl. Phys. Lett. 85, 3599-3601 (2004).
[CrossRef]

Wang, G. P.

B. Wang and G. P. Wang, "Plasmonic waveguide ring resonator at terahertz frequencies," Appl. Phys. Lett. 89, 133106 (2006).
[CrossRef]

B. Wang and G. P. Wang, "Plasmon Bragg reflectors and nanocavities on flat metallic surfaces," Appl. Phys. Lett. 87, 013107 (2005).
[CrossRef]

B. Wang and G. P. Wang, "Metal heterowaveguides for nanometric focusing of light," Appl. Phys. Lett. 85, 3599-3601 (2004).
[CrossRef]

Yamaguchi, K.

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, "Two-dimensionally localized modes of a nanoscale gap plasmon waveguide," Appl. Phys. Lett. 87, 261114 (2005).
[CrossRef]

Yatsui, T.

W. Nomura, M. Ohtsu, and T. Yatsui, "Nanodot coupler with a surface plasmon polariton condenser for optical far/near-field conversion," Appl. Phys. Lett. 86, 181108 (2005).
[CrossRef]

T. Yatsui, M. Kourogi, and M. Ohtsu, "Plasmon waveguide for optical far/near-field conversion," Appl. Phys. Lett. 79, 4583-4585 (2001).
[CrossRef]

Yotsuya, T.

F. Kusunoki, T. Yotsuya, and J. Takahara, "Confinement and guiding of two-dimensional optical waves by low-refractive-index cores," Opt. Exp. 14, 5651-5656 (2006).
[CrossRef]

F. Kusunoki, T. Yotsuya, J. Takahara, and T. Kobayashi, "Propagation properties of guided waves in index-guided two-dimensional optical waveguides," Appl. Phys. Lett. 86, 211101 (2005).
[CrossRef]

Appl. Phys. Lett. (11)

W. Nomura, M. Ohtsu, and T. Yatsui, "Nanodot coupler with a surface plasmon polariton condenser for optical far/near-field conversion," Appl. Phys. Lett. 86, 181108 (2005).
[CrossRef]

T. Yatsui, M. Kourogi, and M. Ohtsu, "Plasmon waveguide for optical far/near-field conversion," Appl. Phys. Lett. 79, 4583-4585 (2001).
[CrossRef]

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, T. Okamoto, M. Haraguchi, M. Fukui, and S. Matsuo, "Theoretical and experimental investigation of strongly localized plasmons on triangular metal wedges for subwavelength waveguiding," Appl. Phys. Lett. 87, 061106 (2005).
[CrossRef]

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, "Two-dimensionally localized modes of a nanoscale gap plasmon waveguide," Appl. Phys. Lett. 87, 261114 (2005).
[CrossRef]

K. Tanaka and M. Tanaka, "Simulations of nanometric optical circuits based on surface plasmon polariton gap waveguide," Appl. Phys. Lett. 82, 1158-1160 (2003).
[CrossRef]

F. Kusunoki, T. Yotsuya, J. Takahara, and T. Kobayashi, "Propagation properties of guided waves in index-guided two-dimensional optical waveguides," Appl. Phys. Lett. 86, 211101 (2005).
[CrossRef]

B. Wang and G. P. Wang, "Plasmon Bragg reflectors and nanocavities on flat metallic surfaces," Appl. Phys. Lett. 87, 013107 (2005).
[CrossRef]

B. Wang and G. P. Wang, "Plasmonic waveguide ring resonator at terahertz frequencies," Appl. Phys. Lett. 89, 133106 (2006).
[CrossRef]

D. F. P. Pile and D. K. Gramotnev, "Nanoscale Fabry-Pérot Interferometer using channel plasmon-polaritons in triangular metallic grooves," Appl. Phys. Lett. 86, 161101 (2005).
[CrossRef]

B. Wang and G. P. Wang, "Metal heterowaveguides for nanometric focusing of light," Appl. Phys. Lett. 85, 3599-3601 (2004).
[CrossRef]

G. Veronis and S. Fan, "Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides," Appl. Phys. Lett. 87, 131102 (2005).
[CrossRef]

Nature (1)

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, "Channel plasmon subwavelength waveguide components including interferometers and ring resonators," Nature 440, 508-511 (2006).
[CrossRef] [PubMed]

Opt. Exp. (2)

L. Liu, Z. Han, and S. He, "Novel surface plasmon waveguide for high integration," Opt. Exp. 13, 6645-6650, (2005).
[CrossRef]

F. Kusunoki, T. Yotsuya, and J. Takahara, "Confinement and guiding of two-dimensional optical waves by low-refractive-index cores," Opt. Exp. 14, 5651-5656 (2006).
[CrossRef]

Opt. Lett. (2)

Opt. Quantum Electron. (1)

R. Stoffer, H. J. W. M. Hoekstra, R. M. De Ridder, E. Van Groesen, and F. P. H. Van Beckum, "Numerical studies of 2D photonic crystals: Waveguides, coupling between waveguides and filters," Opt. Quantum Electron. 32, 947-961 (2000).
[CrossRef]

Phys. Rev. B (2)

I. V. Novikov and A. A. Maradudin, "Channel polariton," Phys. Rev. B 66, 035403 (2002).
[CrossRef]

P. B. Johnson and R. W. Christy, "Optical Constants of the Noble Metals," Phys. Rev. B 6, 4370-4379 (1972).
[CrossRef]

Other (1)

R. E. Collin, Foundations for Microwave Engineering (McGraw-Hill, 1966).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1.
Fig. 1.

Stub structures in a plasmon waveguide.(a) Double stub and (b) single stub.

Fig. 2.
Fig. 2.

Transmissions characteristics vs. stub length for the double stub (a) and the single stub (b). The red and the black lines are for w=50 nm and 100 nm, respectively. The FWHM (full width at half maximum) of the dips for the single- and double-stub structures were evaluated from the transmission spectra for w=50 nm and 100 nm. For the single-stub structure, these values were 175 nm and 190 nm for w=50 nm and 100 nm, respectively. For the double-stub structure, these values were 285 nm and 325 nm for w=50 nm and 100 nm, respectively. Namely, the FWHM of the single-stub structure was smaller than that of the double-stub structure. The single stub may be a superior filter in terms of blocking a specific wavelength as compared to the double stub because of the narrow FWHM of the dips. The transmission characteristics varied periodically with the stub length. The intervals in the change in the transmission characteristics for w=50 nm and 100 nm were 575 nm and 650 nm, respectively. These lengths corresponded to half the plasmon wavelength in the respective gap waveguides, as mentioned in the following paragraph.

Fig. 3.
Fig. 3.

Light intensity distribution of gap plasmons with and without the stubs for w=100 nm. (a) corresponds to the case of no stub. (b) and (c) correspond to the double-stub structure with L=325 nm and 650 nm, respectively. (d) and (e) correspond to the single-stub structure with L=325 nm and 650 nm, respectively.

Fig. 4.
Fig. 4.

Phase changes in the gap plasmons for the double-stub structure (a), a simplified transmission line expression of the double-stub structure (b), and an equivalent circuit of the double-stub structure (c).

Fig. 5.
Fig. 5.

Transmission characteristics as a function of the stub length for the double-stub structure. The circles and the solid lines denote the numerical and the analytical results, respectively. The red and black lines correspond to w=50 nm and 100 nm, respectively.

Fig. 6.
Fig. 6.

SEM image of a stub structure fabricated using a silver film (a) and transmission vs. stub length for various radii of the corners r (b). Black, blue, and red lines represent r=0, 25, and 50 nm, respectively.

Fig. 7.
Fig. 7.

90° bends with a single stub and with a double stub.

Fig. 8.
Fig. 8.

Dependence of transmission characteristics on stub length for three types of bends. Black, red, and blue lines represent Form 0, Form 1, and Form 2, respectively.

Fig. 9.
Fig. 9.

Light intensity distributions of gap plasmons for four types of bends. (b), (c), and (d): L=260 nm. (e): L=660 nm. (f) and (g): L=620 nm.

Fig. 10.
Fig. 10.

T-splitter. (a) is a T-splitter without a stub (b) is a T-splitter with a stub.

Fig. 11.
Fig. 11.

Dependence of transmission characteristics on stub length for a T-splitter with a stub. Black and red lines indicate transmission characteristics observed at output ports B and C, respectively.

Fig. 12.
Fig. 12.

Light intensity distribution of the T-splitter with w=200 nm and a stub with L=300 nm. (a) and (b) represent λbulk=1.495 µ and 1.700 µm, respectively.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Y s = j 1 Z 0 tan ( 2 π λ GP L ) .
t = 2 Y 0 2 Y 0 + 2 Y s
r = 2 Y s 2 Y 0 + 2 Y s
T d = 1 1 + tan 2 ( 2 π L λ GP ) .
T s = 4 4 + tan 2 ( 2 π L λ GP ) .

Metrics