Abstract

Histology of biological specimens is largely limited to investigating two-dimensional structure because of the sectioning required to produce optically thin samples for conventional microscopy. With the advent of three-dimensional optical imaging technologies such as optical coherence tomography (OCT), diffuse optical tomography (DOT), and multiphoton microscopy (MPM), methods of tissue preparation that minimally disrupt three-dimensional structure are needed. We propose plastination as a means of transforming tissues into three-dimensional models suitable for optical instrument characterization. Tissues are plastinated by infusing them with transparent polymers, after which they can be safely handled, unlike fresh or fixed tissues. Such models are useful for investigating threedimensional structure, testing and comparing the performance of optical instruments, and potentially investigating tissue properties not normally observed after the three-dimensional scattering properties of a biological samples are lost. We detail our plastination procedures and show examples of imaging several plastinated tissues from a pre-clinical rat model using optical coherence tomography.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. G. Fujimoto, M. E. Brezinski, G. J. Tearney, S. A. Boppart, B. E. Bouma, M. R. Hee, J. F. Southern, and E. A. Swanson, "Biomedical imaging and optical biopsy using optical coherence tomography," Nat. Med. 1, 970-972 (1995).
    [CrossRef] [PubMed]
  2. A. P. Gibson, J. C. Hebden, and S. R. Arridge, "Recent advances in diffuse optical imaging," Phys. Med. Biol. 50, R1-R43 (2005).
    [CrossRef] [PubMed]
  3. W. Denk, J. H. Strickler, and W. W. Webb, "Two-photon laser scanning fluorescence microscopy," Science 248, 73-76 (1990).
    [CrossRef] [PubMed]
  4. G. von Hagens, "Impregnation of Soft Biological Specimens with Thermosetting Resins and Elastomers," Anat. Rec. 194, 247-256 (1979).
    [CrossRef] [PubMed]
  5. G. von Hagens, K. Tiedemann, and W. Kriz, "The current potential of plastination," Anat. Embryol. 175, 411-421 (1987).
    [CrossRef] [PubMed]
  6. H. C. Bickley, A. N. Walker, R. L. Jackson, and R. S. Donner, "Preservation of pathology specimens by silicone plastination. An innovative adjunct to pathology education," Am. J. Clin. Pathol. 88, 220-223 (1987).
    [PubMed]
  7. M. Firbank, M. Oda, and D. T. Delpy, "An improved design for a stable and reproducible phantom material for use in near infrared spectroscopy and imaging," Phys. Med. Biol. 40, 955-961 (1995).
    [CrossRef] [PubMed]
  8. D. Passos, J. C. Hebden, P. N. Pinto, and R. Guerra, "Tissue phantom for optical diagnostics based on suspension of microspheres with a fractal size distribution," J. Biomed. Opt. 10, 064,036-1-064,036-11 (2005).
    [CrossRef]
  9. J. C. Hebden, B. D. Price, A. P. Gibson, and G. Royle, "A soft deformable tissue-equivalent phantom for diffuse optical tomography," Phys. Med. Biol. 51, 5581-5590 (2006).
    [CrossRef] [PubMed]
  10. G. Marquez and L. V. Wang, "White light oblique incidence reflectometer for measuring absorption and reduced scattering spectra for tissue-like turbid media," Opt. Express 1, 454-459 (1997).
    [CrossRef] [PubMed]
  11. M. Canpolat and J. R. Mourant, "Particle size analysis of turbid media with a single optical fiber in contact with the medium to deliver and detect white light," Appl. Opt. 40, 3792-3799 (2001).
    [CrossRef]
  12. K. W. Gossage, C. M. Smith, E. M. Kanter, L. P. Hariri, A. L. Stone, J. J. Rodriguez, S. K. Williams, and J. K. Barton, "Texture analysis of speckle in optical coherence tomography images of tissue phantoms," Phys. Med. Biol. 51, 1563-1575 (2006).
    [CrossRef] [PubMed]
  13. V. Sankaran, J. T. Walsh, Jr., and D. J. Maitland, "Polarized light propagation through tissue phantoms containing densely packed scatterers," Opt. Lett. 25, 239-241 (2000).
    [CrossRef]
  14. C.-E. Bisaillon, G. Lamouche, R. Maciejko, M. Dufour, and J.-P. Monchalin, "Deformable and durable phantoms with controlled density of scatterers," Phys. Med. Biol. 53, N237-N247 (2008).
    [CrossRef] [PubMed]
  15. M. Firbank and D. T. Delpy, "A design for a stable and reproducible phantom for use in near infrared imaging and spectroscopy," Phys. Med. Biol. 38, 847-853 (1993).
    [CrossRef]
  16. R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, "A solid tissue phantom for photon migration studies," Phys. Med. Biol. 42, 1971-1979 (1997).
    [CrossRef] [PubMed]
  17. G. Wagnires, S. Cheng, M. Zellweger, N. Utke, D. Braichotte, J.-P. Ballini, and H. Bergh, "An optical phantom with tissue-like properties in the visible for used in PDT and fluorescence spectroscopy," Phys. Med. Biol. 42, 1415-1426 (1997).
    [CrossRef]
  18. A. M. De Grand, S. J. Lomnes, D. S. Lee, M. Pietrzykowski, S. Ohnishi, T. G. Morgan, A. Gogbashian, R. G. Laurence, and J. V. Frangoni, "Tissue-Like Phantoms for Near-Infrared Fluorescence Imaging System Assessment and the Training of Surgeons," J. Biomed. Opt. 11, 014,007 (2006).
    [CrossRef]
  19. X. Liang, A. L. Oldenburg, V. Crecea, E. J. Chaney, and S. A. Boppart, "Optical micro-scale mapping of dynamic biomechanical tissue properties," Opt. Express 16, 11,052-11,065 (2008).
    [CrossRef]
  20. K. Vishwanath, W. Zhong, M. Close, and M.-A. Mycek, "Fluorescence quenching by polystyrene microspheres in UV-visible and NIR tissue-simulating phantoms," Opt. Express 14, 7776-7788 (2006).
    [CrossRef] [PubMed]
  21. C. Xu, J. Ye, D. L. Marks, and S. A. Boppart, "Near-infrared dyes as contrast-enhancing agents for spectroscopic optical coherence tomography," Opt. Lett. 29, 1647-1649 (2004).
    [CrossRef] [PubMed]
  22. J. Y. Qu, Z. Huang, and J. Hua, "Excitation-and-Collection Geometry Insensitive Fluorescence Imaging of Tissue-Simulating Turbid Media," Appl. Opt. 39, 3344-3356 (2000).
    [CrossRef]
  23. B. W. Pogue and M. S. Patterson, "Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry," J. Biomed. Opt. 11, 041,102-1-16 (2006).
    [CrossRef]
  24. C. H. Fox, F. B. Johnson, J. Whiting, and P. P. Roller, "Formaldehyde Fixation," J. Histochem. Cytochem. 33, 845-853 (1985).
    [CrossRef] [PubMed]
  25. J. A. Kiernan, "Formaldehyde, formalin, paraformaldehyde, and glutaraldehyde: what they are what what they do," Microscopy Today 00-1, 8-12 (2000).
  26. P.-L. Hsiung, P. R. Nambiar, and J. G. Fujimoto, "Effect of tissue preservation on imaging using ultrahigh resolution optical coherence tomography," J. Biomed. Opt. 10, 064,033-1-064,033-6 (2005).
    [CrossRef]
  27. C. Pitris, T. Ko, W. Drexler, R. Ghanta, X. Li, C. Chudoba, I. Hartl, and J. G. Fujimoto, "Ultrahigh-resolution in vivo versus ex vivo OCT imaging and tissue preservation," Proc. SPIE 4251, 170-173 (2001).
    [CrossRef]
  28. N. Feder and R. L. Sidman, "Methods and Principles of Fixation by Freeze-Substitution," J. Biophys. Biochem. Cytol. 4, 593-602 (1958).
    [CrossRef] [PubMed]
  29. M. T. E. Fahlman, "An Acetone-Vapor Reducing Method for Freeze-Substitution," J. Int. Soc. Plastination 12, 15-16 (1997).
  30. T. S. Ralston, D. L. Marks, S. A. Boppart, and P. S. Carney, "Inverse scattering for high-resolution interferometric microscopy," Opt. Lett. 31, 3585-3587 (2006).
    [CrossRef] [PubMed]
  31. T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, "Inverse scattering for optical coherence tomography," J. Opt. Soc. Am. A 23, 1027-1037 (2006).
    [CrossRef]
  32. T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, "Interferometric synthetic aperture microscopy," Nat. Phys. 5, 129-134 (2007).
    [CrossRef]
  33. U. Morgner, W. Drexler, F. X. Kartner, X. D. Li, C. Pitris, E. P. Ippen, and J. G. Fujimoto, "Spectroscopic optical coherence tomography," Opt. Lett. 25, 111-113 (2000).
    [CrossRef]
  34. M. A. Choma, M. V. Sarunic, Y. Changhuei, and J. A. Izatt, "Sensitivity advantage of swept source and Fourier domain optical coherence tomography," Opt. Express 111, 2183-2189 (2003).
    [CrossRef]
  35. A. M. Zysk, E. J. Chaney, and S. A. Boppart, "Refractive index of carcinogen-induced rat mammary tumours," Phys. Med. Biol. 51, 2165-2177 (2006).
    [CrossRef] [PubMed]
  36. D. L. Marks, S. C. Schlachter, A. M. Zysk, and S. A. Boppart, "Group refractive index reconstruction with broadband interferometric confocal microscopy," J. Opt. Soc. Am. A 25, 1156-1164 (2008).
    [CrossRef]

2008 (3)

C.-E. Bisaillon, G. Lamouche, R. Maciejko, M. Dufour, and J.-P. Monchalin, "Deformable and durable phantoms with controlled density of scatterers," Phys. Med. Biol. 53, N237-N247 (2008).
[CrossRef] [PubMed]

X. Liang, A. L. Oldenburg, V. Crecea, E. J. Chaney, and S. A. Boppart, "Optical micro-scale mapping of dynamic biomechanical tissue properties," Opt. Express 16, 11,052-11,065 (2008).
[CrossRef]

D. L. Marks, S. C. Schlachter, A. M. Zysk, and S. A. Boppart, "Group refractive index reconstruction with broadband interferometric confocal microscopy," J. Opt. Soc. Am. A 25, 1156-1164 (2008).
[CrossRef]

2007 (1)

T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, "Interferometric synthetic aperture microscopy," Nat. Phys. 5, 129-134 (2007).
[CrossRef]

2006 (6)

A. M. Zysk, E. J. Chaney, and S. A. Boppart, "Refractive index of carcinogen-induced rat mammary tumours," Phys. Med. Biol. 51, 2165-2177 (2006).
[CrossRef] [PubMed]

T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, "Inverse scattering for optical coherence tomography," J. Opt. Soc. Am. A 23, 1027-1037 (2006).
[CrossRef]

K. Vishwanath, W. Zhong, M. Close, and M.-A. Mycek, "Fluorescence quenching by polystyrene microspheres in UV-visible and NIR tissue-simulating phantoms," Opt. Express 14, 7776-7788 (2006).
[CrossRef] [PubMed]

T. S. Ralston, D. L. Marks, S. A. Boppart, and P. S. Carney, "Inverse scattering for high-resolution interferometric microscopy," Opt. Lett. 31, 3585-3587 (2006).
[CrossRef] [PubMed]

K. W. Gossage, C. M. Smith, E. M. Kanter, L. P. Hariri, A. L. Stone, J. J. Rodriguez, S. K. Williams, and J. K. Barton, "Texture analysis of speckle in optical coherence tomography images of tissue phantoms," Phys. Med. Biol. 51, 1563-1575 (2006).
[CrossRef] [PubMed]

J. C. Hebden, B. D. Price, A. P. Gibson, and G. Royle, "A soft deformable tissue-equivalent phantom for diffuse optical tomography," Phys. Med. Biol. 51, 5581-5590 (2006).
[CrossRef] [PubMed]

2005 (1)

A. P. Gibson, J. C. Hebden, and S. R. Arridge, "Recent advances in diffuse optical imaging," Phys. Med. Biol. 50, R1-R43 (2005).
[CrossRef] [PubMed]

2004 (1)

2003 (1)

M. A. Choma, M. V. Sarunic, Y. Changhuei, and J. A. Izatt, "Sensitivity advantage of swept source and Fourier domain optical coherence tomography," Opt. Express 111, 2183-2189 (2003).
[CrossRef]

2001 (2)

M. Canpolat and J. R. Mourant, "Particle size analysis of turbid media with a single optical fiber in contact with the medium to deliver and detect white light," Appl. Opt. 40, 3792-3799 (2001).
[CrossRef]

C. Pitris, T. Ko, W. Drexler, R. Ghanta, X. Li, C. Chudoba, I. Hartl, and J. G. Fujimoto, "Ultrahigh-resolution in vivo versus ex vivo OCT imaging and tissue preservation," Proc. SPIE 4251, 170-173 (2001).
[CrossRef]

2000 (4)

1997 (4)

G. Marquez and L. V. Wang, "White light oblique incidence reflectometer for measuring absorption and reduced scattering spectra for tissue-like turbid media," Opt. Express 1, 454-459 (1997).
[CrossRef] [PubMed]

M. T. E. Fahlman, "An Acetone-Vapor Reducing Method for Freeze-Substitution," J. Int. Soc. Plastination 12, 15-16 (1997).

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, "A solid tissue phantom for photon migration studies," Phys. Med. Biol. 42, 1971-1979 (1997).
[CrossRef] [PubMed]

G. Wagnires, S. Cheng, M. Zellweger, N. Utke, D. Braichotte, J.-P. Ballini, and H. Bergh, "An optical phantom with tissue-like properties in the visible for used in PDT and fluorescence spectroscopy," Phys. Med. Biol. 42, 1415-1426 (1997).
[CrossRef]

1995 (2)

J. G. Fujimoto, M. E. Brezinski, G. J. Tearney, S. A. Boppart, B. E. Bouma, M. R. Hee, J. F. Southern, and E. A. Swanson, "Biomedical imaging and optical biopsy using optical coherence tomography," Nat. Med. 1, 970-972 (1995).
[CrossRef] [PubMed]

M. Firbank, M. Oda, and D. T. Delpy, "An improved design for a stable and reproducible phantom material for use in near infrared spectroscopy and imaging," Phys. Med. Biol. 40, 955-961 (1995).
[CrossRef] [PubMed]

1993 (1)

M. Firbank and D. T. Delpy, "A design for a stable and reproducible phantom for use in near infrared imaging and spectroscopy," Phys. Med. Biol. 38, 847-853 (1993).
[CrossRef]

1990 (1)

W. Denk, J. H. Strickler, and W. W. Webb, "Two-photon laser scanning fluorescence microscopy," Science 248, 73-76 (1990).
[CrossRef] [PubMed]

1987 (2)

G. von Hagens, K. Tiedemann, and W. Kriz, "The current potential of plastination," Anat. Embryol. 175, 411-421 (1987).
[CrossRef] [PubMed]

H. C. Bickley, A. N. Walker, R. L. Jackson, and R. S. Donner, "Preservation of pathology specimens by silicone plastination. An innovative adjunct to pathology education," Am. J. Clin. Pathol. 88, 220-223 (1987).
[PubMed]

1985 (1)

C. H. Fox, F. B. Johnson, J. Whiting, and P. P. Roller, "Formaldehyde Fixation," J. Histochem. Cytochem. 33, 845-853 (1985).
[CrossRef] [PubMed]

1979 (1)

G. von Hagens, "Impregnation of Soft Biological Specimens with Thermosetting Resins and Elastomers," Anat. Rec. 194, 247-256 (1979).
[CrossRef] [PubMed]

1958 (1)

N. Feder and R. L. Sidman, "Methods and Principles of Fixation by Freeze-Substitution," J. Biophys. Biochem. Cytol. 4, 593-602 (1958).
[CrossRef] [PubMed]

Arridge, S. R.

A. P. Gibson, J. C. Hebden, and S. R. Arridge, "Recent advances in diffuse optical imaging," Phys. Med. Biol. 50, R1-R43 (2005).
[CrossRef] [PubMed]

Ballini, J.-P.

G. Wagnires, S. Cheng, M. Zellweger, N. Utke, D. Braichotte, J.-P. Ballini, and H. Bergh, "An optical phantom with tissue-like properties in the visible for used in PDT and fluorescence spectroscopy," Phys. Med. Biol. 42, 1415-1426 (1997).
[CrossRef]

Barton, J. K.

K. W. Gossage, C. M. Smith, E. M. Kanter, L. P. Hariri, A. L. Stone, J. J. Rodriguez, S. K. Williams, and J. K. Barton, "Texture analysis of speckle in optical coherence tomography images of tissue phantoms," Phys. Med. Biol. 51, 1563-1575 (2006).
[CrossRef] [PubMed]

Bergh, H.

G. Wagnires, S. Cheng, M. Zellweger, N. Utke, D. Braichotte, J.-P. Ballini, and H. Bergh, "An optical phantom with tissue-like properties in the visible for used in PDT and fluorescence spectroscopy," Phys. Med. Biol. 42, 1415-1426 (1997).
[CrossRef]

Bickley, H. C.

H. C. Bickley, A. N. Walker, R. L. Jackson, and R. S. Donner, "Preservation of pathology specimens by silicone plastination. An innovative adjunct to pathology education," Am. J. Clin. Pathol. 88, 220-223 (1987).
[PubMed]

Bisaillon, C.-E.

C.-E. Bisaillon, G. Lamouche, R. Maciejko, M. Dufour, and J.-P. Monchalin, "Deformable and durable phantoms with controlled density of scatterers," Phys. Med. Biol. 53, N237-N247 (2008).
[CrossRef] [PubMed]

Boppart, S. A.

X. Liang, A. L. Oldenburg, V. Crecea, E. J. Chaney, and S. A. Boppart, "Optical micro-scale mapping of dynamic biomechanical tissue properties," Opt. Express 16, 11,052-11,065 (2008).
[CrossRef]

D. L. Marks, S. C. Schlachter, A. M. Zysk, and S. A. Boppart, "Group refractive index reconstruction with broadband interferometric confocal microscopy," J. Opt. Soc. Am. A 25, 1156-1164 (2008).
[CrossRef]

T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, "Interferometric synthetic aperture microscopy," Nat. Phys. 5, 129-134 (2007).
[CrossRef]

T. S. Ralston, D. L. Marks, S. A. Boppart, and P. S. Carney, "Inverse scattering for high-resolution interferometric microscopy," Opt. Lett. 31, 3585-3587 (2006).
[CrossRef] [PubMed]

A. M. Zysk, E. J. Chaney, and S. A. Boppart, "Refractive index of carcinogen-induced rat mammary tumours," Phys. Med. Biol. 51, 2165-2177 (2006).
[CrossRef] [PubMed]

T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, "Inverse scattering for optical coherence tomography," J. Opt. Soc. Am. A 23, 1027-1037 (2006).
[CrossRef]

C. Xu, J. Ye, D. L. Marks, and S. A. Boppart, "Near-infrared dyes as contrast-enhancing agents for spectroscopic optical coherence tomography," Opt. Lett. 29, 1647-1649 (2004).
[CrossRef] [PubMed]

J. G. Fujimoto, M. E. Brezinski, G. J. Tearney, S. A. Boppart, B. E. Bouma, M. R. Hee, J. F. Southern, and E. A. Swanson, "Biomedical imaging and optical biopsy using optical coherence tomography," Nat. Med. 1, 970-972 (1995).
[CrossRef] [PubMed]

Bouma, B. E.

J. G. Fujimoto, M. E. Brezinski, G. J. Tearney, S. A. Boppart, B. E. Bouma, M. R. Hee, J. F. Southern, and E. A. Swanson, "Biomedical imaging and optical biopsy using optical coherence tomography," Nat. Med. 1, 970-972 (1995).
[CrossRef] [PubMed]

Braichotte, D.

G. Wagnires, S. Cheng, M. Zellweger, N. Utke, D. Braichotte, J.-P. Ballini, and H. Bergh, "An optical phantom with tissue-like properties in the visible for used in PDT and fluorescence spectroscopy," Phys. Med. Biol. 42, 1415-1426 (1997).
[CrossRef]

Brezinski, M. E.

J. G. Fujimoto, M. E. Brezinski, G. J. Tearney, S. A. Boppart, B. E. Bouma, M. R. Hee, J. F. Southern, and E. A. Swanson, "Biomedical imaging and optical biopsy using optical coherence tomography," Nat. Med. 1, 970-972 (1995).
[CrossRef] [PubMed]

Canpolat, M.

Carney, P. S.

Chaney, E. J.

X. Liang, A. L. Oldenburg, V. Crecea, E. J. Chaney, and S. A. Boppart, "Optical micro-scale mapping of dynamic biomechanical tissue properties," Opt. Express 16, 11,052-11,065 (2008).
[CrossRef]

A. M. Zysk, E. J. Chaney, and S. A. Boppart, "Refractive index of carcinogen-induced rat mammary tumours," Phys. Med. Biol. 51, 2165-2177 (2006).
[CrossRef] [PubMed]

Changhuei, Y.

M. A. Choma, M. V. Sarunic, Y. Changhuei, and J. A. Izatt, "Sensitivity advantage of swept source and Fourier domain optical coherence tomography," Opt. Express 111, 2183-2189 (2003).
[CrossRef]

Cheng, S.

G. Wagnires, S. Cheng, M. Zellweger, N. Utke, D. Braichotte, J.-P. Ballini, and H. Bergh, "An optical phantom with tissue-like properties in the visible for used in PDT and fluorescence spectroscopy," Phys. Med. Biol. 42, 1415-1426 (1997).
[CrossRef]

Choma, M. A.

M. A. Choma, M. V. Sarunic, Y. Changhuei, and J. A. Izatt, "Sensitivity advantage of swept source and Fourier domain optical coherence tomography," Opt. Express 111, 2183-2189 (2003).
[CrossRef]

Chudoba, C.

C. Pitris, T. Ko, W. Drexler, R. Ghanta, X. Li, C. Chudoba, I. Hartl, and J. G. Fujimoto, "Ultrahigh-resolution in vivo versus ex vivo OCT imaging and tissue preservation," Proc. SPIE 4251, 170-173 (2001).
[CrossRef]

Close, M.

Crecea, V.

X. Liang, A. L. Oldenburg, V. Crecea, E. J. Chaney, and S. A. Boppart, "Optical micro-scale mapping of dynamic biomechanical tissue properties," Opt. Express 16, 11,052-11,065 (2008).
[CrossRef]

Cubeddu, R.

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, "A solid tissue phantom for photon migration studies," Phys. Med. Biol. 42, 1971-1979 (1997).
[CrossRef] [PubMed]

De Grand, A. M.

A. M. De Grand, S. J. Lomnes, D. S. Lee, M. Pietrzykowski, S. Ohnishi, T. G. Morgan, A. Gogbashian, R. G. Laurence, and J. V. Frangoni, "Tissue-Like Phantoms for Near-Infrared Fluorescence Imaging System Assessment and the Training of Surgeons," J. Biomed. Opt. 11, 014,007 (2006).
[CrossRef]

Delpy, D. T.

M. Firbank, M. Oda, and D. T. Delpy, "An improved design for a stable and reproducible phantom material for use in near infrared spectroscopy and imaging," Phys. Med. Biol. 40, 955-961 (1995).
[CrossRef] [PubMed]

M. Firbank and D. T. Delpy, "A design for a stable and reproducible phantom for use in near infrared imaging and spectroscopy," Phys. Med. Biol. 38, 847-853 (1993).
[CrossRef]

Denk, W.

W. Denk, J. H. Strickler, and W. W. Webb, "Two-photon laser scanning fluorescence microscopy," Science 248, 73-76 (1990).
[CrossRef] [PubMed]

Donner, R. S.

H. C. Bickley, A. N. Walker, R. L. Jackson, and R. S. Donner, "Preservation of pathology specimens by silicone plastination. An innovative adjunct to pathology education," Am. J. Clin. Pathol. 88, 220-223 (1987).
[PubMed]

Drexler, W.

C. Pitris, T. Ko, W. Drexler, R. Ghanta, X. Li, C. Chudoba, I. Hartl, and J. G. Fujimoto, "Ultrahigh-resolution in vivo versus ex vivo OCT imaging and tissue preservation," Proc. SPIE 4251, 170-173 (2001).
[CrossRef]

U. Morgner, W. Drexler, F. X. Kartner, X. D. Li, C. Pitris, E. P. Ippen, and J. G. Fujimoto, "Spectroscopic optical coherence tomography," Opt. Lett. 25, 111-113 (2000).
[CrossRef]

Dufour, M.

C.-E. Bisaillon, G. Lamouche, R. Maciejko, M. Dufour, and J.-P. Monchalin, "Deformable and durable phantoms with controlled density of scatterers," Phys. Med. Biol. 53, N237-N247 (2008).
[CrossRef] [PubMed]

Fahlman, M. T. E.

M. T. E. Fahlman, "An Acetone-Vapor Reducing Method for Freeze-Substitution," J. Int. Soc. Plastination 12, 15-16 (1997).

Feder, N.

N. Feder and R. L. Sidman, "Methods and Principles of Fixation by Freeze-Substitution," J. Biophys. Biochem. Cytol. 4, 593-602 (1958).
[CrossRef] [PubMed]

Firbank, M.

M. Firbank, M. Oda, and D. T. Delpy, "An improved design for a stable and reproducible phantom material for use in near infrared spectroscopy and imaging," Phys. Med. Biol. 40, 955-961 (1995).
[CrossRef] [PubMed]

M. Firbank and D. T. Delpy, "A design for a stable and reproducible phantom for use in near infrared imaging and spectroscopy," Phys. Med. Biol. 38, 847-853 (1993).
[CrossRef]

Fox, C. H.

C. H. Fox, F. B. Johnson, J. Whiting, and P. P. Roller, "Formaldehyde Fixation," J. Histochem. Cytochem. 33, 845-853 (1985).
[CrossRef] [PubMed]

Frangoni, J. V.

A. M. De Grand, S. J. Lomnes, D. S. Lee, M. Pietrzykowski, S. Ohnishi, T. G. Morgan, A. Gogbashian, R. G. Laurence, and J. V. Frangoni, "Tissue-Like Phantoms for Near-Infrared Fluorescence Imaging System Assessment and the Training of Surgeons," J. Biomed. Opt. 11, 014,007 (2006).
[CrossRef]

Fujimoto, J. G.

C. Pitris, T. Ko, W. Drexler, R. Ghanta, X. Li, C. Chudoba, I. Hartl, and J. G. Fujimoto, "Ultrahigh-resolution in vivo versus ex vivo OCT imaging and tissue preservation," Proc. SPIE 4251, 170-173 (2001).
[CrossRef]

U. Morgner, W. Drexler, F. X. Kartner, X. D. Li, C. Pitris, E. P. Ippen, and J. G. Fujimoto, "Spectroscopic optical coherence tomography," Opt. Lett. 25, 111-113 (2000).
[CrossRef]

J. G. Fujimoto, M. E. Brezinski, G. J. Tearney, S. A. Boppart, B. E. Bouma, M. R. Hee, J. F. Southern, and E. A. Swanson, "Biomedical imaging and optical biopsy using optical coherence tomography," Nat. Med. 1, 970-972 (1995).
[CrossRef] [PubMed]

P.-L. Hsiung, P. R. Nambiar, and J. G. Fujimoto, "Effect of tissue preservation on imaging using ultrahigh resolution optical coherence tomography," J. Biomed. Opt. 10, 064,033-1-064,033-6 (2005).
[CrossRef]

Ghanta, R.

C. Pitris, T. Ko, W. Drexler, R. Ghanta, X. Li, C. Chudoba, I. Hartl, and J. G. Fujimoto, "Ultrahigh-resolution in vivo versus ex vivo OCT imaging and tissue preservation," Proc. SPIE 4251, 170-173 (2001).
[CrossRef]

Gibson, A. P.

J. C. Hebden, B. D. Price, A. P. Gibson, and G. Royle, "A soft deformable tissue-equivalent phantom for diffuse optical tomography," Phys. Med. Biol. 51, 5581-5590 (2006).
[CrossRef] [PubMed]

A. P. Gibson, J. C. Hebden, and S. R. Arridge, "Recent advances in diffuse optical imaging," Phys. Med. Biol. 50, R1-R43 (2005).
[CrossRef] [PubMed]

Gogbashian, A.

A. M. De Grand, S. J. Lomnes, D. S. Lee, M. Pietrzykowski, S. Ohnishi, T. G. Morgan, A. Gogbashian, R. G. Laurence, and J. V. Frangoni, "Tissue-Like Phantoms for Near-Infrared Fluorescence Imaging System Assessment and the Training of Surgeons," J. Biomed. Opt. 11, 014,007 (2006).
[CrossRef]

Gossage, K. W.

K. W. Gossage, C. M. Smith, E. M. Kanter, L. P. Hariri, A. L. Stone, J. J. Rodriguez, S. K. Williams, and J. K. Barton, "Texture analysis of speckle in optical coherence tomography images of tissue phantoms," Phys. Med. Biol. 51, 1563-1575 (2006).
[CrossRef] [PubMed]

Guerra, R.

D. Passos, J. C. Hebden, P. N. Pinto, and R. Guerra, "Tissue phantom for optical diagnostics based on suspension of microspheres with a fractal size distribution," J. Biomed. Opt. 10, 064,036-1-064,036-11 (2005).
[CrossRef]

Hariri, L. P.

K. W. Gossage, C. M. Smith, E. M. Kanter, L. P. Hariri, A. L. Stone, J. J. Rodriguez, S. K. Williams, and J. K. Barton, "Texture analysis of speckle in optical coherence tomography images of tissue phantoms," Phys. Med. Biol. 51, 1563-1575 (2006).
[CrossRef] [PubMed]

Hartl, I.

C. Pitris, T. Ko, W. Drexler, R. Ghanta, X. Li, C. Chudoba, I. Hartl, and J. G. Fujimoto, "Ultrahigh-resolution in vivo versus ex vivo OCT imaging and tissue preservation," Proc. SPIE 4251, 170-173 (2001).
[CrossRef]

Hebden, J. C.

J. C. Hebden, B. D. Price, A. P. Gibson, and G. Royle, "A soft deformable tissue-equivalent phantom for diffuse optical tomography," Phys. Med. Biol. 51, 5581-5590 (2006).
[CrossRef] [PubMed]

A. P. Gibson, J. C. Hebden, and S. R. Arridge, "Recent advances in diffuse optical imaging," Phys. Med. Biol. 50, R1-R43 (2005).
[CrossRef] [PubMed]

D. Passos, J. C. Hebden, P. N. Pinto, and R. Guerra, "Tissue phantom for optical diagnostics based on suspension of microspheres with a fractal size distribution," J. Biomed. Opt. 10, 064,036-1-064,036-11 (2005).
[CrossRef]

Hee, M. R.

J. G. Fujimoto, M. E. Brezinski, G. J. Tearney, S. A. Boppart, B. E. Bouma, M. R. Hee, J. F. Southern, and E. A. Swanson, "Biomedical imaging and optical biopsy using optical coherence tomography," Nat. Med. 1, 970-972 (1995).
[CrossRef] [PubMed]

Hsiung, P.-L.

P.-L. Hsiung, P. R. Nambiar, and J. G. Fujimoto, "Effect of tissue preservation on imaging using ultrahigh resolution optical coherence tomography," J. Biomed. Opt. 10, 064,033-1-064,033-6 (2005).
[CrossRef]

Hua, J.

Huang, Z.

Ippen, E. P.

Izatt, J. A.

M. A. Choma, M. V. Sarunic, Y. Changhuei, and J. A. Izatt, "Sensitivity advantage of swept source and Fourier domain optical coherence tomography," Opt. Express 111, 2183-2189 (2003).
[CrossRef]

Jackson, R. L.

H. C. Bickley, A. N. Walker, R. L. Jackson, and R. S. Donner, "Preservation of pathology specimens by silicone plastination. An innovative adjunct to pathology education," Am. J. Clin. Pathol. 88, 220-223 (1987).
[PubMed]

Johnson, F. B.

C. H. Fox, F. B. Johnson, J. Whiting, and P. P. Roller, "Formaldehyde Fixation," J. Histochem. Cytochem. 33, 845-853 (1985).
[CrossRef] [PubMed]

Kanter, E. M.

K. W. Gossage, C. M. Smith, E. M. Kanter, L. P. Hariri, A. L. Stone, J. J. Rodriguez, S. K. Williams, and J. K. Barton, "Texture analysis of speckle in optical coherence tomography images of tissue phantoms," Phys. Med. Biol. 51, 1563-1575 (2006).
[CrossRef] [PubMed]

Kartner, F. X.

Kiernan, J. A.

J. A. Kiernan, "Formaldehyde, formalin, paraformaldehyde, and glutaraldehyde: what they are what what they do," Microscopy Today 00-1, 8-12 (2000).

Ko, T.

C. Pitris, T. Ko, W. Drexler, R. Ghanta, X. Li, C. Chudoba, I. Hartl, and J. G. Fujimoto, "Ultrahigh-resolution in vivo versus ex vivo OCT imaging and tissue preservation," Proc. SPIE 4251, 170-173 (2001).
[CrossRef]

Lamouche, G.

C.-E. Bisaillon, G. Lamouche, R. Maciejko, M. Dufour, and J.-P. Monchalin, "Deformable and durable phantoms with controlled density of scatterers," Phys. Med. Biol. 53, N237-N247 (2008).
[CrossRef] [PubMed]

Laurence, R. G.

A. M. De Grand, S. J. Lomnes, D. S. Lee, M. Pietrzykowski, S. Ohnishi, T. G. Morgan, A. Gogbashian, R. G. Laurence, and J. V. Frangoni, "Tissue-Like Phantoms for Near-Infrared Fluorescence Imaging System Assessment and the Training of Surgeons," J. Biomed. Opt. 11, 014,007 (2006).
[CrossRef]

Lee, D. S.

A. M. De Grand, S. J. Lomnes, D. S. Lee, M. Pietrzykowski, S. Ohnishi, T. G. Morgan, A. Gogbashian, R. G. Laurence, and J. V. Frangoni, "Tissue-Like Phantoms for Near-Infrared Fluorescence Imaging System Assessment and the Training of Surgeons," J. Biomed. Opt. 11, 014,007 (2006).
[CrossRef]

Li, X.

C. Pitris, T. Ko, W. Drexler, R. Ghanta, X. Li, C. Chudoba, I. Hartl, and J. G. Fujimoto, "Ultrahigh-resolution in vivo versus ex vivo OCT imaging and tissue preservation," Proc. SPIE 4251, 170-173 (2001).
[CrossRef]

Li, X. D.

Liang, X.

X. Liang, A. L. Oldenburg, V. Crecea, E. J. Chaney, and S. A. Boppart, "Optical micro-scale mapping of dynamic biomechanical tissue properties," Opt. Express 16, 11,052-11,065 (2008).
[CrossRef]

Lomnes, S. J.

A. M. De Grand, S. J. Lomnes, D. S. Lee, M. Pietrzykowski, S. Ohnishi, T. G. Morgan, A. Gogbashian, R. G. Laurence, and J. V. Frangoni, "Tissue-Like Phantoms for Near-Infrared Fluorescence Imaging System Assessment and the Training of Surgeons," J. Biomed. Opt. 11, 014,007 (2006).
[CrossRef]

Maciejko, R.

C.-E. Bisaillon, G. Lamouche, R. Maciejko, M. Dufour, and J.-P. Monchalin, "Deformable and durable phantoms with controlled density of scatterers," Phys. Med. Biol. 53, N237-N247 (2008).
[CrossRef] [PubMed]

Maitland, D. J.

Marks, D. L.

Marquez, G.

Monchalin, J.-P.

C.-E. Bisaillon, G. Lamouche, R. Maciejko, M. Dufour, and J.-P. Monchalin, "Deformable and durable phantoms with controlled density of scatterers," Phys. Med. Biol. 53, N237-N247 (2008).
[CrossRef] [PubMed]

Morgan, T. G.

A. M. De Grand, S. J. Lomnes, D. S. Lee, M. Pietrzykowski, S. Ohnishi, T. G. Morgan, A. Gogbashian, R. G. Laurence, and J. V. Frangoni, "Tissue-Like Phantoms for Near-Infrared Fluorescence Imaging System Assessment and the Training of Surgeons," J. Biomed. Opt. 11, 014,007 (2006).
[CrossRef]

Morgner, U.

Mourant, J. R.

Mycek, M.-A.

Nambiar, P. R.

P.-L. Hsiung, P. R. Nambiar, and J. G. Fujimoto, "Effect of tissue preservation on imaging using ultrahigh resolution optical coherence tomography," J. Biomed. Opt. 10, 064,033-1-064,033-6 (2005).
[CrossRef]

Oda, M.

M. Firbank, M. Oda, and D. T. Delpy, "An improved design for a stable and reproducible phantom material for use in near infrared spectroscopy and imaging," Phys. Med. Biol. 40, 955-961 (1995).
[CrossRef] [PubMed]

Ohnishi, S.

A. M. De Grand, S. J. Lomnes, D. S. Lee, M. Pietrzykowski, S. Ohnishi, T. G. Morgan, A. Gogbashian, R. G. Laurence, and J. V. Frangoni, "Tissue-Like Phantoms for Near-Infrared Fluorescence Imaging System Assessment and the Training of Surgeons," J. Biomed. Opt. 11, 014,007 (2006).
[CrossRef]

Oldenburg, A. L.

X. Liang, A. L. Oldenburg, V. Crecea, E. J. Chaney, and S. A. Boppart, "Optical micro-scale mapping of dynamic biomechanical tissue properties," Opt. Express 16, 11,052-11,065 (2008).
[CrossRef]

Passos, D.

D. Passos, J. C. Hebden, P. N. Pinto, and R. Guerra, "Tissue phantom for optical diagnostics based on suspension of microspheres with a fractal size distribution," J. Biomed. Opt. 10, 064,036-1-064,036-11 (2005).
[CrossRef]

Patterson, M. S.

B. W. Pogue and M. S. Patterson, "Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry," J. Biomed. Opt. 11, 041,102-1-16 (2006).
[CrossRef]

Pietrzykowski, M.

A. M. De Grand, S. J. Lomnes, D. S. Lee, M. Pietrzykowski, S. Ohnishi, T. G. Morgan, A. Gogbashian, R. G. Laurence, and J. V. Frangoni, "Tissue-Like Phantoms for Near-Infrared Fluorescence Imaging System Assessment and the Training of Surgeons," J. Biomed. Opt. 11, 014,007 (2006).
[CrossRef]

Pifferi, A.

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, "A solid tissue phantom for photon migration studies," Phys. Med. Biol. 42, 1971-1979 (1997).
[CrossRef] [PubMed]

Pinto, P. N.

D. Passos, J. C. Hebden, P. N. Pinto, and R. Guerra, "Tissue phantom for optical diagnostics based on suspension of microspheres with a fractal size distribution," J. Biomed. Opt. 10, 064,036-1-064,036-11 (2005).
[CrossRef]

Pitris, C.

C. Pitris, T. Ko, W. Drexler, R. Ghanta, X. Li, C. Chudoba, I. Hartl, and J. G. Fujimoto, "Ultrahigh-resolution in vivo versus ex vivo OCT imaging and tissue preservation," Proc. SPIE 4251, 170-173 (2001).
[CrossRef]

U. Morgner, W. Drexler, F. X. Kartner, X. D. Li, C. Pitris, E. P. Ippen, and J. G. Fujimoto, "Spectroscopic optical coherence tomography," Opt. Lett. 25, 111-113 (2000).
[CrossRef]

Pogue, B. W.

B. W. Pogue and M. S. Patterson, "Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry," J. Biomed. Opt. 11, 041,102-1-16 (2006).
[CrossRef]

Price, B. D.

J. C. Hebden, B. D. Price, A. P. Gibson, and G. Royle, "A soft deformable tissue-equivalent phantom for diffuse optical tomography," Phys. Med. Biol. 51, 5581-5590 (2006).
[CrossRef] [PubMed]

Qu, J. Y.

Ralston, T. S.

Rodriguez, J. J.

K. W. Gossage, C. M. Smith, E. M. Kanter, L. P. Hariri, A. L. Stone, J. J. Rodriguez, S. K. Williams, and J. K. Barton, "Texture analysis of speckle in optical coherence tomography images of tissue phantoms," Phys. Med. Biol. 51, 1563-1575 (2006).
[CrossRef] [PubMed]

Roller, P. P.

C. H. Fox, F. B. Johnson, J. Whiting, and P. P. Roller, "Formaldehyde Fixation," J. Histochem. Cytochem. 33, 845-853 (1985).
[CrossRef] [PubMed]

Royle, G.

J. C. Hebden, B. D. Price, A. P. Gibson, and G. Royle, "A soft deformable tissue-equivalent phantom for diffuse optical tomography," Phys. Med. Biol. 51, 5581-5590 (2006).
[CrossRef] [PubMed]

Sankaran, V.

Sarunic, M. V.

M. A. Choma, M. V. Sarunic, Y. Changhuei, and J. A. Izatt, "Sensitivity advantage of swept source and Fourier domain optical coherence tomography," Opt. Express 111, 2183-2189 (2003).
[CrossRef]

Schlachter, S. C.

Sidman, R. L.

N. Feder and R. L. Sidman, "Methods and Principles of Fixation by Freeze-Substitution," J. Biophys. Biochem. Cytol. 4, 593-602 (1958).
[CrossRef] [PubMed]

Smith, C. M.

K. W. Gossage, C. M. Smith, E. M. Kanter, L. P. Hariri, A. L. Stone, J. J. Rodriguez, S. K. Williams, and J. K. Barton, "Texture analysis of speckle in optical coherence tomography images of tissue phantoms," Phys. Med. Biol. 51, 1563-1575 (2006).
[CrossRef] [PubMed]

Southern, J. F.

J. G. Fujimoto, M. E. Brezinski, G. J. Tearney, S. A. Boppart, B. E. Bouma, M. R. Hee, J. F. Southern, and E. A. Swanson, "Biomedical imaging and optical biopsy using optical coherence tomography," Nat. Med. 1, 970-972 (1995).
[CrossRef] [PubMed]

Stone, A. L.

K. W. Gossage, C. M. Smith, E. M. Kanter, L. P. Hariri, A. L. Stone, J. J. Rodriguez, S. K. Williams, and J. K. Barton, "Texture analysis of speckle in optical coherence tomography images of tissue phantoms," Phys. Med. Biol. 51, 1563-1575 (2006).
[CrossRef] [PubMed]

Strickler, J. H.

W. Denk, J. H. Strickler, and W. W. Webb, "Two-photon laser scanning fluorescence microscopy," Science 248, 73-76 (1990).
[CrossRef] [PubMed]

Swanson, E. A.

J. G. Fujimoto, M. E. Brezinski, G. J. Tearney, S. A. Boppart, B. E. Bouma, M. R. Hee, J. F. Southern, and E. A. Swanson, "Biomedical imaging and optical biopsy using optical coherence tomography," Nat. Med. 1, 970-972 (1995).
[CrossRef] [PubMed]

Taroni, P.

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, "A solid tissue phantom for photon migration studies," Phys. Med. Biol. 42, 1971-1979 (1997).
[CrossRef] [PubMed]

Tearney, G. J.

J. G. Fujimoto, M. E. Brezinski, G. J. Tearney, S. A. Boppart, B. E. Bouma, M. R. Hee, J. F. Southern, and E. A. Swanson, "Biomedical imaging and optical biopsy using optical coherence tomography," Nat. Med. 1, 970-972 (1995).
[CrossRef] [PubMed]

Tiedemann, K.

G. von Hagens, K. Tiedemann, and W. Kriz, "The current potential of plastination," Anat. Embryol. 175, 411-421 (1987).
[CrossRef] [PubMed]

Torricelli, A.

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, "A solid tissue phantom for photon migration studies," Phys. Med. Biol. 42, 1971-1979 (1997).
[CrossRef] [PubMed]

Utke, N.

G. Wagnires, S. Cheng, M. Zellweger, N. Utke, D. Braichotte, J.-P. Ballini, and H. Bergh, "An optical phantom with tissue-like properties in the visible for used in PDT and fluorescence spectroscopy," Phys. Med. Biol. 42, 1415-1426 (1997).
[CrossRef]

Valentini, G.

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, "A solid tissue phantom for photon migration studies," Phys. Med. Biol. 42, 1971-1979 (1997).
[CrossRef] [PubMed]

Vishwanath, K.

von Hagens, G.

G. von Hagens, K. Tiedemann, and W. Kriz, "The current potential of plastination," Anat. Embryol. 175, 411-421 (1987).
[CrossRef] [PubMed]

G. von Hagens, "Impregnation of Soft Biological Specimens with Thermosetting Resins and Elastomers," Anat. Rec. 194, 247-256 (1979).
[CrossRef] [PubMed]

Wagnires, G.

G. Wagnires, S. Cheng, M. Zellweger, N. Utke, D. Braichotte, J.-P. Ballini, and H. Bergh, "An optical phantom with tissue-like properties in the visible for used in PDT and fluorescence spectroscopy," Phys. Med. Biol. 42, 1415-1426 (1997).
[CrossRef]

Walker, A. N.

H. C. Bickley, A. N. Walker, R. L. Jackson, and R. S. Donner, "Preservation of pathology specimens by silicone plastination. An innovative adjunct to pathology education," Am. J. Clin. Pathol. 88, 220-223 (1987).
[PubMed]

Walsh, J. T.

Wang, L. V.

Webb, W. W.

W. Denk, J. H. Strickler, and W. W. Webb, "Two-photon laser scanning fluorescence microscopy," Science 248, 73-76 (1990).
[CrossRef] [PubMed]

Whiting, J.

C. H. Fox, F. B. Johnson, J. Whiting, and P. P. Roller, "Formaldehyde Fixation," J. Histochem. Cytochem. 33, 845-853 (1985).
[CrossRef] [PubMed]

Williams, S. K.

K. W. Gossage, C. M. Smith, E. M. Kanter, L. P. Hariri, A. L. Stone, J. J. Rodriguez, S. K. Williams, and J. K. Barton, "Texture analysis of speckle in optical coherence tomography images of tissue phantoms," Phys. Med. Biol. 51, 1563-1575 (2006).
[CrossRef] [PubMed]

Xu, C.

Ye, J.

Zellweger, M.

G. Wagnires, S. Cheng, M. Zellweger, N. Utke, D. Braichotte, J.-P. Ballini, and H. Bergh, "An optical phantom with tissue-like properties in the visible for used in PDT and fluorescence spectroscopy," Phys. Med. Biol. 42, 1415-1426 (1997).
[CrossRef]

Zhong, W.

Zysk, A. M.

Am. J. Clin. Pathol. (1)

H. C. Bickley, A. N. Walker, R. L. Jackson, and R. S. Donner, "Preservation of pathology specimens by silicone plastination. An innovative adjunct to pathology education," Am. J. Clin. Pathol. 88, 220-223 (1987).
[PubMed]

Anat. Embryol. (1)

G. von Hagens, K. Tiedemann, and W. Kriz, "The current potential of plastination," Anat. Embryol. 175, 411-421 (1987).
[CrossRef] [PubMed]

Anat. Rec. (1)

G. von Hagens, "Impregnation of Soft Biological Specimens with Thermosetting Resins and Elastomers," Anat. Rec. 194, 247-256 (1979).
[CrossRef] [PubMed]

Appl. Opt. (2)

J. Biophys. Biochem. Cytol. (1)

N. Feder and R. L. Sidman, "Methods and Principles of Fixation by Freeze-Substitution," J. Biophys. Biochem. Cytol. 4, 593-602 (1958).
[CrossRef] [PubMed]

J. Histochem. Cytochem. (1)

C. H. Fox, F. B. Johnson, J. Whiting, and P. P. Roller, "Formaldehyde Fixation," J. Histochem. Cytochem. 33, 845-853 (1985).
[CrossRef] [PubMed]

J. Int. Soc. Plastination (1)

M. T. E. Fahlman, "An Acetone-Vapor Reducing Method for Freeze-Substitution," J. Int. Soc. Plastination 12, 15-16 (1997).

J. Opt. Soc. Am. A (2)

Microscopy Today (1)

J. A. Kiernan, "Formaldehyde, formalin, paraformaldehyde, and glutaraldehyde: what they are what what they do," Microscopy Today 00-1, 8-12 (2000).

Nat. Med. (1)

J. G. Fujimoto, M. E. Brezinski, G. J. Tearney, S. A. Boppart, B. E. Bouma, M. R. Hee, J. F. Southern, and E. A. Swanson, "Biomedical imaging and optical biopsy using optical coherence tomography," Nat. Med. 1, 970-972 (1995).
[CrossRef] [PubMed]

Nat. Phys. (1)

T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, "Interferometric synthetic aperture microscopy," Nat. Phys. 5, 129-134 (2007).
[CrossRef]

Opt. Express (4)

M. A. Choma, M. V. Sarunic, Y. Changhuei, and J. A. Izatt, "Sensitivity advantage of swept source and Fourier domain optical coherence tomography," Opt. Express 111, 2183-2189 (2003).
[CrossRef]

X. Liang, A. L. Oldenburg, V. Crecea, E. J. Chaney, and S. A. Boppart, "Optical micro-scale mapping of dynamic biomechanical tissue properties," Opt. Express 16, 11,052-11,065 (2008).
[CrossRef]

G. Marquez and L. V. Wang, "White light oblique incidence reflectometer for measuring absorption and reduced scattering spectra for tissue-like turbid media," Opt. Express 1, 454-459 (1997).
[CrossRef] [PubMed]

K. Vishwanath, W. Zhong, M. Close, and M.-A. Mycek, "Fluorescence quenching by polystyrene microspheres in UV-visible and NIR tissue-simulating phantoms," Opt. Express 14, 7776-7788 (2006).
[CrossRef] [PubMed]

Opt. Lett. (4)

Phys. Med. Biol. (9)

K. W. Gossage, C. M. Smith, E. M. Kanter, L. P. Hariri, A. L. Stone, J. J. Rodriguez, S. K. Williams, and J. K. Barton, "Texture analysis of speckle in optical coherence tomography images of tissue phantoms," Phys. Med. Biol. 51, 1563-1575 (2006).
[CrossRef] [PubMed]

M. Firbank, M. Oda, and D. T. Delpy, "An improved design for a stable and reproducible phantom material for use in near infrared spectroscopy and imaging," Phys. Med. Biol. 40, 955-961 (1995).
[CrossRef] [PubMed]

A. M. Zysk, E. J. Chaney, and S. A. Boppart, "Refractive index of carcinogen-induced rat mammary tumours," Phys. Med. Biol. 51, 2165-2177 (2006).
[CrossRef] [PubMed]

A. P. Gibson, J. C. Hebden, and S. R. Arridge, "Recent advances in diffuse optical imaging," Phys. Med. Biol. 50, R1-R43 (2005).
[CrossRef] [PubMed]

J. C. Hebden, B. D. Price, A. P. Gibson, and G. Royle, "A soft deformable tissue-equivalent phantom for diffuse optical tomography," Phys. Med. Biol. 51, 5581-5590 (2006).
[CrossRef] [PubMed]

C.-E. Bisaillon, G. Lamouche, R. Maciejko, M. Dufour, and J.-P. Monchalin, "Deformable and durable phantoms with controlled density of scatterers," Phys. Med. Biol. 53, N237-N247 (2008).
[CrossRef] [PubMed]

M. Firbank and D. T. Delpy, "A design for a stable and reproducible phantom for use in near infrared imaging and spectroscopy," Phys. Med. Biol. 38, 847-853 (1993).
[CrossRef]

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, "A solid tissue phantom for photon migration studies," Phys. Med. Biol. 42, 1971-1979 (1997).
[CrossRef] [PubMed]

G. Wagnires, S. Cheng, M. Zellweger, N. Utke, D. Braichotte, J.-P. Ballini, and H. Bergh, "An optical phantom with tissue-like properties in the visible for used in PDT and fluorescence spectroscopy," Phys. Med. Biol. 42, 1415-1426 (1997).
[CrossRef]

Proc. SPIE (1)

C. Pitris, T. Ko, W. Drexler, R. Ghanta, X. Li, C. Chudoba, I. Hartl, and J. G. Fujimoto, "Ultrahigh-resolution in vivo versus ex vivo OCT imaging and tissue preservation," Proc. SPIE 4251, 170-173 (2001).
[CrossRef]

Science (1)

W. Denk, J. H. Strickler, and W. W. Webb, "Two-photon laser scanning fluorescence microscopy," Science 248, 73-76 (1990).
[CrossRef] [PubMed]

Other (4)

A. M. De Grand, S. J. Lomnes, D. S. Lee, M. Pietrzykowski, S. Ohnishi, T. G. Morgan, A. Gogbashian, R. G. Laurence, and J. V. Frangoni, "Tissue-Like Phantoms for Near-Infrared Fluorescence Imaging System Assessment and the Training of Surgeons," J. Biomed. Opt. 11, 014,007 (2006).
[CrossRef]

D. Passos, J. C. Hebden, P. N. Pinto, and R. Guerra, "Tissue phantom for optical diagnostics based on suspension of microspheres with a fractal size distribution," J. Biomed. Opt. 10, 064,036-1-064,036-11 (2005).
[CrossRef]

B. W. Pogue and M. S. Patterson, "Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry," J. Biomed. Opt. 11, 041,102-1-16 (2006).
[CrossRef]

P.-L. Hsiung, P. R. Nambiar, and J. G. Fujimoto, "Effect of tissue preservation on imaging using ultrahigh resolution optical coherence tomography," J. Biomed. Opt. 10, 064,033-1-064,033-6 (2005).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

OCT image sections from a 3-D OCT data set of a silicone plastinated skeletal muscle. Part (a) is a B-mode section, and (b) is an en face section. Part (c) is a rendering of the relative orientations of the sections with the axes marked corresponding to the section axes. Part (d) is a photograph of the plastinated sample.

Fig. 2.
Fig. 2.

OCT image sections from a 3-D OCT data set of an epoxy plastinated skeletal muscle. Part (a) is a B-mode section, and (b) is an en face section. Part (c) is a rendering of the relative orientations of the sections with the axes marked corresponding to the section axes. Part (d) is a photograph of the plastinated sample.

Fig. 3.
Fig. 3.

OCT image sections from a 3-D OCT data set of an epoxy plastinated cardiac muscle. Part (a) is a B-mode section, and (b) is an en face section. Part (c) is a rendering of the relative orientations of the sections with the axes marked corresponding to the section axes. Part (d) is a photograph of the plastinated sample.

Fig. 4.
Fig. 4.

OCT image sections from a 3-D OCT data set of silicone plastinated adipose tissue. Part (a) is a B-mode section, and (b) is an en face section. Part (c) is a rendering of the relative orientations of the sections with the axes marked corresponding to the section axes. Part (d) is a photograph of the plastinated sample.

Fig. 5.
Fig. 5.

OCT image sections from a 3-D OCT data set of epoxy plastinated adipose tissue. Part (a) is a B-mode section, and (b) is an en face section. Part (c) is a rendering of the relative orientations of the sections with the axes marked corresponding to the section axes. Part (d) is a photograph of the plastinated sample.

Fig. 6.
Fig. 6.

OCT image sections from a 3-D OCT data set of a silicone plastinated cornea. Part (a) is a B-mode section, and (b) is an en face section. Part (c) is a rendering of the relative orientations of the sections with the axes marked corresponding to the section axes. Part (d) is a photograph of the plastinated sample.

Fig. 7.
Fig. 7.

OCT image sections from a 3-D OCT data set of silicone plastinated lung tissue. Part (a) is a B-mode section, and (b) is an en face section. Part (c) is a rendering of the relative orientations of the sections with the axes marked corresponding to the section axes. Part (d) is a photograph of the plastinated sample.

Metrics