Abstract

We present electrically-injected MEMS-tunable vertical-cavity surface-emitting lasers with emission wavelengths below 800 nm. Operation in this wavelength range, near the oxygen A-band from 760–780 nm, is attractive for absorption-based optical gas sensing. These fully-monolithic devices are based on an oxide-aperture AlGaAs epitaxial structure and incorporate a suspended dielectric Bragg mirror for wavelength tuning. By implementing electrostatic actuation, we demonstrate the potential for tuning rates up to 1 MHz, as well as a wide wavelength tuning range of 30 nm (767–737 nm).

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. C. Hovde and C. A. Parsons, "Wavelength modulation detection of water vapor with a vertical-cavity surface-emitting laser," Appl. Opt. 36, 1135-1138, (1997).
    [CrossRef] [PubMed]
  2. I. Linnerud, P. Kaspersen, and T. Jæger, "Gas monitoring in the process industry using diode laser spectroscopy," Appl. Phys. B 67, 297-305 (1998).
    [CrossRef]
  3. V. Weldon, J. O'Gorman, J. J. Pérez-Camacho, and J. Hegarty, "Oxygen sensing using single-frequency GaAs-AlGaAs DFB laser diodes and VCSELs," Electron. Lett. 32, 219-221 (1996).
    [CrossRef]
  4. M. Lackner, G. Totschnig, F. Winter, R. Shau, M. Ortsiefer, J. Rosskopf, and M. C. Amann, "Demonstration of methane spectroscopy using a vertical-cavity surface-emitting laser (VCSEL) at 1.68 ?m with up to 5 MHz repetition rate," Meas. Sci. Technol. 14, 101-106 (2003).
    [CrossRef]
  5. C. Chang-Hasnain, "Tunable VCSEL," IEEE J. Sel. Top. Quantum Electron. 6, 978-987 (2000).
    [CrossRef]
  6. J. S. Harris, Jr., "Tunable long-wavelength vertical-cavity lasers: the engine of next generation optical networks," IEEE J. Sel. Top. Quantum Electron. 6, 1145-1160 (2000).
    [CrossRef]
  7. M. Lackner, M. Schwarzott, F. Winter, B. Kögel, S. Jatta, H. Halbritter, and P. Meissner, "CO and CO2 spectroscopy using a 60 nm broadband tunable MEMS-VCSEL at 1.55um," Opt. Lett. 31, 3170-3172 (2006).
    [CrossRef] [PubMed]
  8. B. Kögel, H. Halbritter, S. Jatta, M. Maute, G. Böhm, M.-C. Amann, M. Lackner, M. Schwarzott, F. Winter, and P. Meissner, "Simultaneous spectroscopy of NH3 and CO using a > 50 nm continuously tunable MEMS-VCSEL," IEEE Sens. J. 7, 1483-1489 (2007).
    [CrossRef]
  9. H. P. Zappe, M. Hess, M. Moser, R. Hövel, K. Gulden, H.-P. Gauggel, and F. Monti di Sopra, "Narrow-linewidth vertical-cavity surface-emitting lasers for oxygen detection," Appl. Opt. 39, 2475-2479 (2000).
    [CrossRef]
  10. P. Vogel and V. Ebert, "Near shot noise detection of oxygen in the A-band with vertical-cavity surface-emitting lasers," Appl. Phys. B 72, 127-35 (2001).
    [CrossRef]
  11. G. D. Cole, E. Behymer, L. L. Goddard, and T. C. Bond, "Fabrication of suspended dielectric mirror structures via xenon difluoride etching of an amorphous germanium sacrificial layer," J. Vac. Sci. Technol. B 26, 593-597 (2008).
    [CrossRef]
  12. G. D. Cole, E. S. Björlin, Q. Chen, C.-Y. Chan, S. Wu, C. S. Wang, N. C. MacDonald, and J. E. Bowers, "MEMS-tunable vertical-cavity SOAs," IEEE J. Quantum Electron. 41, 390-407 (2005).
    [CrossRef]
  13. M. Maute, G. Böhm, M.-C. Amann, B. Kögel, H. Halbritter, and P. Meissner, "Long-wavelength tunable vertical-cavity surface-emitting lasers and the influence of coupled cavities," Opt. Express 13, 8008-8014 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-20-8008.
    [CrossRef] [PubMed]
  14. M. Maute, B. Kögel, G. Bohm, P. Meissner, and M.-C. Amann, "MEMS-tunable 1.55-µm VCSEL with extended tuning range incorporating a buried tunnel junction," IEEE Photon. Technol. Lett. 18, 688-690 (2006).
    [CrossRef]
  15. F. Rinaldi, J. M. Ostermann, A. Kroner, and R. Michalzik, "High-performance AlGaAs-based VCSELs emitting in the 760 nm wavelength range," Opt. Commun. 270, 310-313 (2007).
    [CrossRef]
  16. G. D. Cole, J. E. Bowers, K. L. Turner, and N. C. MacDonald, "Dynamic characterization of MEMS-tunable vertical-cavity SOAs," in Proceedings of IEEE/LEOS International Conference on Optical MEMS and Their Applications (MOEMS 2005), Oulu, Finland, 1-4 August 2005, paper F4.
    [CrossRef] [PubMed]
  17. A. Syrbu, V. Iakovlev, G. Suruceanu, A. Caliman, A. Rudra, A. Mircea, A. Mereuta, S. Tadeoni, C.-A. Berseth, M. Achtenhagen, J. Boucart, and E. Kapon, "1.55-µm optically pumped wafer-fused tunable VCSELs with 32-nm tuning range," IEEE Photon. Technol. Lett. 16, 1991-1993 (2004).
    [CrossRef]
  18. F. Riemenschneider, M. Maute, H. Halbritter, G. Böhm, M.-C. Amann, and P. Meissner, "Continuously tunable long-wavelength MEMS-VCSEL with over 40-nm tuning range," IEEE Photon. Technol. Lett. 16, 2212-2214 (2004).
    [CrossRef]
  19. N. Kanbara, S.-i. Tezuka, and T. Watanabe, "MEMS tunable VCSEL with concave mirror using the selective polishing method," in Proceedings of IEEE/LEOS International Conference on Optical MEMS and Their Applications (MOEMS 2006), Big Sky, MT, 21-24 August 2006, paper MA3.
    [CrossRef] [PubMed]
  20. T. Kitano, S. Izumi, H. Minami, T. Ishikawa, K. Sato, T. Sonoda, and M. Otsubo, "Selective wet etching for highly uniform GaAs/Al0.15Ga0.85As heterostructure field effect transistors," J. Vac. Sci. Technol. B 15, 167-170 (1997).
    [CrossRef]
  21. G. D. Cole, E. S. Björlin, C. S. Wang, N. C. MacDonald, and J. E. Bowers, "Widely tunable bottom-emitting vertical-cavity SOAs," IEEE Photon. Technol. Lett. 17, 2526-2528 (2005).
    [CrossRef]
  22. P. B. Chu, J. T. Chen, R. Yeh, G. Lin, J. C. P. Huang, B. A. Warneke, and S. J. Pister, "Controlled pulse-etching with xenon difluoride," 9th International Conference on Solid State Sensors and Actuators, Digest of Technical papers Transducers ???97, Chicago, IL, USA, paper 2D3.01, pp. 665-668.
  23. G. D. Cole and E. Behymer, "Rapid sacrificial germanium etching using xenon difluoride," in Technical Digest of Hilton Head 2008: Solid-State Sensors, Actuators, and Microsystems Workshop, 1-5 June 2008, Hilton Head Island, SC, pp. 388-389.
  24. M. C. Larson, A. R. Massengale, and J. S. Harris, "Continuously tunable micromachined vertical cavity surface emitting laser with 18 nm wavelength range," Electron. Lett. 32, 330-332 (1996).
    [CrossRef]
  25. Y. Matsui, D. Vakhshoori, P. Wang, P. Chen, C.-C. Lu, M. Jiang, K. Knopp, S. Burroughs, and P. Tayebati, "Complete polarization mode control of long-wavelength tunable vertical-cavity surface-emitting lasers over 65-nm tuning, up to 14-mW output power," IEEE J. Quantum Electron. 39, 1037-1048 (2003).
    [CrossRef]
  26. K. L. Turner, P. G. Hartwell, and N. C. Macdonald, "Multi-dimensional MEMS motion characterization using laser vibrometry," 10th International Conference on Solid State Sensors and Actuators, Digest of Technical papers Transducers '99, Sendai, Japan, pp. 1144-1147.
  27. P. Tayebati, P. D. Wang, D. Vakhshoori, C. C. Lu, M. Azimi, and R. N. Sacks, "Half-symmetric cavity tunable microelectromechanical VCSEL with single spatial mode," IEEE Photon. Technol. Lett. 10, 1679-1681 (1998).
    [CrossRef]
  28. M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, "A nanoelectromechanical tunable laser," Nat. Photonics 2, 180-184 (2008).
    [CrossRef]

2008

G. D. Cole, E. Behymer, L. L. Goddard, and T. C. Bond, "Fabrication of suspended dielectric mirror structures via xenon difluoride etching of an amorphous germanium sacrificial layer," J. Vac. Sci. Technol. B 26, 593-597 (2008).
[CrossRef]

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, "A nanoelectromechanical tunable laser," Nat. Photonics 2, 180-184 (2008).
[CrossRef]

2007

F. Rinaldi, J. M. Ostermann, A. Kroner, and R. Michalzik, "High-performance AlGaAs-based VCSELs emitting in the 760 nm wavelength range," Opt. Commun. 270, 310-313 (2007).
[CrossRef]

B. Kögel, H. Halbritter, S. Jatta, M. Maute, G. Böhm, M.-C. Amann, M. Lackner, M. Schwarzott, F. Winter, and P. Meissner, "Simultaneous spectroscopy of NH3 and CO using a > 50 nm continuously tunable MEMS-VCSEL," IEEE Sens. J. 7, 1483-1489 (2007).
[CrossRef]

2006

M. Lackner, M. Schwarzott, F. Winter, B. Kögel, S. Jatta, H. Halbritter, and P. Meissner, "CO and CO2 spectroscopy using a 60 nm broadband tunable MEMS-VCSEL at 1.55um," Opt. Lett. 31, 3170-3172 (2006).
[CrossRef] [PubMed]

M. Maute, B. Kögel, G. Bohm, P. Meissner, and M.-C. Amann, "MEMS-tunable 1.55-µm VCSEL with extended tuning range incorporating a buried tunnel junction," IEEE Photon. Technol. Lett. 18, 688-690 (2006).
[CrossRef]

2005

G. D. Cole, E. S. Björlin, Q. Chen, C.-Y. Chan, S. Wu, C. S. Wang, N. C. MacDonald, and J. E. Bowers, "MEMS-tunable vertical-cavity SOAs," IEEE J. Quantum Electron. 41, 390-407 (2005).
[CrossRef]

M. Maute, G. Böhm, M.-C. Amann, B. Kögel, H. Halbritter, and P. Meissner, "Long-wavelength tunable vertical-cavity surface-emitting lasers and the influence of coupled cavities," Opt. Express 13, 8008-8014 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-20-8008.
[CrossRef] [PubMed]

G. D. Cole, E. S. Björlin, C. S. Wang, N. C. MacDonald, and J. E. Bowers, "Widely tunable bottom-emitting vertical-cavity SOAs," IEEE Photon. Technol. Lett. 17, 2526-2528 (2005).
[CrossRef]

2004

A. Syrbu, V. Iakovlev, G. Suruceanu, A. Caliman, A. Rudra, A. Mircea, A. Mereuta, S. Tadeoni, C.-A. Berseth, M. Achtenhagen, J. Boucart, and E. Kapon, "1.55-µm optically pumped wafer-fused tunable VCSELs with 32-nm tuning range," IEEE Photon. Technol. Lett. 16, 1991-1993 (2004).
[CrossRef]

F. Riemenschneider, M. Maute, H. Halbritter, G. Böhm, M.-C. Amann, and P. Meissner, "Continuously tunable long-wavelength MEMS-VCSEL with over 40-nm tuning range," IEEE Photon. Technol. Lett. 16, 2212-2214 (2004).
[CrossRef]

2003

M. Lackner, G. Totschnig, F. Winter, R. Shau, M. Ortsiefer, J. Rosskopf, and M. C. Amann, "Demonstration of methane spectroscopy using a vertical-cavity surface-emitting laser (VCSEL) at 1.68 ?m with up to 5 MHz repetition rate," Meas. Sci. Technol. 14, 101-106 (2003).
[CrossRef]

Y. Matsui, D. Vakhshoori, P. Wang, P. Chen, C.-C. Lu, M. Jiang, K. Knopp, S. Burroughs, and P. Tayebati, "Complete polarization mode control of long-wavelength tunable vertical-cavity surface-emitting lasers over 65-nm tuning, up to 14-mW output power," IEEE J. Quantum Electron. 39, 1037-1048 (2003).
[CrossRef]

2001

P. Vogel and V. Ebert, "Near shot noise detection of oxygen in the A-band with vertical-cavity surface-emitting lasers," Appl. Phys. B 72, 127-35 (2001).
[CrossRef]

2000

C. Chang-Hasnain, "Tunable VCSEL," IEEE J. Sel. Top. Quantum Electron. 6, 978-987 (2000).
[CrossRef]

J. S. Harris, Jr., "Tunable long-wavelength vertical-cavity lasers: the engine of next generation optical networks," IEEE J. Sel. Top. Quantum Electron. 6, 1145-1160 (2000).
[CrossRef]

H. P. Zappe, M. Hess, M. Moser, R. Hövel, K. Gulden, H.-P. Gauggel, and F. Monti di Sopra, "Narrow-linewidth vertical-cavity surface-emitting lasers for oxygen detection," Appl. Opt. 39, 2475-2479 (2000).
[CrossRef]

1998

I. Linnerud, P. Kaspersen, and T. Jæger, "Gas monitoring in the process industry using diode laser spectroscopy," Appl. Phys. B 67, 297-305 (1998).
[CrossRef]

P. Tayebati, P. D. Wang, D. Vakhshoori, C. C. Lu, M. Azimi, and R. N. Sacks, "Half-symmetric cavity tunable microelectromechanical VCSEL with single spatial mode," IEEE Photon. Technol. Lett. 10, 1679-1681 (1998).
[CrossRef]

1997

D. C. Hovde and C. A. Parsons, "Wavelength modulation detection of water vapor with a vertical-cavity surface-emitting laser," Appl. Opt. 36, 1135-1138, (1997).
[CrossRef] [PubMed]

T. Kitano, S. Izumi, H. Minami, T. Ishikawa, K. Sato, T. Sonoda, and M. Otsubo, "Selective wet etching for highly uniform GaAs/Al0.15Ga0.85As heterostructure field effect transistors," J. Vac. Sci. Technol. B 15, 167-170 (1997).
[CrossRef]

1996

V. Weldon, J. O'Gorman, J. J. Pérez-Camacho, and J. Hegarty, "Oxygen sensing using single-frequency GaAs-AlGaAs DFB laser diodes and VCSELs," Electron. Lett. 32, 219-221 (1996).
[CrossRef]

M. C. Larson, A. R. Massengale, and J. S. Harris, "Continuously tunable micromachined vertical cavity surface emitting laser with 18 nm wavelength range," Electron. Lett. 32, 330-332 (1996).
[CrossRef]

Achtenhagen, M.

A. Syrbu, V. Iakovlev, G. Suruceanu, A. Caliman, A. Rudra, A. Mircea, A. Mereuta, S. Tadeoni, C.-A. Berseth, M. Achtenhagen, J. Boucart, and E. Kapon, "1.55-µm optically pumped wafer-fused tunable VCSELs with 32-nm tuning range," IEEE Photon. Technol. Lett. 16, 1991-1993 (2004).
[CrossRef]

Amann, M. C.

M. Lackner, G. Totschnig, F. Winter, R. Shau, M. Ortsiefer, J. Rosskopf, and M. C. Amann, "Demonstration of methane spectroscopy using a vertical-cavity surface-emitting laser (VCSEL) at 1.68 ?m with up to 5 MHz repetition rate," Meas. Sci. Technol. 14, 101-106 (2003).
[CrossRef]

Amann, M.-C.

B. Kögel, H. Halbritter, S. Jatta, M. Maute, G. Böhm, M.-C. Amann, M. Lackner, M. Schwarzott, F. Winter, and P. Meissner, "Simultaneous spectroscopy of NH3 and CO using a > 50 nm continuously tunable MEMS-VCSEL," IEEE Sens. J. 7, 1483-1489 (2007).
[CrossRef]

M. Maute, B. Kögel, G. Bohm, P. Meissner, and M.-C. Amann, "MEMS-tunable 1.55-µm VCSEL with extended tuning range incorporating a buried tunnel junction," IEEE Photon. Technol. Lett. 18, 688-690 (2006).
[CrossRef]

M. Maute, G. Böhm, M.-C. Amann, B. Kögel, H. Halbritter, and P. Meissner, "Long-wavelength tunable vertical-cavity surface-emitting lasers and the influence of coupled cavities," Opt. Express 13, 8008-8014 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-20-8008.
[CrossRef] [PubMed]

F. Riemenschneider, M. Maute, H. Halbritter, G. Böhm, M.-C. Amann, and P. Meissner, "Continuously tunable long-wavelength MEMS-VCSEL with over 40-nm tuning range," IEEE Photon. Technol. Lett. 16, 2212-2214 (2004).
[CrossRef]

Azimi, M.

P. Tayebati, P. D. Wang, D. Vakhshoori, C. C. Lu, M. Azimi, and R. N. Sacks, "Half-symmetric cavity tunable microelectromechanical VCSEL with single spatial mode," IEEE Photon. Technol. Lett. 10, 1679-1681 (1998).
[CrossRef]

Behymer, E.

G. D. Cole, E. Behymer, L. L. Goddard, and T. C. Bond, "Fabrication of suspended dielectric mirror structures via xenon difluoride etching of an amorphous germanium sacrificial layer," J. Vac. Sci. Technol. B 26, 593-597 (2008).
[CrossRef]

Berseth, C.-A.

A. Syrbu, V. Iakovlev, G. Suruceanu, A. Caliman, A. Rudra, A. Mircea, A. Mereuta, S. Tadeoni, C.-A. Berseth, M. Achtenhagen, J. Boucart, and E. Kapon, "1.55-µm optically pumped wafer-fused tunable VCSELs with 32-nm tuning range," IEEE Photon. Technol. Lett. 16, 1991-1993 (2004).
[CrossRef]

Björlin, E. S.

G. D. Cole, E. S. Björlin, C. S. Wang, N. C. MacDonald, and J. E. Bowers, "Widely tunable bottom-emitting vertical-cavity SOAs," IEEE Photon. Technol. Lett. 17, 2526-2528 (2005).
[CrossRef]

G. D. Cole, E. S. Björlin, Q. Chen, C.-Y. Chan, S. Wu, C. S. Wang, N. C. MacDonald, and J. E. Bowers, "MEMS-tunable vertical-cavity SOAs," IEEE J. Quantum Electron. 41, 390-407 (2005).
[CrossRef]

Bohm, G.

M. Maute, B. Kögel, G. Bohm, P. Meissner, and M.-C. Amann, "MEMS-tunable 1.55-µm VCSEL with extended tuning range incorporating a buried tunnel junction," IEEE Photon. Technol. Lett. 18, 688-690 (2006).
[CrossRef]

Böhm, G.

B. Kögel, H. Halbritter, S. Jatta, M. Maute, G. Böhm, M.-C. Amann, M. Lackner, M. Schwarzott, F. Winter, and P. Meissner, "Simultaneous spectroscopy of NH3 and CO using a > 50 nm continuously tunable MEMS-VCSEL," IEEE Sens. J. 7, 1483-1489 (2007).
[CrossRef]

M. Maute, G. Böhm, M.-C. Amann, B. Kögel, H. Halbritter, and P. Meissner, "Long-wavelength tunable vertical-cavity surface-emitting lasers and the influence of coupled cavities," Opt. Express 13, 8008-8014 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-20-8008.
[CrossRef] [PubMed]

F. Riemenschneider, M. Maute, H. Halbritter, G. Böhm, M.-C. Amann, and P. Meissner, "Continuously tunable long-wavelength MEMS-VCSEL with over 40-nm tuning range," IEEE Photon. Technol. Lett. 16, 2212-2214 (2004).
[CrossRef]

Bond, T. C.

G. D. Cole, E. Behymer, L. L. Goddard, and T. C. Bond, "Fabrication of suspended dielectric mirror structures via xenon difluoride etching of an amorphous germanium sacrificial layer," J. Vac. Sci. Technol. B 26, 593-597 (2008).
[CrossRef]

Boucart, J.

A. Syrbu, V. Iakovlev, G. Suruceanu, A. Caliman, A. Rudra, A. Mircea, A. Mereuta, S. Tadeoni, C.-A. Berseth, M. Achtenhagen, J. Boucart, and E. Kapon, "1.55-µm optically pumped wafer-fused tunable VCSELs with 32-nm tuning range," IEEE Photon. Technol. Lett. 16, 1991-1993 (2004).
[CrossRef]

Bowers, J. E.

G. D. Cole, E. S. Björlin, C. S. Wang, N. C. MacDonald, and J. E. Bowers, "Widely tunable bottom-emitting vertical-cavity SOAs," IEEE Photon. Technol. Lett. 17, 2526-2528 (2005).
[CrossRef]

G. D. Cole, E. S. Björlin, Q. Chen, C.-Y. Chan, S. Wu, C. S. Wang, N. C. MacDonald, and J. E. Bowers, "MEMS-tunable vertical-cavity SOAs," IEEE J. Quantum Electron. 41, 390-407 (2005).
[CrossRef]

Burroughs, S.

Y. Matsui, D. Vakhshoori, P. Wang, P. Chen, C.-C. Lu, M. Jiang, K. Knopp, S. Burroughs, and P. Tayebati, "Complete polarization mode control of long-wavelength tunable vertical-cavity surface-emitting lasers over 65-nm tuning, up to 14-mW output power," IEEE J. Quantum Electron. 39, 1037-1048 (2003).
[CrossRef]

Caliman, A.

A. Syrbu, V. Iakovlev, G. Suruceanu, A. Caliman, A. Rudra, A. Mircea, A. Mereuta, S. Tadeoni, C.-A. Berseth, M. Achtenhagen, J. Boucart, and E. Kapon, "1.55-µm optically pumped wafer-fused tunable VCSELs with 32-nm tuning range," IEEE Photon. Technol. Lett. 16, 1991-1993 (2004).
[CrossRef]

Chan, C.-Y.

G. D. Cole, E. S. Björlin, Q. Chen, C.-Y. Chan, S. Wu, C. S. Wang, N. C. MacDonald, and J. E. Bowers, "MEMS-tunable vertical-cavity SOAs," IEEE J. Quantum Electron. 41, 390-407 (2005).
[CrossRef]

Chang-Hasnain, C.

C. Chang-Hasnain, "Tunable VCSEL," IEEE J. Sel. Top. Quantum Electron. 6, 978-987 (2000).
[CrossRef]

Chang-Hasnain, C. J.

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, "A nanoelectromechanical tunable laser," Nat. Photonics 2, 180-184 (2008).
[CrossRef]

Chen, P.

Y. Matsui, D. Vakhshoori, P. Wang, P. Chen, C.-C. Lu, M. Jiang, K. Knopp, S. Burroughs, and P. Tayebati, "Complete polarization mode control of long-wavelength tunable vertical-cavity surface-emitting lasers over 65-nm tuning, up to 14-mW output power," IEEE J. Quantum Electron. 39, 1037-1048 (2003).
[CrossRef]

Chen, Q.

G. D. Cole, E. S. Björlin, Q. Chen, C.-Y. Chan, S. Wu, C. S. Wang, N. C. MacDonald, and J. E. Bowers, "MEMS-tunable vertical-cavity SOAs," IEEE J. Quantum Electron. 41, 390-407 (2005).
[CrossRef]

Cole, G. D.

G. D. Cole, E. Behymer, L. L. Goddard, and T. C. Bond, "Fabrication of suspended dielectric mirror structures via xenon difluoride etching of an amorphous germanium sacrificial layer," J. Vac. Sci. Technol. B 26, 593-597 (2008).
[CrossRef]

G. D. Cole, E. S. Björlin, Q. Chen, C.-Y. Chan, S. Wu, C. S. Wang, N. C. MacDonald, and J. E. Bowers, "MEMS-tunable vertical-cavity SOAs," IEEE J. Quantum Electron. 41, 390-407 (2005).
[CrossRef]

G. D. Cole, E. S. Björlin, C. S. Wang, N. C. MacDonald, and J. E. Bowers, "Widely tunable bottom-emitting vertical-cavity SOAs," IEEE Photon. Technol. Lett. 17, 2526-2528 (2005).
[CrossRef]

Ebert, V.

P. Vogel and V. Ebert, "Near shot noise detection of oxygen in the A-band with vertical-cavity surface-emitting lasers," Appl. Phys. B 72, 127-35 (2001).
[CrossRef]

Gauggel, H.-P.

Goddard, L. L.

G. D. Cole, E. Behymer, L. L. Goddard, and T. C. Bond, "Fabrication of suspended dielectric mirror structures via xenon difluoride etching of an amorphous germanium sacrificial layer," J. Vac. Sci. Technol. B 26, 593-597 (2008).
[CrossRef]

Gulden, K.

Halbritter, H.

B. Kögel, H. Halbritter, S. Jatta, M. Maute, G. Böhm, M.-C. Amann, M. Lackner, M. Schwarzott, F. Winter, and P. Meissner, "Simultaneous spectroscopy of NH3 and CO using a > 50 nm continuously tunable MEMS-VCSEL," IEEE Sens. J. 7, 1483-1489 (2007).
[CrossRef]

M. Lackner, M. Schwarzott, F. Winter, B. Kögel, S. Jatta, H. Halbritter, and P. Meissner, "CO and CO2 spectroscopy using a 60 nm broadband tunable MEMS-VCSEL at 1.55um," Opt. Lett. 31, 3170-3172 (2006).
[CrossRef] [PubMed]

M. Maute, G. Böhm, M.-C. Amann, B. Kögel, H. Halbritter, and P. Meissner, "Long-wavelength tunable vertical-cavity surface-emitting lasers and the influence of coupled cavities," Opt. Express 13, 8008-8014 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-20-8008.
[CrossRef] [PubMed]

F. Riemenschneider, M. Maute, H. Halbritter, G. Böhm, M.-C. Amann, and P. Meissner, "Continuously tunable long-wavelength MEMS-VCSEL with over 40-nm tuning range," IEEE Photon. Technol. Lett. 16, 2212-2214 (2004).
[CrossRef]

Harris, J. S.

J. S. Harris, Jr., "Tunable long-wavelength vertical-cavity lasers: the engine of next generation optical networks," IEEE J. Sel. Top. Quantum Electron. 6, 1145-1160 (2000).
[CrossRef]

M. C. Larson, A. R. Massengale, and J. S. Harris, "Continuously tunable micromachined vertical cavity surface emitting laser with 18 nm wavelength range," Electron. Lett. 32, 330-332 (1996).
[CrossRef]

Hegarty, J.

V. Weldon, J. O'Gorman, J. J. Pérez-Camacho, and J. Hegarty, "Oxygen sensing using single-frequency GaAs-AlGaAs DFB laser diodes and VCSELs," Electron. Lett. 32, 219-221 (1996).
[CrossRef]

Hess, M.

Hovde, D. C.

Hövel, R.

Huang, M. C. Y.

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, "A nanoelectromechanical tunable laser," Nat. Photonics 2, 180-184 (2008).
[CrossRef]

Iakovlev, V.

A. Syrbu, V. Iakovlev, G. Suruceanu, A. Caliman, A. Rudra, A. Mircea, A. Mereuta, S. Tadeoni, C.-A. Berseth, M. Achtenhagen, J. Boucart, and E. Kapon, "1.55-µm optically pumped wafer-fused tunable VCSELs with 32-nm tuning range," IEEE Photon. Technol. Lett. 16, 1991-1993 (2004).
[CrossRef]

Ishikawa, T.

T. Kitano, S. Izumi, H. Minami, T. Ishikawa, K. Sato, T. Sonoda, and M. Otsubo, "Selective wet etching for highly uniform GaAs/Al0.15Ga0.85As heterostructure field effect transistors," J. Vac. Sci. Technol. B 15, 167-170 (1997).
[CrossRef]

Izumi, S.

T. Kitano, S. Izumi, H. Minami, T. Ishikawa, K. Sato, T. Sonoda, and M. Otsubo, "Selective wet etching for highly uniform GaAs/Al0.15Ga0.85As heterostructure field effect transistors," J. Vac. Sci. Technol. B 15, 167-170 (1997).
[CrossRef]

Jæger, T.

I. Linnerud, P. Kaspersen, and T. Jæger, "Gas monitoring in the process industry using diode laser spectroscopy," Appl. Phys. B 67, 297-305 (1998).
[CrossRef]

Jatta, S.

B. Kögel, H. Halbritter, S. Jatta, M. Maute, G. Böhm, M.-C. Amann, M. Lackner, M. Schwarzott, F. Winter, and P. Meissner, "Simultaneous spectroscopy of NH3 and CO using a > 50 nm continuously tunable MEMS-VCSEL," IEEE Sens. J. 7, 1483-1489 (2007).
[CrossRef]

M. Lackner, M. Schwarzott, F. Winter, B. Kögel, S. Jatta, H. Halbritter, and P. Meissner, "CO and CO2 spectroscopy using a 60 nm broadband tunable MEMS-VCSEL at 1.55um," Opt. Lett. 31, 3170-3172 (2006).
[CrossRef] [PubMed]

Jiang, M.

Y. Matsui, D. Vakhshoori, P. Wang, P. Chen, C.-C. Lu, M. Jiang, K. Knopp, S. Burroughs, and P. Tayebati, "Complete polarization mode control of long-wavelength tunable vertical-cavity surface-emitting lasers over 65-nm tuning, up to 14-mW output power," IEEE J. Quantum Electron. 39, 1037-1048 (2003).
[CrossRef]

Kapon, E.

A. Syrbu, V. Iakovlev, G. Suruceanu, A. Caliman, A. Rudra, A. Mircea, A. Mereuta, S. Tadeoni, C.-A. Berseth, M. Achtenhagen, J. Boucart, and E. Kapon, "1.55-µm optically pumped wafer-fused tunable VCSELs with 32-nm tuning range," IEEE Photon. Technol. Lett. 16, 1991-1993 (2004).
[CrossRef]

Kaspersen, P.

I. Linnerud, P. Kaspersen, and T. Jæger, "Gas monitoring in the process industry using diode laser spectroscopy," Appl. Phys. B 67, 297-305 (1998).
[CrossRef]

Kitano, T.

T. Kitano, S. Izumi, H. Minami, T. Ishikawa, K. Sato, T. Sonoda, and M. Otsubo, "Selective wet etching for highly uniform GaAs/Al0.15Ga0.85As heterostructure field effect transistors," J. Vac. Sci. Technol. B 15, 167-170 (1997).
[CrossRef]

Knopp, K.

Y. Matsui, D. Vakhshoori, P. Wang, P. Chen, C.-C. Lu, M. Jiang, K. Knopp, S. Burroughs, and P. Tayebati, "Complete polarization mode control of long-wavelength tunable vertical-cavity surface-emitting lasers over 65-nm tuning, up to 14-mW output power," IEEE J. Quantum Electron. 39, 1037-1048 (2003).
[CrossRef]

Kögel, B.

B. Kögel, H. Halbritter, S. Jatta, M. Maute, G. Böhm, M.-C. Amann, M. Lackner, M. Schwarzott, F. Winter, and P. Meissner, "Simultaneous spectroscopy of NH3 and CO using a > 50 nm continuously tunable MEMS-VCSEL," IEEE Sens. J. 7, 1483-1489 (2007).
[CrossRef]

M. Lackner, M. Schwarzott, F. Winter, B. Kögel, S. Jatta, H. Halbritter, and P. Meissner, "CO and CO2 spectroscopy using a 60 nm broadband tunable MEMS-VCSEL at 1.55um," Opt. Lett. 31, 3170-3172 (2006).
[CrossRef] [PubMed]

M. Maute, B. Kögel, G. Bohm, P. Meissner, and M.-C. Amann, "MEMS-tunable 1.55-µm VCSEL with extended tuning range incorporating a buried tunnel junction," IEEE Photon. Technol. Lett. 18, 688-690 (2006).
[CrossRef]

M. Maute, G. Böhm, M.-C. Amann, B. Kögel, H. Halbritter, and P. Meissner, "Long-wavelength tunable vertical-cavity surface-emitting lasers and the influence of coupled cavities," Opt. Express 13, 8008-8014 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-20-8008.
[CrossRef] [PubMed]

Kroner, A.

F. Rinaldi, J. M. Ostermann, A. Kroner, and R. Michalzik, "High-performance AlGaAs-based VCSELs emitting in the 760 nm wavelength range," Opt. Commun. 270, 310-313 (2007).
[CrossRef]

Lackner, M.

B. Kögel, H. Halbritter, S. Jatta, M. Maute, G. Böhm, M.-C. Amann, M. Lackner, M. Schwarzott, F. Winter, and P. Meissner, "Simultaneous spectroscopy of NH3 and CO using a > 50 nm continuously tunable MEMS-VCSEL," IEEE Sens. J. 7, 1483-1489 (2007).
[CrossRef]

M. Lackner, M. Schwarzott, F. Winter, B. Kögel, S. Jatta, H. Halbritter, and P. Meissner, "CO and CO2 spectroscopy using a 60 nm broadband tunable MEMS-VCSEL at 1.55um," Opt. Lett. 31, 3170-3172 (2006).
[CrossRef] [PubMed]

M. Lackner, G. Totschnig, F. Winter, R. Shau, M. Ortsiefer, J. Rosskopf, and M. C. Amann, "Demonstration of methane spectroscopy using a vertical-cavity surface-emitting laser (VCSEL) at 1.68 ?m with up to 5 MHz repetition rate," Meas. Sci. Technol. 14, 101-106 (2003).
[CrossRef]

Larson, M. C.

M. C. Larson, A. R. Massengale, and J. S. Harris, "Continuously tunable micromachined vertical cavity surface emitting laser with 18 nm wavelength range," Electron. Lett. 32, 330-332 (1996).
[CrossRef]

Linnerud, I.

I. Linnerud, P. Kaspersen, and T. Jæger, "Gas monitoring in the process industry using diode laser spectroscopy," Appl. Phys. B 67, 297-305 (1998).
[CrossRef]

Lu, C. C.

P. Tayebati, P. D. Wang, D. Vakhshoori, C. C. Lu, M. Azimi, and R. N. Sacks, "Half-symmetric cavity tunable microelectromechanical VCSEL with single spatial mode," IEEE Photon. Technol. Lett. 10, 1679-1681 (1998).
[CrossRef]

Lu, C.-C.

Y. Matsui, D. Vakhshoori, P. Wang, P. Chen, C.-C. Lu, M. Jiang, K. Knopp, S. Burroughs, and P. Tayebati, "Complete polarization mode control of long-wavelength tunable vertical-cavity surface-emitting lasers over 65-nm tuning, up to 14-mW output power," IEEE J. Quantum Electron. 39, 1037-1048 (2003).
[CrossRef]

MacDonald, N. C.

G. D. Cole, E. S. Björlin, C. S. Wang, N. C. MacDonald, and J. E. Bowers, "Widely tunable bottom-emitting vertical-cavity SOAs," IEEE Photon. Technol. Lett. 17, 2526-2528 (2005).
[CrossRef]

G. D. Cole, E. S. Björlin, Q. Chen, C.-Y. Chan, S. Wu, C. S. Wang, N. C. MacDonald, and J. E. Bowers, "MEMS-tunable vertical-cavity SOAs," IEEE J. Quantum Electron. 41, 390-407 (2005).
[CrossRef]

Massengale, A. R.

M. C. Larson, A. R. Massengale, and J. S. Harris, "Continuously tunable micromachined vertical cavity surface emitting laser with 18 nm wavelength range," Electron. Lett. 32, 330-332 (1996).
[CrossRef]

Matsui, Y.

Y. Matsui, D. Vakhshoori, P. Wang, P. Chen, C.-C. Lu, M. Jiang, K. Knopp, S. Burroughs, and P. Tayebati, "Complete polarization mode control of long-wavelength tunable vertical-cavity surface-emitting lasers over 65-nm tuning, up to 14-mW output power," IEEE J. Quantum Electron. 39, 1037-1048 (2003).
[CrossRef]

Maute, M.

B. Kögel, H. Halbritter, S. Jatta, M. Maute, G. Böhm, M.-C. Amann, M. Lackner, M. Schwarzott, F. Winter, and P. Meissner, "Simultaneous spectroscopy of NH3 and CO using a > 50 nm continuously tunable MEMS-VCSEL," IEEE Sens. J. 7, 1483-1489 (2007).
[CrossRef]

M. Maute, B. Kögel, G. Bohm, P. Meissner, and M.-C. Amann, "MEMS-tunable 1.55-µm VCSEL with extended tuning range incorporating a buried tunnel junction," IEEE Photon. Technol. Lett. 18, 688-690 (2006).
[CrossRef]

M. Maute, G. Böhm, M.-C. Amann, B. Kögel, H. Halbritter, and P. Meissner, "Long-wavelength tunable vertical-cavity surface-emitting lasers and the influence of coupled cavities," Opt. Express 13, 8008-8014 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-20-8008.
[CrossRef] [PubMed]

F. Riemenschneider, M. Maute, H. Halbritter, G. Böhm, M.-C. Amann, and P. Meissner, "Continuously tunable long-wavelength MEMS-VCSEL with over 40-nm tuning range," IEEE Photon. Technol. Lett. 16, 2212-2214 (2004).
[CrossRef]

Meissner, P.

B. Kögel, H. Halbritter, S. Jatta, M. Maute, G. Böhm, M.-C. Amann, M. Lackner, M. Schwarzott, F. Winter, and P. Meissner, "Simultaneous spectroscopy of NH3 and CO using a > 50 nm continuously tunable MEMS-VCSEL," IEEE Sens. J. 7, 1483-1489 (2007).
[CrossRef]

M. Lackner, M. Schwarzott, F. Winter, B. Kögel, S. Jatta, H. Halbritter, and P. Meissner, "CO and CO2 spectroscopy using a 60 nm broadband tunable MEMS-VCSEL at 1.55um," Opt. Lett. 31, 3170-3172 (2006).
[CrossRef] [PubMed]

M. Maute, B. Kögel, G. Bohm, P. Meissner, and M.-C. Amann, "MEMS-tunable 1.55-µm VCSEL with extended tuning range incorporating a buried tunnel junction," IEEE Photon. Technol. Lett. 18, 688-690 (2006).
[CrossRef]

M. Maute, G. Böhm, M.-C. Amann, B. Kögel, H. Halbritter, and P. Meissner, "Long-wavelength tunable vertical-cavity surface-emitting lasers and the influence of coupled cavities," Opt. Express 13, 8008-8014 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-20-8008.
[CrossRef] [PubMed]

F. Riemenschneider, M. Maute, H. Halbritter, G. Böhm, M.-C. Amann, and P. Meissner, "Continuously tunable long-wavelength MEMS-VCSEL with over 40-nm tuning range," IEEE Photon. Technol. Lett. 16, 2212-2214 (2004).
[CrossRef]

Mereuta, A.

A. Syrbu, V. Iakovlev, G. Suruceanu, A. Caliman, A. Rudra, A. Mircea, A. Mereuta, S. Tadeoni, C.-A. Berseth, M. Achtenhagen, J. Boucart, and E. Kapon, "1.55-µm optically pumped wafer-fused tunable VCSELs with 32-nm tuning range," IEEE Photon. Technol. Lett. 16, 1991-1993 (2004).
[CrossRef]

Michalzik, R.

F. Rinaldi, J. M. Ostermann, A. Kroner, and R. Michalzik, "High-performance AlGaAs-based VCSELs emitting in the 760 nm wavelength range," Opt. Commun. 270, 310-313 (2007).
[CrossRef]

Minami, H.

T. Kitano, S. Izumi, H. Minami, T. Ishikawa, K. Sato, T. Sonoda, and M. Otsubo, "Selective wet etching for highly uniform GaAs/Al0.15Ga0.85As heterostructure field effect transistors," J. Vac. Sci. Technol. B 15, 167-170 (1997).
[CrossRef]

Mircea, A.

A. Syrbu, V. Iakovlev, G. Suruceanu, A. Caliman, A. Rudra, A. Mircea, A. Mereuta, S. Tadeoni, C.-A. Berseth, M. Achtenhagen, J. Boucart, and E. Kapon, "1.55-µm optically pumped wafer-fused tunable VCSELs with 32-nm tuning range," IEEE Photon. Technol. Lett. 16, 1991-1993 (2004).
[CrossRef]

Monti di Sopra, F.

Moser, M.

O'Gorman, J.

V. Weldon, J. O'Gorman, J. J. Pérez-Camacho, and J. Hegarty, "Oxygen sensing using single-frequency GaAs-AlGaAs DFB laser diodes and VCSELs," Electron. Lett. 32, 219-221 (1996).
[CrossRef]

Ortsiefer, M.

M. Lackner, G. Totschnig, F. Winter, R. Shau, M. Ortsiefer, J. Rosskopf, and M. C. Amann, "Demonstration of methane spectroscopy using a vertical-cavity surface-emitting laser (VCSEL) at 1.68 ?m with up to 5 MHz repetition rate," Meas. Sci. Technol. 14, 101-106 (2003).
[CrossRef]

Ostermann, J. M.

F. Rinaldi, J. M. Ostermann, A. Kroner, and R. Michalzik, "High-performance AlGaAs-based VCSELs emitting in the 760 nm wavelength range," Opt. Commun. 270, 310-313 (2007).
[CrossRef]

Otsubo, M.

T. Kitano, S. Izumi, H. Minami, T. Ishikawa, K. Sato, T. Sonoda, and M. Otsubo, "Selective wet etching for highly uniform GaAs/Al0.15Ga0.85As heterostructure field effect transistors," J. Vac. Sci. Technol. B 15, 167-170 (1997).
[CrossRef]

Parsons, C. A.

Pérez-Camacho, J. J.

V. Weldon, J. O'Gorman, J. J. Pérez-Camacho, and J. Hegarty, "Oxygen sensing using single-frequency GaAs-AlGaAs DFB laser diodes and VCSELs," Electron. Lett. 32, 219-221 (1996).
[CrossRef]

Riemenschneider, F.

F. Riemenschneider, M. Maute, H. Halbritter, G. Böhm, M.-C. Amann, and P. Meissner, "Continuously tunable long-wavelength MEMS-VCSEL with over 40-nm tuning range," IEEE Photon. Technol. Lett. 16, 2212-2214 (2004).
[CrossRef]

Rinaldi, F.

F. Rinaldi, J. M. Ostermann, A. Kroner, and R. Michalzik, "High-performance AlGaAs-based VCSELs emitting in the 760 nm wavelength range," Opt. Commun. 270, 310-313 (2007).
[CrossRef]

Rosskopf, J.

M. Lackner, G. Totschnig, F. Winter, R. Shau, M. Ortsiefer, J. Rosskopf, and M. C. Amann, "Demonstration of methane spectroscopy using a vertical-cavity surface-emitting laser (VCSEL) at 1.68 ?m with up to 5 MHz repetition rate," Meas. Sci. Technol. 14, 101-106 (2003).
[CrossRef]

Rudra, A.

A. Syrbu, V. Iakovlev, G. Suruceanu, A. Caliman, A. Rudra, A. Mircea, A. Mereuta, S. Tadeoni, C.-A. Berseth, M. Achtenhagen, J. Boucart, and E. Kapon, "1.55-µm optically pumped wafer-fused tunable VCSELs with 32-nm tuning range," IEEE Photon. Technol. Lett. 16, 1991-1993 (2004).
[CrossRef]

Sacks, R. N.

P. Tayebati, P. D. Wang, D. Vakhshoori, C. C. Lu, M. Azimi, and R. N. Sacks, "Half-symmetric cavity tunable microelectromechanical VCSEL with single spatial mode," IEEE Photon. Technol. Lett. 10, 1679-1681 (1998).
[CrossRef]

Sato, K.

T. Kitano, S. Izumi, H. Minami, T. Ishikawa, K. Sato, T. Sonoda, and M. Otsubo, "Selective wet etching for highly uniform GaAs/Al0.15Ga0.85As heterostructure field effect transistors," J. Vac. Sci. Technol. B 15, 167-170 (1997).
[CrossRef]

Schwarzott, M.

B. Kögel, H. Halbritter, S. Jatta, M. Maute, G. Böhm, M.-C. Amann, M. Lackner, M. Schwarzott, F. Winter, and P. Meissner, "Simultaneous spectroscopy of NH3 and CO using a > 50 nm continuously tunable MEMS-VCSEL," IEEE Sens. J. 7, 1483-1489 (2007).
[CrossRef]

M. Lackner, M. Schwarzott, F. Winter, B. Kögel, S. Jatta, H. Halbritter, and P. Meissner, "CO and CO2 spectroscopy using a 60 nm broadband tunable MEMS-VCSEL at 1.55um," Opt. Lett. 31, 3170-3172 (2006).
[CrossRef] [PubMed]

Shau, R.

M. Lackner, G. Totschnig, F. Winter, R. Shau, M. Ortsiefer, J. Rosskopf, and M. C. Amann, "Demonstration of methane spectroscopy using a vertical-cavity surface-emitting laser (VCSEL) at 1.68 ?m with up to 5 MHz repetition rate," Meas. Sci. Technol. 14, 101-106 (2003).
[CrossRef]

Sonoda, T.

T. Kitano, S. Izumi, H. Minami, T. Ishikawa, K. Sato, T. Sonoda, and M. Otsubo, "Selective wet etching for highly uniform GaAs/Al0.15Ga0.85As heterostructure field effect transistors," J. Vac. Sci. Technol. B 15, 167-170 (1997).
[CrossRef]

Suruceanu, G.

A. Syrbu, V. Iakovlev, G. Suruceanu, A. Caliman, A. Rudra, A. Mircea, A. Mereuta, S. Tadeoni, C.-A. Berseth, M. Achtenhagen, J. Boucart, and E. Kapon, "1.55-µm optically pumped wafer-fused tunable VCSELs with 32-nm tuning range," IEEE Photon. Technol. Lett. 16, 1991-1993 (2004).
[CrossRef]

Syrbu, A.

A. Syrbu, V. Iakovlev, G. Suruceanu, A. Caliman, A. Rudra, A. Mircea, A. Mereuta, S. Tadeoni, C.-A. Berseth, M. Achtenhagen, J. Boucart, and E. Kapon, "1.55-µm optically pumped wafer-fused tunable VCSELs with 32-nm tuning range," IEEE Photon. Technol. Lett. 16, 1991-1993 (2004).
[CrossRef]

Tadeoni, S.

A. Syrbu, V. Iakovlev, G. Suruceanu, A. Caliman, A. Rudra, A. Mircea, A. Mereuta, S. Tadeoni, C.-A. Berseth, M. Achtenhagen, J. Boucart, and E. Kapon, "1.55-µm optically pumped wafer-fused tunable VCSELs with 32-nm tuning range," IEEE Photon. Technol. Lett. 16, 1991-1993 (2004).
[CrossRef]

Tayebati, P.

Y. Matsui, D. Vakhshoori, P. Wang, P. Chen, C.-C. Lu, M. Jiang, K. Knopp, S. Burroughs, and P. Tayebati, "Complete polarization mode control of long-wavelength tunable vertical-cavity surface-emitting lasers over 65-nm tuning, up to 14-mW output power," IEEE J. Quantum Electron. 39, 1037-1048 (2003).
[CrossRef]

P. Tayebati, P. D. Wang, D. Vakhshoori, C. C. Lu, M. Azimi, and R. N. Sacks, "Half-symmetric cavity tunable microelectromechanical VCSEL with single spatial mode," IEEE Photon. Technol. Lett. 10, 1679-1681 (1998).
[CrossRef]

Totschnig, G.

M. Lackner, G. Totschnig, F. Winter, R. Shau, M. Ortsiefer, J. Rosskopf, and M. C. Amann, "Demonstration of methane spectroscopy using a vertical-cavity surface-emitting laser (VCSEL) at 1.68 ?m with up to 5 MHz repetition rate," Meas. Sci. Technol. 14, 101-106 (2003).
[CrossRef]

Vakhshoori, D.

Y. Matsui, D. Vakhshoori, P. Wang, P. Chen, C.-C. Lu, M. Jiang, K. Knopp, S. Burroughs, and P. Tayebati, "Complete polarization mode control of long-wavelength tunable vertical-cavity surface-emitting lasers over 65-nm tuning, up to 14-mW output power," IEEE J. Quantum Electron. 39, 1037-1048 (2003).
[CrossRef]

P. Tayebati, P. D. Wang, D. Vakhshoori, C. C. Lu, M. Azimi, and R. N. Sacks, "Half-symmetric cavity tunable microelectromechanical VCSEL with single spatial mode," IEEE Photon. Technol. Lett. 10, 1679-1681 (1998).
[CrossRef]

Vogel, P.

P. Vogel and V. Ebert, "Near shot noise detection of oxygen in the A-band with vertical-cavity surface-emitting lasers," Appl. Phys. B 72, 127-35 (2001).
[CrossRef]

Wang, C. S.

G. D. Cole, E. S. Björlin, Q. Chen, C.-Y. Chan, S. Wu, C. S. Wang, N. C. MacDonald, and J. E. Bowers, "MEMS-tunable vertical-cavity SOAs," IEEE J. Quantum Electron. 41, 390-407 (2005).
[CrossRef]

G. D. Cole, E. S. Björlin, C. S. Wang, N. C. MacDonald, and J. E. Bowers, "Widely tunable bottom-emitting vertical-cavity SOAs," IEEE Photon. Technol. Lett. 17, 2526-2528 (2005).
[CrossRef]

Wang, P.

Y. Matsui, D. Vakhshoori, P. Wang, P. Chen, C.-C. Lu, M. Jiang, K. Knopp, S. Burroughs, and P. Tayebati, "Complete polarization mode control of long-wavelength tunable vertical-cavity surface-emitting lasers over 65-nm tuning, up to 14-mW output power," IEEE J. Quantum Electron. 39, 1037-1048 (2003).
[CrossRef]

Wang, P. D.

P. Tayebati, P. D. Wang, D. Vakhshoori, C. C. Lu, M. Azimi, and R. N. Sacks, "Half-symmetric cavity tunable microelectromechanical VCSEL with single spatial mode," IEEE Photon. Technol. Lett. 10, 1679-1681 (1998).
[CrossRef]

Weldon, V.

V. Weldon, J. O'Gorman, J. J. Pérez-Camacho, and J. Hegarty, "Oxygen sensing using single-frequency GaAs-AlGaAs DFB laser diodes and VCSELs," Electron. Lett. 32, 219-221 (1996).
[CrossRef]

Winter, F.

B. Kögel, H. Halbritter, S. Jatta, M. Maute, G. Böhm, M.-C. Amann, M. Lackner, M. Schwarzott, F. Winter, and P. Meissner, "Simultaneous spectroscopy of NH3 and CO using a > 50 nm continuously tunable MEMS-VCSEL," IEEE Sens. J. 7, 1483-1489 (2007).
[CrossRef]

M. Lackner, M. Schwarzott, F. Winter, B. Kögel, S. Jatta, H. Halbritter, and P. Meissner, "CO and CO2 spectroscopy using a 60 nm broadband tunable MEMS-VCSEL at 1.55um," Opt. Lett. 31, 3170-3172 (2006).
[CrossRef] [PubMed]

M. Lackner, G. Totschnig, F. Winter, R. Shau, M. Ortsiefer, J. Rosskopf, and M. C. Amann, "Demonstration of methane spectroscopy using a vertical-cavity surface-emitting laser (VCSEL) at 1.68 ?m with up to 5 MHz repetition rate," Meas. Sci. Technol. 14, 101-106 (2003).
[CrossRef]

Wu, S.

G. D. Cole, E. S. Björlin, Q. Chen, C.-Y. Chan, S. Wu, C. S. Wang, N. C. MacDonald, and J. E. Bowers, "MEMS-tunable vertical-cavity SOAs," IEEE J. Quantum Electron. 41, 390-407 (2005).
[CrossRef]

Zappe, H. P.

Zhou, Y.

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, "A nanoelectromechanical tunable laser," Nat. Photonics 2, 180-184 (2008).
[CrossRef]

Appl. Opt.

Appl. Phys. B

P. Vogel and V. Ebert, "Near shot noise detection of oxygen in the A-band with vertical-cavity surface-emitting lasers," Appl. Phys. B 72, 127-35 (2001).
[CrossRef]

I. Linnerud, P. Kaspersen, and T. Jæger, "Gas monitoring in the process industry using diode laser spectroscopy," Appl. Phys. B 67, 297-305 (1998).
[CrossRef]

Electron. Lett.

V. Weldon, J. O'Gorman, J. J. Pérez-Camacho, and J. Hegarty, "Oxygen sensing using single-frequency GaAs-AlGaAs DFB laser diodes and VCSELs," Electron. Lett. 32, 219-221 (1996).
[CrossRef]

M. C. Larson, A. R. Massengale, and J. S. Harris, "Continuously tunable micromachined vertical cavity surface emitting laser with 18 nm wavelength range," Electron. Lett. 32, 330-332 (1996).
[CrossRef]

IEEE Photon. Technol. Lett.

F. Riemenschneider, M. Maute, H. Halbritter, G. Böhm, M.-C. Amann, and P. Meissner, "Continuously tunable long-wavelength MEMS-VCSEL with over 40-nm tuning range," IEEE Photon. Technol. Lett. 16, 2212-2214 (2004).
[CrossRef]

IEEE J. Quantum Electron.

G. D. Cole, E. S. Björlin, Q. Chen, C.-Y. Chan, S. Wu, C. S. Wang, N. C. MacDonald, and J. E. Bowers, "MEMS-tunable vertical-cavity SOAs," IEEE J. Quantum Electron. 41, 390-407 (2005).
[CrossRef]

Y. Matsui, D. Vakhshoori, P. Wang, P. Chen, C.-C. Lu, M. Jiang, K. Knopp, S. Burroughs, and P. Tayebati, "Complete polarization mode control of long-wavelength tunable vertical-cavity surface-emitting lasers over 65-nm tuning, up to 14-mW output power," IEEE J. Quantum Electron. 39, 1037-1048 (2003).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

C. Chang-Hasnain, "Tunable VCSEL," IEEE J. Sel. Top. Quantum Electron. 6, 978-987 (2000).
[CrossRef]

J. S. Harris, Jr., "Tunable long-wavelength vertical-cavity lasers: the engine of next generation optical networks," IEEE J. Sel. Top. Quantum Electron. 6, 1145-1160 (2000).
[CrossRef]

IEEE Photon. Technol. Lett.

M. Maute, B. Kögel, G. Bohm, P. Meissner, and M.-C. Amann, "MEMS-tunable 1.55-µm VCSEL with extended tuning range incorporating a buried tunnel junction," IEEE Photon. Technol. Lett. 18, 688-690 (2006).
[CrossRef]

A. Syrbu, V. Iakovlev, G. Suruceanu, A. Caliman, A. Rudra, A. Mircea, A. Mereuta, S. Tadeoni, C.-A. Berseth, M. Achtenhagen, J. Boucart, and E. Kapon, "1.55-µm optically pumped wafer-fused tunable VCSELs with 32-nm tuning range," IEEE Photon. Technol. Lett. 16, 1991-1993 (2004).
[CrossRef]

G. D. Cole, E. S. Björlin, C. S. Wang, N. C. MacDonald, and J. E. Bowers, "Widely tunable bottom-emitting vertical-cavity SOAs," IEEE Photon. Technol. Lett. 17, 2526-2528 (2005).
[CrossRef]

P. Tayebati, P. D. Wang, D. Vakhshoori, C. C. Lu, M. Azimi, and R. N. Sacks, "Half-symmetric cavity tunable microelectromechanical VCSEL with single spatial mode," IEEE Photon. Technol. Lett. 10, 1679-1681 (1998).
[CrossRef]

IEEE Sens. J.

B. Kögel, H. Halbritter, S. Jatta, M. Maute, G. Böhm, M.-C. Amann, M. Lackner, M. Schwarzott, F. Winter, and P. Meissner, "Simultaneous spectroscopy of NH3 and CO using a > 50 nm continuously tunable MEMS-VCSEL," IEEE Sens. J. 7, 1483-1489 (2007).
[CrossRef]

J. Vac. Sci. Technol. B

G. D. Cole, E. Behymer, L. L. Goddard, and T. C. Bond, "Fabrication of suspended dielectric mirror structures via xenon difluoride etching of an amorphous germanium sacrificial layer," J. Vac. Sci. Technol. B 26, 593-597 (2008).
[CrossRef]

T. Kitano, S. Izumi, H. Minami, T. Ishikawa, K. Sato, T. Sonoda, and M. Otsubo, "Selective wet etching for highly uniform GaAs/Al0.15Ga0.85As heterostructure field effect transistors," J. Vac. Sci. Technol. B 15, 167-170 (1997).
[CrossRef]

Meas. Sci. Technol.

M. Lackner, G. Totschnig, F. Winter, R. Shau, M. Ortsiefer, J. Rosskopf, and M. C. Amann, "Demonstration of methane spectroscopy using a vertical-cavity surface-emitting laser (VCSEL) at 1.68 ?m with up to 5 MHz repetition rate," Meas. Sci. Technol. 14, 101-106 (2003).
[CrossRef]

Nat. Photonics

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, "A nanoelectromechanical tunable laser," Nat. Photonics 2, 180-184 (2008).
[CrossRef]

Opt. Commun.

F. Rinaldi, J. M. Ostermann, A. Kroner, and R. Michalzik, "High-performance AlGaAs-based VCSELs emitting in the 760 nm wavelength range," Opt. Commun. 270, 310-313 (2007).
[CrossRef]

Opt. Express

Opt. Lett.

Other

G. D. Cole, J. E. Bowers, K. L. Turner, and N. C. MacDonald, "Dynamic characterization of MEMS-tunable vertical-cavity SOAs," in Proceedings of IEEE/LEOS International Conference on Optical MEMS and Their Applications (MOEMS 2005), Oulu, Finland, 1-4 August 2005, paper F4.
[CrossRef] [PubMed]

N. Kanbara, S.-i. Tezuka, and T. Watanabe, "MEMS tunable VCSEL with concave mirror using the selective polishing method," in Proceedings of IEEE/LEOS International Conference on Optical MEMS and Their Applications (MOEMS 2006), Big Sky, MT, 21-24 August 2006, paper MA3.
[CrossRef] [PubMed]

P. B. Chu, J. T. Chen, R. Yeh, G. Lin, J. C. P. Huang, B. A. Warneke, and S. J. Pister, "Controlled pulse-etching with xenon difluoride," 9th International Conference on Solid State Sensors and Actuators, Digest of Technical papers Transducers ???97, Chicago, IL, USA, paper 2D3.01, pp. 665-668.

G. D. Cole and E. Behymer, "Rapid sacrificial germanium etching using xenon difluoride," in Technical Digest of Hilton Head 2008: Solid-State Sensors, Actuators, and Microsystems Workshop, 1-5 June 2008, Hilton Head Island, SC, pp. 388-389.

K. L. Turner, P. G. Hartwell, and N. C. Macdonald, "Multi-dimensional MEMS motion characterization using laser vibrometry," 10th International Conference on Solid State Sensors and Actuators, Digest of Technical papers Transducers '99, Sendai, Japan, pp. 1144-1147.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Design of the short wavelength MEMS-tunable VCSELs. (a) Schematic cross-section of the full materials structure. The non-planarity in the suspended membrane arises from the transfer of the mesa geometry through the evaporated Ge film. (b) Refractive index profile and electric field intensity generated with a transmission matrix model. Note that the composition grading is continuous, but is represented as discrete steps in order to simplify the simulation.

Fig. 2.
Fig. 2.

Schematic of the short-wavelength MEMS-tunable VCSEL process flow. (a) Mesa etch, AlGaAs oxidation, p-contact metallization, and contact window etch. (b) Definition of the SiNx AR coating and Ti/Au pad. (c) Deposition of the α-Ge sacrificial layer, SiNx membrane, and aluminum top contact, followed by patterning of the emission window. (d) Blanket SiO2/TiO2 DBR evaporation and etch back. (e) ECR etch of actuator geometry. (f) Liftoff of SiO2 undercut protection and release by sacrificial germanium etching in XeF2.

Fig. 3.
Fig. 3.

Optical micrograph of an individual tunable VCSEL prior to the XeF2 undercut process.

Fig. 4.
Fig. 4.

Microreflectance (blue line) overlaid with the EL spectrum (red) for a completed MEMS-tunable VCSEL. The FSR in this case is 37 nm, with the long wavelength resonance red-shifted 22 nm with respect to the luminescence peak.

Fig. 5.
Fig. 5.

Voltage and light output as a function of drive current for a MEMS-tunable VCSEL with a 13.5 period suspended mirror structure. The inset includes the spectral characteristics near roll-over. Note that this device is multimode over the current range shown.

Fig. 6.
Fig. 6.

Tuning response for a 7-µm aperture MEMS-tunable VCSEL for a constant laser drive current of 2 mA. Lasing operation occurs within the non-shaded region in the plot, covering over 6 nm from 761.9–755.7 nm.

Fig. 7.
Fig. 7.

Tuning response for a 13.5 period MEMS-tunable VCSEL for a constant laser drive current of 2.4 mA. Lasing operation occurs discontinuously over a range of 30 nm, from 767–737 nm. It is assumed that the cessation of lasing operation is due to additional loss within the cavity arising from non-uniform deflection of the suspended mirror.

Fig. 8.
Fig. 8.

Theoretical (solid line) and experimental (points) optical resonance as a function of the applied bias. The shaded region beyond 10 V indicates the unstable regime for the actuator. Combining this dataset with LDV-based measurements of the suspended mirror, it is possible to extract the wavelength shift as a function of the physical displacement of the suspended mirror. In this device the theoretical tuning response (included as the solid line in the inset) is approximately 12 nm of wavelength shift for 100 nm of displacement of the suspended mirror.

Fig. 9.
Fig. 9.

Typical frequency response for a 13.5 period suspended mirror structure at atmospheric pressure (geometry described in text). Due to the large ratio of lateral dimensions to air-gap thickness, damping is dominated by squeeze film effects. The actuator examined here exhibits a mechanical resonance at 698 kHz with a Q of 0.74. For continuous scanning applications this device can sweep the desired tuning range at rates exceeding 1 MHz, while for step and hold applications, the settling time (defined as ±5% of final displacement) is 850 ns.

Metrics