Abstract

Physiological tissue dynamics following breast compression offer new contrast mechanisms for evaluating breast health and disease with near infrared spectroscopy. We monitored the total hemoglobin concentration and hemoglobin oxygen saturation in 28 healthy female volunteers subject to repeated fractional mammographic compression. The compression induces a reduction in blood flow, in turn causing a reduction in hemoglobin oxygen saturation. At the same time, a two phase tissue viscoelastic relaxation results in a reduction and redistribution of pressure within the tissue and correspondingly modulates the tissue total hemoglobin concentration and oxygen saturation. We observed a strong correlation between the relaxing pressure and changes in the total hemoglobin concentration bearing evidence of the involvement of different vascular compartments. Consequently, we have developed a model that enables us to disentangle these effects and obtain robust estimates of the tissue oxygen consumption and blood flow. We obtain estimates of 1.9±1.3 µmol/100mL/min for OC and 2.8±1.7 mL/100mL/min for blood flow, consistent with other published values.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Rinneberg, D. Grosenick, K. T. Moesta, H. Wabnitz, J. Mucke, G. Wubbeler, R. Macdonald, and P. Schlag, "Detection and characterization of breast tumours by time-domain scanning optical mammography," Opto-Electron. Rev. 16, 147-162 (2008).
    [CrossRef]
  2. A. Cerussi, N. Shah, D. Hsiang, A. Durkin, J. Butler, and B. J. Tromberg, "In vivo absorption, scattering, and physiologic properties of 58 malignant breast tumors determined by broadband diffuse optical spectroscopy," J. Biomed. Opt. 11, 044005 (2006).
    [CrossRef] [PubMed]
  3. B. Chance, S. Nioka, J. Zhang, E. Conant, E. Hwang, S. Briest, S. Orel, M. D. Schnall, and B. Czerniecki, "Breast Cancer detection based on incremental Biochemical and Physiological properties of breast cancers: A six-year, two-site study 1," Acad. Radiol. 12, 925-933 (2005).
    [CrossRef] [PubMed]
  4. S. Srinivasan, B. W. Pogue, B. Brooksby, S. D. Jiang, H. Dehghani, C. Kogel, W. A. Wells, S. P. Poplack, and K. D. Paulsen, "Near-infrared characterization of breast tumors in vivo using spectrally-constrained reconstruction," Technol. Cancer Res. Treat. 4, 513-526 (2005).
    [PubMed]
  5. R. Choe, A. Corlu, K. Lee, T. Durduran, S. D. Konecky, M. Grosicka-Koptyra, S. R. Arridge, B. J. Czerniecki, D. L. Fraker, A. DeMichele, B. Chance, M. A. Rosen, and A. G. Yodh, "Diffuse optical tomography of breast cancer during neoadjuvant chemotherapy: A case study with comparison to MRI," Med. Phys. 32, 1128-1139 (2005).
    [CrossRef] [PubMed]
  6. V. Ntziachristos, A. G. Yodh, M. Schnall, and B. Chance, "Concurrent MRI and diffuse optical tomography of breast after indocyanine green enhancement," PNAS 97, 2767-2772 (2000).
    [CrossRef] [PubMed]
  7. V. Ntziachristos, A. G. Yodh, M. D. Schnall, and B. Chance, "MRI-guided diffuse optical spectroscopy of malignant and benign breast lesions," Neoplasia 4, 347-354 (2002).
    [CrossRef] [PubMed]
  8. A. Li, E. L. Miller, M. E. Kilmer, T. J. Brukilacchio, T. Chaves, J. Stott, Q. Zhang, T. Wu, M. Chorlton, R. H. Moore, D. B. Kopans, and D. A. Boas, "Tomographic optical breast imaging guided by three-dimensional mammography," Appl. Opt. 42, 5181-5190 (2003).
    [CrossRef] [PubMed]
  9. Q. Zhang, T. Brukilacchio, A. Li, J. Stott, T. Chaves, T. Wu, M. Chorlton, E. Rafferty, R. Moore, D. Kopans, and D. Boas, "Coregistered tomographic x-ray and optical breast imaging: initial results," J. Biomed. Opt.  10, 024,033 (2005).
    [CrossRef] [PubMed]
  10. C. Schmitz, D. Klemer, R. Hardin, M. Katz, P. Yaling, H. Graber, M. Levin, R. Levina, N. Franco, W. Solomon, and R. Barbour, "Design and implementation of dynamic near-infrared optical tomographic imaging instrumentation for simultaneous dual-breast measurements," Appl. Opt. 44, 2140-2153 (2005).
    [CrossRef] [PubMed]
  11. R. Barbour, H. Graber, Y. Pei, S. Zhong, and C. Schmitz, "Optical tomographic imaging of dynamic features of dense-scattering media," J. Opt. Soc. Am. A 18, 3018-3036 (2001).
    [CrossRef]
  12. J. W. Chang, H. L. Graber, P. C. Koo, R. Aronson, S. L. S. Barbour, and R. L. Barbour, "Optical imaging of anatomical maps derived from magnetic resonance images using time-independent optical sources," IEEE Trans. Med. Imaging 16, 68-77 (1997).
    [CrossRef] [PubMed]
  13. C. Q. Li, H. Z. Zhao, B. Anderson, and H. B. Jiang, "Multispectral breast imaging using a ten-wavelength, 64X64 source/detector channels silicon photodiode-based diffuse optical tomography system," Med. Phys. 33, 627-636 (2006).
    [CrossRef] [PubMed]
  14. X. Intes, S. Djeziri, Z. Ichalalene, N. Mincu, Y. Wang, P. St-Jean, F. Lesage, D. Hall, D. Boas, M. Polyzos, D. Fleiszer, and B. Mesurolle, "Time-domain optical mammography SoftScan: Initial results," Acad. Radiol. 12, 934-947 (2005).
    [CrossRef] [PubMed]
  15. A. Cerussi, D. Hsiang, N. Shah, R. Mehta, A. Durkin, J. Butler, and B. J. Tromberg, "Predicting response to breast cancer neoadjuvant chemotherapy using diffuse optical spectroscopy," PNAS 104, 4014-4019 (2007).
    [CrossRef] [PubMed]
  16. N. Shah, J. Gibbs, D. Wolverton, A. Cerussi, N. Hylton, and B. J. Tromberg, "Combined diffuse optical spectroscopy and contrast-enhanced magnetic resonance imaging for monitoring breast cancer neoadjuvant chemotherapy: a case study," J. Biomed. Opt. 10, 051503 (2005).
    [CrossRef] [PubMed]
  17. A. P. Gibson, T. Austin, N. L. Everdell, M. Schweiger, S. R. Arridge, J. H. Meek, J. S. Wyatt, D. T. Delpy, and J. C. Hebden, "Three-dimensional whole-head optical passive motor evoked responses in the tomography of neonate," Neuroimage 30, 521-528 (2006).
    [CrossRef]
  18. N. L. Everdell, A. P. Gibson, I. D. C. Tullis, T. Vaithianathan, J. C. Hebden, and D. T. Delpy, "A frequency multiplexed near-infrared topography system for imaging functional activation in the brain," Rev. Sci. Instrum. 76, 093705 (2005).
    [CrossRef]
  19. A. Y. Bluestone, G. Abdoulaev, C. H. Schmitz, R. L. Barbour, and A. H. Hielscher, "Three-dimensional optical tomography of hemodynamics in the human head," Opt. Express 9, 272-286 (2001).
    [CrossRef] [PubMed]
  20. T. J. Huppert, R. D. Hoge, A. M. Dale, M. A. Franceschini, and D. A. Boas, "Quantitative spatial comparison of diffuse optical imaging with blood oxygen level-dependent and arterial spin labeling-based functional magnetic resonance imaging," J. Biomed. Opt. 11, 064018 (2006).
    [CrossRef] [PubMed]
  21. M. A. Franceschini, D. K. Joseph, T. J. Huppert, S. G. Diamond, and D. A. Boas, "Diffuse optical imaging of the whole head," J. Biomed. Opt. 11, 054007 (2006).
    [CrossRef] [PubMed]
  22. C. H. Schmitz, M. Locker, J. M. Lasker, A. H. Hielscher, and R. L. Barbour, "Instrumentation for fast functional optical tomography," Rev. Sci. Instrum.  73, 429-439, Part 1, (2002).
    [CrossRef]
  23. S. D. Jiang, B. W. Pogue, K. D. Paulsen, C. Kogel, and S. P. Poplack, "In vivo near-infrared spectral detection of pressure-induced changes in breast tissue," Opt. Lett. 28, 1212-1214 (2003).
    [CrossRef]
  24. S. Carp, T. Kauffman, Q. Fang, E. Rafferty, R. Moore, D. Kopans, and D. Boas, "Compression induced changes in the physiological state of the breast as observed through frequency domain photon migration measurements," J. Biomed. Opt.  11, 064,016 (2006).
    [CrossRef]
  25. R. X. Xu, D. C. Young, J. J. Mao, and S. P. Povoski, "A prospective pilot clinical trial evaluating the utility of a dynamic near-infrared imaging device for characterizing suspicious breast lesions," Breast Cancer Res. 9, R88 (2007).
    [CrossRef] [PubMed]
  26. R. P. Beaney, T. Jones, A. A. Lammertsma, C. G. McKenzie, and K. E. Halnan, "Positron Emission Tomography for in-vivo measurement of regional blood-flow, oxygen utilization, and blood-volume in patients with breastcarcinoma," Lancet 323, 131-134 (1984).
    [CrossRef]
  27. C. Wilson, A. A. Lammertsma, C. G. McKenzie, K. Sikora, and T. Jones, "Measurements of blood-flow and exchanging water space in breast-tumors using positron emission tomography - a rapid and noninvasive dynamic method," Cancer Research 52, 1592-1597 (1992).
    [PubMed]
  28. T. Durduran, R. Choe, G. Q. Yu, C. Zhou, J. C. Tchou, B. J. Czerniecki, and A. G. Yodh, "Diffuse optical measurement of blood flow in breast tumors," Opt. Lett. 30, 2915-2917 (2005).
    [CrossRef] [PubMed]
  29. M. Insana, C. Pellot-Barakat, M. Sridhar, and K. Lindfors, "Viscoelastic Imaging of Breast Tumor Microenvi ronment with Ultrasound," J. Mammary Gland Biology and Neoplasia 9, 393-404 (2004).
    [CrossRef]
  30. M. Sridhar and M. F. Insana, "Ultrasonic measurements of breast viscoelasticity," Med. Phys. 34, 4757-4767 (2007).
    [CrossRef]
  31. A. Thomas, T. Fischer, H. Frey, R. Ohlinger, S. Grunwald, J. Blohmer, K. Winzer, S. Weber, G. Kristiansen, B. Ebert, and S. K¨ummel, "Real-time elastography - an advanced method of ultrasound: first results in 108 patients with breast lesions," Ultrasound Obstet. Gynecol. 28, 335-340 (2006).
    [CrossRef] [PubMed]
  32. T. Xydeas, K. Siegmann, R. Sinkus, U. Krainick-Strobel, S. Miller, and C. Claussen, "Magnetic resonance elastography of the breast - Correlation of signal intensity data with viscoelastic properties," Invest. Radiol. 40, 412-420 (2005).
    [CrossRef] [PubMed]
  33. S. Fantini, M. Franceschini, J. Fishkin, B. Barbieri, and E. Gratton, "Quantitative determination of the absorption spectra of chromophores in scattering media: a light-emitting-diode based technique," Appl. Opt. 33, 5204-5213 (1994).
    [CrossRef] [PubMed]
  34. S. Fantini, M. Franceschini, and E. Gratton, "Semi-infinite-geometry boundary problem for light migration in highly scattering media: a frequency-domain study in the diffusion approximation," J. Opt. Soc. Am. B 11, 2128-2138 (1994).
    [CrossRef]
  35. N. Shah, A. E. Cerussi, D. Jakubowski, D. Hsiang, J. Butler, and B. J. Tromberg, "The role of diffuse optical spectroscopy in the clinical management of breast cancer," Dis. Markers 19, 95-105 (2003).
  36. H. Woodard and D. White, "The composition of body tissues," Br. J. Radiol. 59, 1209-1219 (1986).
    [CrossRef] [PubMed]
  37. D. White, H. Woodard, and S. Hammond, "Average soft-tissue and bone models for use in radiation dosimetry," Br. J. Radiol. 60, 907-913 (1987).
    [CrossRef] [PubMed]
  38. H. Y. An and W. L. Lin, "Cerebral venous and arterial blood volumes can be estimated separately in humans using magnetic resonance imaging," Magn. Reson. Med. 48, 583-588 (2002).
    [CrossRef] [PubMed]
  39. T. Q. Duong and S. G. Kim, "In vivo MR measurements of regional arterial and venous blood volume fractions in intact rat brain," Magn. Reson. Med. 43, 393-402 (2000).
    [CrossRef] [PubMed]
  40. R. Berkow, M. Beers, R. Bogin, and A. Fletcher, The Merck Manual of Medical Information (Home Edition), "Common Medical Tests," (Merck Research Laboratories, Whitehouse Station, New Jersey, 1997) Chap. A. III, pp. 1375-1376.
  41. C. Desjardins and B. Duling, "Microvessel hematocrit: measurement and implications for capillary oxygen transport," Am. J. Physiol. (Heart and Circulatory Physiology) 252, H494-H503 (1987).
  42. F. S. Azar, D. N. Metaxas, and M. D. Schnall, "A deformable finite element model of the breast for predicting mechanical deformations under external perturbations," Acad. Radiol. 8, 965-975 (2001).
    [CrossRef] [PubMed]
  43. T. Varghese, J. Ophir, and T. A. Krouskop, "Nonlinear stress-strain relationships in tissue and their effect on the contrast-to-noise ratio in elastograms," Ultrasound Med. Biol. 26, 839-851 (2000).
    [CrossRef] [PubMed]
  44. T. J. Huppert, M. S. Allen, H. Benav, P. B. Jones, and D. A. Boas, "A multicompartment vascular model for inferring baseline and functional changes in cerebral oxygen metabolism and arterial dilation," J. Cereb. Blood Flow Metab. 27, 1262-1279 (2007).
    [CrossRef] [PubMed]
  45. F. Azar, D. Metaxas, and M. Schnall, "Methods for modeling and predicting mechanical deformaions of the breast under external perturbations," Med. Image Anal. 6, 1-27 (2002).
    [CrossRef] [PubMed]
  46. R. Leiderman, P. Barbone, A. Oberai, and J. Bamber, "Coupling between elastic strain and interstitial fluid flow: ramification for poroelastic imaging," Phys. Med. Biol. 51, 6291-6313 (2006).
    [CrossRef] [PubMed]
  47. L. Spinelli, A. Torricelli, A. Pifferi, P. Taroni, G. M. Danesini, and R. Cubeddu, "Bulk optical properties and tissue components in the female breast from multiwavelength time-resolved optical mammography," J. Biomed. Opt. 9, 1137-1142 (2004).
    [CrossRef] [PubMed]
  48. P. Taroni, D. Comelli, A. Pifferi, A. Torricelli, and R. Cubeddu, "Absorption of collagen: effects on the estimate of breast composition and related diagnostic implications," J. Biomed. Opt.  12, Art. No. 014021 (2007).
    [CrossRef] [PubMed]
  49. D. A. Mankoff, L. K. Dunnwald, J. R. Gralow, G. K. Ellis, A. Charlop, T. J. Lawton, E. K. Schubert, J. Tseng, R. B. Livingston, "Blood Flow and Metabolism in Locally Advanced Breast Cancer: Relationship to Response to Therapy," J. Nucl. Med. 43, 500-509 (2002).
    [PubMed]
  50. J. P. Delille, P. J. Slanetz, E. D. Yeh, D. B. Kopans, L. Garrido, "Breast Cancer: Regional Blood Flow and Blood Volume Measured with Magnetic Susceptibility-based MR Imaging-Initial Results," Radiology 223, 558-565 (2002).
    [CrossRef] [PubMed]

2008 (1)

H. Rinneberg, D. Grosenick, K. T. Moesta, H. Wabnitz, J. Mucke, G. Wubbeler, R. Macdonald, and P. Schlag, "Detection and characterization of breast tumours by time-domain scanning optical mammography," Opto-Electron. Rev. 16, 147-162 (2008).
[CrossRef]

2007 (4)

A. Cerussi, D. Hsiang, N. Shah, R. Mehta, A. Durkin, J. Butler, and B. J. Tromberg, "Predicting response to breast cancer neoadjuvant chemotherapy using diffuse optical spectroscopy," PNAS 104, 4014-4019 (2007).
[CrossRef] [PubMed]

R. X. Xu, D. C. Young, J. J. Mao, and S. P. Povoski, "A prospective pilot clinical trial evaluating the utility of a dynamic near-infrared imaging device for characterizing suspicious breast lesions," Breast Cancer Res. 9, R88 (2007).
[CrossRef] [PubMed]

M. Sridhar and M. F. Insana, "Ultrasonic measurements of breast viscoelasticity," Med. Phys. 34, 4757-4767 (2007).
[CrossRef]

T. J. Huppert, M. S. Allen, H. Benav, P. B. Jones, and D. A. Boas, "A multicompartment vascular model for inferring baseline and functional changes in cerebral oxygen metabolism and arterial dilation," J. Cereb. Blood Flow Metab. 27, 1262-1279 (2007).
[CrossRef] [PubMed]

2006 (7)

R. Leiderman, P. Barbone, A. Oberai, and J. Bamber, "Coupling between elastic strain and interstitial fluid flow: ramification for poroelastic imaging," Phys. Med. Biol. 51, 6291-6313 (2006).
[CrossRef] [PubMed]

A. Thomas, T. Fischer, H. Frey, R. Ohlinger, S. Grunwald, J. Blohmer, K. Winzer, S. Weber, G. Kristiansen, B. Ebert, and S. K¨ummel, "Real-time elastography - an advanced method of ultrasound: first results in 108 patients with breast lesions," Ultrasound Obstet. Gynecol. 28, 335-340 (2006).
[CrossRef] [PubMed]

C. Q. Li, H. Z. Zhao, B. Anderson, and H. B. Jiang, "Multispectral breast imaging using a ten-wavelength, 64X64 source/detector channels silicon photodiode-based diffuse optical tomography system," Med. Phys. 33, 627-636 (2006).
[CrossRef] [PubMed]

A. P. Gibson, T. Austin, N. L. Everdell, M. Schweiger, S. R. Arridge, J. H. Meek, J. S. Wyatt, D. T. Delpy, and J. C. Hebden, "Three-dimensional whole-head optical passive motor evoked responses in the tomography of neonate," Neuroimage 30, 521-528 (2006).
[CrossRef]

T. J. Huppert, R. D. Hoge, A. M. Dale, M. A. Franceschini, and D. A. Boas, "Quantitative spatial comparison of diffuse optical imaging with blood oxygen level-dependent and arterial spin labeling-based functional magnetic resonance imaging," J. Biomed. Opt. 11, 064018 (2006).
[CrossRef] [PubMed]

M. A. Franceschini, D. K. Joseph, T. J. Huppert, S. G. Diamond, and D. A. Boas, "Diffuse optical imaging of the whole head," J. Biomed. Opt. 11, 054007 (2006).
[CrossRef] [PubMed]

A. Cerussi, N. Shah, D. Hsiang, A. Durkin, J. Butler, and B. J. Tromberg, "In vivo absorption, scattering, and physiologic properties of 58 malignant breast tumors determined by broadband diffuse optical spectroscopy," J. Biomed. Opt. 11, 044005 (2006).
[CrossRef] [PubMed]

2005 (9)

B. Chance, S. Nioka, J. Zhang, E. Conant, E. Hwang, S. Briest, S. Orel, M. D. Schnall, and B. Czerniecki, "Breast Cancer detection based on incremental Biochemical and Physiological properties of breast cancers: A six-year, two-site study 1," Acad. Radiol. 12, 925-933 (2005).
[CrossRef] [PubMed]

S. Srinivasan, B. W. Pogue, B. Brooksby, S. D. Jiang, H. Dehghani, C. Kogel, W. A. Wells, S. P. Poplack, and K. D. Paulsen, "Near-infrared characterization of breast tumors in vivo using spectrally-constrained reconstruction," Technol. Cancer Res. Treat. 4, 513-526 (2005).
[PubMed]

R. Choe, A. Corlu, K. Lee, T. Durduran, S. D. Konecky, M. Grosicka-Koptyra, S. R. Arridge, B. J. Czerniecki, D. L. Fraker, A. DeMichele, B. Chance, M. A. Rosen, and A. G. Yodh, "Diffuse optical tomography of breast cancer during neoadjuvant chemotherapy: A case study with comparison to MRI," Med. Phys. 32, 1128-1139 (2005).
[CrossRef] [PubMed]

C. Schmitz, D. Klemer, R. Hardin, M. Katz, P. Yaling, H. Graber, M. Levin, R. Levina, N. Franco, W. Solomon, and R. Barbour, "Design and implementation of dynamic near-infrared optical tomographic imaging instrumentation for simultaneous dual-breast measurements," Appl. Opt. 44, 2140-2153 (2005).
[CrossRef] [PubMed]

N. L. Everdell, A. P. Gibson, I. D. C. Tullis, T. Vaithianathan, J. C. Hebden, and D. T. Delpy, "A frequency multiplexed near-infrared topography system for imaging functional activation in the brain," Rev. Sci. Instrum. 76, 093705 (2005).
[CrossRef]

X. Intes, S. Djeziri, Z. Ichalalene, N. Mincu, Y. Wang, P. St-Jean, F. Lesage, D. Hall, D. Boas, M. Polyzos, D. Fleiszer, and B. Mesurolle, "Time-domain optical mammography SoftScan: Initial results," Acad. Radiol. 12, 934-947 (2005).
[CrossRef] [PubMed]

N. Shah, J. Gibbs, D. Wolverton, A. Cerussi, N. Hylton, and B. J. Tromberg, "Combined diffuse optical spectroscopy and contrast-enhanced magnetic resonance imaging for monitoring breast cancer neoadjuvant chemotherapy: a case study," J. Biomed. Opt. 10, 051503 (2005).
[CrossRef] [PubMed]

T. Xydeas, K. Siegmann, R. Sinkus, U. Krainick-Strobel, S. Miller, and C. Claussen, "Magnetic resonance elastography of the breast - Correlation of signal intensity data with viscoelastic properties," Invest. Radiol. 40, 412-420 (2005).
[CrossRef] [PubMed]

T. Durduran, R. Choe, G. Q. Yu, C. Zhou, J. C. Tchou, B. J. Czerniecki, and A. G. Yodh, "Diffuse optical measurement of blood flow in breast tumors," Opt. Lett. 30, 2915-2917 (2005).
[CrossRef] [PubMed]

2004 (2)

M. Insana, C. Pellot-Barakat, M. Sridhar, and K. Lindfors, "Viscoelastic Imaging of Breast Tumor Microenvi ronment with Ultrasound," J. Mammary Gland Biology and Neoplasia 9, 393-404 (2004).
[CrossRef]

L. Spinelli, A. Torricelli, A. Pifferi, P. Taroni, G. M. Danesini, and R. Cubeddu, "Bulk optical properties and tissue components in the female breast from multiwavelength time-resolved optical mammography," J. Biomed. Opt. 9, 1137-1142 (2004).
[CrossRef] [PubMed]

2003 (3)

2002 (5)

V. Ntziachristos, A. G. Yodh, M. D. Schnall, and B. Chance, "MRI-guided diffuse optical spectroscopy of malignant and benign breast lesions," Neoplasia 4, 347-354 (2002).
[CrossRef] [PubMed]

H. Y. An and W. L. Lin, "Cerebral venous and arterial blood volumes can be estimated separately in humans using magnetic resonance imaging," Magn. Reson. Med. 48, 583-588 (2002).
[CrossRef] [PubMed]

D. A. Mankoff, L. K. Dunnwald, J. R. Gralow, G. K. Ellis, A. Charlop, T. J. Lawton, E. K. Schubert, J. Tseng, R. B. Livingston, "Blood Flow and Metabolism in Locally Advanced Breast Cancer: Relationship to Response to Therapy," J. Nucl. Med. 43, 500-509 (2002).
[PubMed]

J. P. Delille, P. J. Slanetz, E. D. Yeh, D. B. Kopans, L. Garrido, "Breast Cancer: Regional Blood Flow and Blood Volume Measured with Magnetic Susceptibility-based MR Imaging-Initial Results," Radiology 223, 558-565 (2002).
[CrossRef] [PubMed]

F. Azar, D. Metaxas, and M. Schnall, "Methods for modeling and predicting mechanical deformaions of the breast under external perturbations," Med. Image Anal. 6, 1-27 (2002).
[CrossRef] [PubMed]

2001 (3)

2000 (3)

V. Ntziachristos, A. G. Yodh, M. Schnall, and B. Chance, "Concurrent MRI and diffuse optical tomography of breast after indocyanine green enhancement," PNAS 97, 2767-2772 (2000).
[CrossRef] [PubMed]

T. Varghese, J. Ophir, and T. A. Krouskop, "Nonlinear stress-strain relationships in tissue and their effect on the contrast-to-noise ratio in elastograms," Ultrasound Med. Biol. 26, 839-851 (2000).
[CrossRef] [PubMed]

T. Q. Duong and S. G. Kim, "In vivo MR measurements of regional arterial and venous blood volume fractions in intact rat brain," Magn. Reson. Med. 43, 393-402 (2000).
[CrossRef] [PubMed]

1997 (1)

J. W. Chang, H. L. Graber, P. C. Koo, R. Aronson, S. L. S. Barbour, and R. L. Barbour, "Optical imaging of anatomical maps derived from magnetic resonance images using time-independent optical sources," IEEE Trans. Med. Imaging 16, 68-77 (1997).
[CrossRef] [PubMed]

1994 (2)

1992 (1)

C. Wilson, A. A. Lammertsma, C. G. McKenzie, K. Sikora, and T. Jones, "Measurements of blood-flow and exchanging water space in breast-tumors using positron emission tomography - a rapid and noninvasive dynamic method," Cancer Research 52, 1592-1597 (1992).
[PubMed]

1987 (2)

D. White, H. Woodard, and S. Hammond, "Average soft-tissue and bone models for use in radiation dosimetry," Br. J. Radiol. 60, 907-913 (1987).
[CrossRef] [PubMed]

C. Desjardins and B. Duling, "Microvessel hematocrit: measurement and implications for capillary oxygen transport," Am. J. Physiol. (Heart and Circulatory Physiology) 252, H494-H503 (1987).

1986 (1)

H. Woodard and D. White, "The composition of body tissues," Br. J. Radiol. 59, 1209-1219 (1986).
[CrossRef] [PubMed]

1984 (1)

R. P. Beaney, T. Jones, A. A. Lammertsma, C. G. McKenzie, and K. E. Halnan, "Positron Emission Tomography for in-vivo measurement of regional blood-flow, oxygen utilization, and blood-volume in patients with breastcarcinoma," Lancet 323, 131-134 (1984).
[CrossRef]

Abdoulaev, G.

Allen, M. S.

T. J. Huppert, M. S. Allen, H. Benav, P. B. Jones, and D. A. Boas, "A multicompartment vascular model for inferring baseline and functional changes in cerebral oxygen metabolism and arterial dilation," J. Cereb. Blood Flow Metab. 27, 1262-1279 (2007).
[CrossRef] [PubMed]

An, H. Y.

H. Y. An and W. L. Lin, "Cerebral venous and arterial blood volumes can be estimated separately in humans using magnetic resonance imaging," Magn. Reson. Med. 48, 583-588 (2002).
[CrossRef] [PubMed]

Anderson, B.

C. Q. Li, H. Z. Zhao, B. Anderson, and H. B. Jiang, "Multispectral breast imaging using a ten-wavelength, 64X64 source/detector channels silicon photodiode-based diffuse optical tomography system," Med. Phys. 33, 627-636 (2006).
[CrossRef] [PubMed]

Aronson, R.

J. W. Chang, H. L. Graber, P. C. Koo, R. Aronson, S. L. S. Barbour, and R. L. Barbour, "Optical imaging of anatomical maps derived from magnetic resonance images using time-independent optical sources," IEEE Trans. Med. Imaging 16, 68-77 (1997).
[CrossRef] [PubMed]

Arridge, S. R.

A. P. Gibson, T. Austin, N. L. Everdell, M. Schweiger, S. R. Arridge, J. H. Meek, J. S. Wyatt, D. T. Delpy, and J. C. Hebden, "Three-dimensional whole-head optical passive motor evoked responses in the tomography of neonate," Neuroimage 30, 521-528 (2006).
[CrossRef]

R. Choe, A. Corlu, K. Lee, T. Durduran, S. D. Konecky, M. Grosicka-Koptyra, S. R. Arridge, B. J. Czerniecki, D. L. Fraker, A. DeMichele, B. Chance, M. A. Rosen, and A. G. Yodh, "Diffuse optical tomography of breast cancer during neoadjuvant chemotherapy: A case study with comparison to MRI," Med. Phys. 32, 1128-1139 (2005).
[CrossRef] [PubMed]

Austin, T.

A. P. Gibson, T. Austin, N. L. Everdell, M. Schweiger, S. R. Arridge, J. H. Meek, J. S. Wyatt, D. T. Delpy, and J. C. Hebden, "Three-dimensional whole-head optical passive motor evoked responses in the tomography of neonate," Neuroimage 30, 521-528 (2006).
[CrossRef]

Azar, F.

F. Azar, D. Metaxas, and M. Schnall, "Methods for modeling and predicting mechanical deformaions of the breast under external perturbations," Med. Image Anal. 6, 1-27 (2002).
[CrossRef] [PubMed]

Azar, F. S.

F. S. Azar, D. N. Metaxas, and M. D. Schnall, "A deformable finite element model of the breast for predicting mechanical deformations under external perturbations," Acad. Radiol. 8, 965-975 (2001).
[CrossRef] [PubMed]

Bamber, J.

R. Leiderman, P. Barbone, A. Oberai, and J. Bamber, "Coupling between elastic strain and interstitial fluid flow: ramification for poroelastic imaging," Phys. Med. Biol. 51, 6291-6313 (2006).
[CrossRef] [PubMed]

Barbieri, B.

Barbone, P.

R. Leiderman, P. Barbone, A. Oberai, and J. Bamber, "Coupling between elastic strain and interstitial fluid flow: ramification for poroelastic imaging," Phys. Med. Biol. 51, 6291-6313 (2006).
[CrossRef] [PubMed]

Barbour, R.

Barbour, R. L.

A. Y. Bluestone, G. Abdoulaev, C. H. Schmitz, R. L. Barbour, and A. H. Hielscher, "Three-dimensional optical tomography of hemodynamics in the human head," Opt. Express 9, 272-286 (2001).
[CrossRef] [PubMed]

J. W. Chang, H. L. Graber, P. C. Koo, R. Aronson, S. L. S. Barbour, and R. L. Barbour, "Optical imaging of anatomical maps derived from magnetic resonance images using time-independent optical sources," IEEE Trans. Med. Imaging 16, 68-77 (1997).
[CrossRef] [PubMed]

Barbour, S. L. S.

J. W. Chang, H. L. Graber, P. C. Koo, R. Aronson, S. L. S. Barbour, and R. L. Barbour, "Optical imaging of anatomical maps derived from magnetic resonance images using time-independent optical sources," IEEE Trans. Med. Imaging 16, 68-77 (1997).
[CrossRef] [PubMed]

Beaney, R. P.

R. P. Beaney, T. Jones, A. A. Lammertsma, C. G. McKenzie, and K. E. Halnan, "Positron Emission Tomography for in-vivo measurement of regional blood-flow, oxygen utilization, and blood-volume in patients with breastcarcinoma," Lancet 323, 131-134 (1984).
[CrossRef]

Benav, H.

T. J. Huppert, M. S. Allen, H. Benav, P. B. Jones, and D. A. Boas, "A multicompartment vascular model for inferring baseline and functional changes in cerebral oxygen metabolism and arterial dilation," J. Cereb. Blood Flow Metab. 27, 1262-1279 (2007).
[CrossRef] [PubMed]

Blohmer, J.

A. Thomas, T. Fischer, H. Frey, R. Ohlinger, S. Grunwald, J. Blohmer, K. Winzer, S. Weber, G. Kristiansen, B. Ebert, and S. K¨ummel, "Real-time elastography - an advanced method of ultrasound: first results in 108 patients with breast lesions," Ultrasound Obstet. Gynecol. 28, 335-340 (2006).
[CrossRef] [PubMed]

Bluestone, A. Y.

Boas, D.

X. Intes, S. Djeziri, Z. Ichalalene, N. Mincu, Y. Wang, P. St-Jean, F. Lesage, D. Hall, D. Boas, M. Polyzos, D. Fleiszer, and B. Mesurolle, "Time-domain optical mammography SoftScan: Initial results," Acad. Radiol. 12, 934-947 (2005).
[CrossRef] [PubMed]

Boas, D. A.

T. J. Huppert, M. S. Allen, H. Benav, P. B. Jones, and D. A. Boas, "A multicompartment vascular model for inferring baseline and functional changes in cerebral oxygen metabolism and arterial dilation," J. Cereb. Blood Flow Metab. 27, 1262-1279 (2007).
[CrossRef] [PubMed]

T. J. Huppert, R. D. Hoge, A. M. Dale, M. A. Franceschini, and D. A. Boas, "Quantitative spatial comparison of diffuse optical imaging with blood oxygen level-dependent and arterial spin labeling-based functional magnetic resonance imaging," J. Biomed. Opt. 11, 064018 (2006).
[CrossRef] [PubMed]

M. A. Franceschini, D. K. Joseph, T. J. Huppert, S. G. Diamond, and D. A. Boas, "Diffuse optical imaging of the whole head," J. Biomed. Opt. 11, 054007 (2006).
[CrossRef] [PubMed]

A. Li, E. L. Miller, M. E. Kilmer, T. J. Brukilacchio, T. Chaves, J. Stott, Q. Zhang, T. Wu, M. Chorlton, R. H. Moore, D. B. Kopans, and D. A. Boas, "Tomographic optical breast imaging guided by three-dimensional mammography," Appl. Opt. 42, 5181-5190 (2003).
[CrossRef] [PubMed]

Briest, S.

B. Chance, S. Nioka, J. Zhang, E. Conant, E. Hwang, S. Briest, S. Orel, M. D. Schnall, and B. Czerniecki, "Breast Cancer detection based on incremental Biochemical and Physiological properties of breast cancers: A six-year, two-site study 1," Acad. Radiol. 12, 925-933 (2005).
[CrossRef] [PubMed]

Brooksby, B.

S. Srinivasan, B. W. Pogue, B. Brooksby, S. D. Jiang, H. Dehghani, C. Kogel, W. A. Wells, S. P. Poplack, and K. D. Paulsen, "Near-infrared characterization of breast tumors in vivo using spectrally-constrained reconstruction," Technol. Cancer Res. Treat. 4, 513-526 (2005).
[PubMed]

Brukilacchio, T. J.

Butler, J.

A. Cerussi, D. Hsiang, N. Shah, R. Mehta, A. Durkin, J. Butler, and B. J. Tromberg, "Predicting response to breast cancer neoadjuvant chemotherapy using diffuse optical spectroscopy," PNAS 104, 4014-4019 (2007).
[CrossRef] [PubMed]

A. Cerussi, N. Shah, D. Hsiang, A. Durkin, J. Butler, and B. J. Tromberg, "In vivo absorption, scattering, and physiologic properties of 58 malignant breast tumors determined by broadband diffuse optical spectroscopy," J. Biomed. Opt. 11, 044005 (2006).
[CrossRef] [PubMed]

N. Shah, A. E. Cerussi, D. Jakubowski, D. Hsiang, J. Butler, and B. J. Tromberg, "The role of diffuse optical spectroscopy in the clinical management of breast cancer," Dis. Markers 19, 95-105 (2003).

Cerussi, A.

A. Cerussi, D. Hsiang, N. Shah, R. Mehta, A. Durkin, J. Butler, and B. J. Tromberg, "Predicting response to breast cancer neoadjuvant chemotherapy using diffuse optical spectroscopy," PNAS 104, 4014-4019 (2007).
[CrossRef] [PubMed]

A. Cerussi, N. Shah, D. Hsiang, A. Durkin, J. Butler, and B. J. Tromberg, "In vivo absorption, scattering, and physiologic properties of 58 malignant breast tumors determined by broadband diffuse optical spectroscopy," J. Biomed. Opt. 11, 044005 (2006).
[CrossRef] [PubMed]

N. Shah, J. Gibbs, D. Wolverton, A. Cerussi, N. Hylton, and B. J. Tromberg, "Combined diffuse optical spectroscopy and contrast-enhanced magnetic resonance imaging for monitoring breast cancer neoadjuvant chemotherapy: a case study," J. Biomed. Opt. 10, 051503 (2005).
[CrossRef] [PubMed]

Cerussi, A. E.

N. Shah, A. E. Cerussi, D. Jakubowski, D. Hsiang, J. Butler, and B. J. Tromberg, "The role of diffuse optical spectroscopy in the clinical management of breast cancer," Dis. Markers 19, 95-105 (2003).

Chance, B.

B. Chance, S. Nioka, J. Zhang, E. Conant, E. Hwang, S. Briest, S. Orel, M. D. Schnall, and B. Czerniecki, "Breast Cancer detection based on incremental Biochemical and Physiological properties of breast cancers: A six-year, two-site study 1," Acad. Radiol. 12, 925-933 (2005).
[CrossRef] [PubMed]

R. Choe, A. Corlu, K. Lee, T. Durduran, S. D. Konecky, M. Grosicka-Koptyra, S. R. Arridge, B. J. Czerniecki, D. L. Fraker, A. DeMichele, B. Chance, M. A. Rosen, and A. G. Yodh, "Diffuse optical tomography of breast cancer during neoadjuvant chemotherapy: A case study with comparison to MRI," Med. Phys. 32, 1128-1139 (2005).
[CrossRef] [PubMed]

V. Ntziachristos, A. G. Yodh, M. D. Schnall, and B. Chance, "MRI-guided diffuse optical spectroscopy of malignant and benign breast lesions," Neoplasia 4, 347-354 (2002).
[CrossRef] [PubMed]

V. Ntziachristos, A. G. Yodh, M. Schnall, and B. Chance, "Concurrent MRI and diffuse optical tomography of breast after indocyanine green enhancement," PNAS 97, 2767-2772 (2000).
[CrossRef] [PubMed]

Chang, J. W.

J. W. Chang, H. L. Graber, P. C. Koo, R. Aronson, S. L. S. Barbour, and R. L. Barbour, "Optical imaging of anatomical maps derived from magnetic resonance images using time-independent optical sources," IEEE Trans. Med. Imaging 16, 68-77 (1997).
[CrossRef] [PubMed]

Charlop, A.

D. A. Mankoff, L. K. Dunnwald, J. R. Gralow, G. K. Ellis, A. Charlop, T. J. Lawton, E. K. Schubert, J. Tseng, R. B. Livingston, "Blood Flow and Metabolism in Locally Advanced Breast Cancer: Relationship to Response to Therapy," J. Nucl. Med. 43, 500-509 (2002).
[PubMed]

Chaves, T.

Choe, R.

T. Durduran, R. Choe, G. Q. Yu, C. Zhou, J. C. Tchou, B. J. Czerniecki, and A. G. Yodh, "Diffuse optical measurement of blood flow in breast tumors," Opt. Lett. 30, 2915-2917 (2005).
[CrossRef] [PubMed]

R. Choe, A. Corlu, K. Lee, T. Durduran, S. D. Konecky, M. Grosicka-Koptyra, S. R. Arridge, B. J. Czerniecki, D. L. Fraker, A. DeMichele, B. Chance, M. A. Rosen, and A. G. Yodh, "Diffuse optical tomography of breast cancer during neoadjuvant chemotherapy: A case study with comparison to MRI," Med. Phys. 32, 1128-1139 (2005).
[CrossRef] [PubMed]

Chorlton, M.

Claussen, C.

T. Xydeas, K. Siegmann, R. Sinkus, U. Krainick-Strobel, S. Miller, and C. Claussen, "Magnetic resonance elastography of the breast - Correlation of signal intensity data with viscoelastic properties," Invest. Radiol. 40, 412-420 (2005).
[CrossRef] [PubMed]

Conant, E.

B. Chance, S. Nioka, J. Zhang, E. Conant, E. Hwang, S. Briest, S. Orel, M. D. Schnall, and B. Czerniecki, "Breast Cancer detection based on incremental Biochemical and Physiological properties of breast cancers: A six-year, two-site study 1," Acad. Radiol. 12, 925-933 (2005).
[CrossRef] [PubMed]

Corlu, A.

R. Choe, A. Corlu, K. Lee, T. Durduran, S. D. Konecky, M. Grosicka-Koptyra, S. R. Arridge, B. J. Czerniecki, D. L. Fraker, A. DeMichele, B. Chance, M. A. Rosen, and A. G. Yodh, "Diffuse optical tomography of breast cancer during neoadjuvant chemotherapy: A case study with comparison to MRI," Med. Phys. 32, 1128-1139 (2005).
[CrossRef] [PubMed]

Cubeddu, R.

L. Spinelli, A. Torricelli, A. Pifferi, P. Taroni, G. M. Danesini, and R. Cubeddu, "Bulk optical properties and tissue components in the female breast from multiwavelength time-resolved optical mammography," J. Biomed. Opt. 9, 1137-1142 (2004).
[CrossRef] [PubMed]

Czerniecki, B.

B. Chance, S. Nioka, J. Zhang, E. Conant, E. Hwang, S. Briest, S. Orel, M. D. Schnall, and B. Czerniecki, "Breast Cancer detection based on incremental Biochemical and Physiological properties of breast cancers: A six-year, two-site study 1," Acad. Radiol. 12, 925-933 (2005).
[CrossRef] [PubMed]

Czerniecki, B. J.

R. Choe, A. Corlu, K. Lee, T. Durduran, S. D. Konecky, M. Grosicka-Koptyra, S. R. Arridge, B. J. Czerniecki, D. L. Fraker, A. DeMichele, B. Chance, M. A. Rosen, and A. G. Yodh, "Diffuse optical tomography of breast cancer during neoadjuvant chemotherapy: A case study with comparison to MRI," Med. Phys. 32, 1128-1139 (2005).
[CrossRef] [PubMed]

T. Durduran, R. Choe, G. Q. Yu, C. Zhou, J. C. Tchou, B. J. Czerniecki, and A. G. Yodh, "Diffuse optical measurement of blood flow in breast tumors," Opt. Lett. 30, 2915-2917 (2005).
[CrossRef] [PubMed]

Dale, A. M.

T. J. Huppert, R. D. Hoge, A. M. Dale, M. A. Franceschini, and D. A. Boas, "Quantitative spatial comparison of diffuse optical imaging with blood oxygen level-dependent and arterial spin labeling-based functional magnetic resonance imaging," J. Biomed. Opt. 11, 064018 (2006).
[CrossRef] [PubMed]

Danesini, G. M.

L. Spinelli, A. Torricelli, A. Pifferi, P. Taroni, G. M. Danesini, and R. Cubeddu, "Bulk optical properties and tissue components in the female breast from multiwavelength time-resolved optical mammography," J. Biomed. Opt. 9, 1137-1142 (2004).
[CrossRef] [PubMed]

Dehghani, H.

S. Srinivasan, B. W. Pogue, B. Brooksby, S. D. Jiang, H. Dehghani, C. Kogel, W. A. Wells, S. P. Poplack, and K. D. Paulsen, "Near-infrared characterization of breast tumors in vivo using spectrally-constrained reconstruction," Technol. Cancer Res. Treat. 4, 513-526 (2005).
[PubMed]

Delille, J. P.

J. P. Delille, P. J. Slanetz, E. D. Yeh, D. B. Kopans, L. Garrido, "Breast Cancer: Regional Blood Flow and Blood Volume Measured with Magnetic Susceptibility-based MR Imaging-Initial Results," Radiology 223, 558-565 (2002).
[CrossRef] [PubMed]

Delpy, D. T.

A. P. Gibson, T. Austin, N. L. Everdell, M. Schweiger, S. R. Arridge, J. H. Meek, J. S. Wyatt, D. T. Delpy, and J. C. Hebden, "Three-dimensional whole-head optical passive motor evoked responses in the tomography of neonate," Neuroimage 30, 521-528 (2006).
[CrossRef]

N. L. Everdell, A. P. Gibson, I. D. C. Tullis, T. Vaithianathan, J. C. Hebden, and D. T. Delpy, "A frequency multiplexed near-infrared topography system for imaging functional activation in the brain," Rev. Sci. Instrum. 76, 093705 (2005).
[CrossRef]

DeMichele, A.

R. Choe, A. Corlu, K. Lee, T. Durduran, S. D. Konecky, M. Grosicka-Koptyra, S. R. Arridge, B. J. Czerniecki, D. L. Fraker, A. DeMichele, B. Chance, M. A. Rosen, and A. G. Yodh, "Diffuse optical tomography of breast cancer during neoadjuvant chemotherapy: A case study with comparison to MRI," Med. Phys. 32, 1128-1139 (2005).
[CrossRef] [PubMed]

Desjardins, C.

C. Desjardins and B. Duling, "Microvessel hematocrit: measurement and implications for capillary oxygen transport," Am. J. Physiol. (Heart and Circulatory Physiology) 252, H494-H503 (1987).

Diamond, S. G.

M. A. Franceschini, D. K. Joseph, T. J. Huppert, S. G. Diamond, and D. A. Boas, "Diffuse optical imaging of the whole head," J. Biomed. Opt. 11, 054007 (2006).
[CrossRef] [PubMed]

Djeziri, S.

X. Intes, S. Djeziri, Z. Ichalalene, N. Mincu, Y. Wang, P. St-Jean, F. Lesage, D. Hall, D. Boas, M. Polyzos, D. Fleiszer, and B. Mesurolle, "Time-domain optical mammography SoftScan: Initial results," Acad. Radiol. 12, 934-947 (2005).
[CrossRef] [PubMed]

Duling, B.

C. Desjardins and B. Duling, "Microvessel hematocrit: measurement and implications for capillary oxygen transport," Am. J. Physiol. (Heart and Circulatory Physiology) 252, H494-H503 (1987).

Dunnwald, L. K.

D. A. Mankoff, L. K. Dunnwald, J. R. Gralow, G. K. Ellis, A. Charlop, T. J. Lawton, E. K. Schubert, J. Tseng, R. B. Livingston, "Blood Flow and Metabolism in Locally Advanced Breast Cancer: Relationship to Response to Therapy," J. Nucl. Med. 43, 500-509 (2002).
[PubMed]

Duong, T. Q.

T. Q. Duong and S. G. Kim, "In vivo MR measurements of regional arterial and venous blood volume fractions in intact rat brain," Magn. Reson. Med. 43, 393-402 (2000).
[CrossRef] [PubMed]

Durduran, T.

T. Durduran, R. Choe, G. Q. Yu, C. Zhou, J. C. Tchou, B. J. Czerniecki, and A. G. Yodh, "Diffuse optical measurement of blood flow in breast tumors," Opt. Lett. 30, 2915-2917 (2005).
[CrossRef] [PubMed]

R. Choe, A. Corlu, K. Lee, T. Durduran, S. D. Konecky, M. Grosicka-Koptyra, S. R. Arridge, B. J. Czerniecki, D. L. Fraker, A. DeMichele, B. Chance, M. A. Rosen, and A. G. Yodh, "Diffuse optical tomography of breast cancer during neoadjuvant chemotherapy: A case study with comparison to MRI," Med. Phys. 32, 1128-1139 (2005).
[CrossRef] [PubMed]

Durkin, A.

A. Cerussi, D. Hsiang, N. Shah, R. Mehta, A. Durkin, J. Butler, and B. J. Tromberg, "Predicting response to breast cancer neoadjuvant chemotherapy using diffuse optical spectroscopy," PNAS 104, 4014-4019 (2007).
[CrossRef] [PubMed]

A. Cerussi, N. Shah, D. Hsiang, A. Durkin, J. Butler, and B. J. Tromberg, "In vivo absorption, scattering, and physiologic properties of 58 malignant breast tumors determined by broadband diffuse optical spectroscopy," J. Biomed. Opt. 11, 044005 (2006).
[CrossRef] [PubMed]

Ebert, B.

A. Thomas, T. Fischer, H. Frey, R. Ohlinger, S. Grunwald, J. Blohmer, K. Winzer, S. Weber, G. Kristiansen, B. Ebert, and S. K¨ummel, "Real-time elastography - an advanced method of ultrasound: first results in 108 patients with breast lesions," Ultrasound Obstet. Gynecol. 28, 335-340 (2006).
[CrossRef] [PubMed]

Ellis, G. K.

D. A. Mankoff, L. K. Dunnwald, J. R. Gralow, G. K. Ellis, A. Charlop, T. J. Lawton, E. K. Schubert, J. Tseng, R. B. Livingston, "Blood Flow and Metabolism in Locally Advanced Breast Cancer: Relationship to Response to Therapy," J. Nucl. Med. 43, 500-509 (2002).
[PubMed]

Everdell, N. L.

A. P. Gibson, T. Austin, N. L. Everdell, M. Schweiger, S. R. Arridge, J. H. Meek, J. S. Wyatt, D. T. Delpy, and J. C. Hebden, "Three-dimensional whole-head optical passive motor evoked responses in the tomography of neonate," Neuroimage 30, 521-528 (2006).
[CrossRef]

N. L. Everdell, A. P. Gibson, I. D. C. Tullis, T. Vaithianathan, J. C. Hebden, and D. T. Delpy, "A frequency multiplexed near-infrared topography system for imaging functional activation in the brain," Rev. Sci. Instrum. 76, 093705 (2005).
[CrossRef]

Fantini, S.

Fischer, T.

A. Thomas, T. Fischer, H. Frey, R. Ohlinger, S. Grunwald, J. Blohmer, K. Winzer, S. Weber, G. Kristiansen, B. Ebert, and S. K¨ummel, "Real-time elastography - an advanced method of ultrasound: first results in 108 patients with breast lesions," Ultrasound Obstet. Gynecol. 28, 335-340 (2006).
[CrossRef] [PubMed]

Fishkin, J.

Fleiszer, D.

X. Intes, S. Djeziri, Z. Ichalalene, N. Mincu, Y. Wang, P. St-Jean, F. Lesage, D. Hall, D. Boas, M. Polyzos, D. Fleiszer, and B. Mesurolle, "Time-domain optical mammography SoftScan: Initial results," Acad. Radiol. 12, 934-947 (2005).
[CrossRef] [PubMed]

Fraker, D. L.

R. Choe, A. Corlu, K. Lee, T. Durduran, S. D. Konecky, M. Grosicka-Koptyra, S. R. Arridge, B. J. Czerniecki, D. L. Fraker, A. DeMichele, B. Chance, M. A. Rosen, and A. G. Yodh, "Diffuse optical tomography of breast cancer during neoadjuvant chemotherapy: A case study with comparison to MRI," Med. Phys. 32, 1128-1139 (2005).
[CrossRef] [PubMed]

Franceschini, M.

Franceschini, M. A.

M. A. Franceschini, D. K. Joseph, T. J. Huppert, S. G. Diamond, and D. A. Boas, "Diffuse optical imaging of the whole head," J. Biomed. Opt. 11, 054007 (2006).
[CrossRef] [PubMed]

T. J. Huppert, R. D. Hoge, A. M. Dale, M. A. Franceschini, and D. A. Boas, "Quantitative spatial comparison of diffuse optical imaging with blood oxygen level-dependent and arterial spin labeling-based functional magnetic resonance imaging," J. Biomed. Opt. 11, 064018 (2006).
[CrossRef] [PubMed]

Franco, N.

Frey, H.

A. Thomas, T. Fischer, H. Frey, R. Ohlinger, S. Grunwald, J. Blohmer, K. Winzer, S. Weber, G. Kristiansen, B. Ebert, and S. K¨ummel, "Real-time elastography - an advanced method of ultrasound: first results in 108 patients with breast lesions," Ultrasound Obstet. Gynecol. 28, 335-340 (2006).
[CrossRef] [PubMed]

Garrido, L.

J. P. Delille, P. J. Slanetz, E. D. Yeh, D. B. Kopans, L. Garrido, "Breast Cancer: Regional Blood Flow and Blood Volume Measured with Magnetic Susceptibility-based MR Imaging-Initial Results," Radiology 223, 558-565 (2002).
[CrossRef] [PubMed]

Gibbs, J.

N. Shah, J. Gibbs, D. Wolverton, A. Cerussi, N. Hylton, and B. J. Tromberg, "Combined diffuse optical spectroscopy and contrast-enhanced magnetic resonance imaging for monitoring breast cancer neoadjuvant chemotherapy: a case study," J. Biomed. Opt. 10, 051503 (2005).
[CrossRef] [PubMed]

Gibson, A. P.

A. P. Gibson, T. Austin, N. L. Everdell, M. Schweiger, S. R. Arridge, J. H. Meek, J. S. Wyatt, D. T. Delpy, and J. C. Hebden, "Three-dimensional whole-head optical passive motor evoked responses in the tomography of neonate," Neuroimage 30, 521-528 (2006).
[CrossRef]

N. L. Everdell, A. P. Gibson, I. D. C. Tullis, T. Vaithianathan, J. C. Hebden, and D. T. Delpy, "A frequency multiplexed near-infrared topography system for imaging functional activation in the brain," Rev. Sci. Instrum. 76, 093705 (2005).
[CrossRef]

Graber, H.

Graber, H. L.

J. W. Chang, H. L. Graber, P. C. Koo, R. Aronson, S. L. S. Barbour, and R. L. Barbour, "Optical imaging of anatomical maps derived from magnetic resonance images using time-independent optical sources," IEEE Trans. Med. Imaging 16, 68-77 (1997).
[CrossRef] [PubMed]

Gralow, J. R.

D. A. Mankoff, L. K. Dunnwald, J. R. Gralow, G. K. Ellis, A. Charlop, T. J. Lawton, E. K. Schubert, J. Tseng, R. B. Livingston, "Blood Flow and Metabolism in Locally Advanced Breast Cancer: Relationship to Response to Therapy," J. Nucl. Med. 43, 500-509 (2002).
[PubMed]

Gratton, E.

Grosenick, D.

H. Rinneberg, D. Grosenick, K. T. Moesta, H. Wabnitz, J. Mucke, G. Wubbeler, R. Macdonald, and P. Schlag, "Detection and characterization of breast tumours by time-domain scanning optical mammography," Opto-Electron. Rev. 16, 147-162 (2008).
[CrossRef]

Grosicka-Koptyra, M.

R. Choe, A. Corlu, K. Lee, T. Durduran, S. D. Konecky, M. Grosicka-Koptyra, S. R. Arridge, B. J. Czerniecki, D. L. Fraker, A. DeMichele, B. Chance, M. A. Rosen, and A. G. Yodh, "Diffuse optical tomography of breast cancer during neoadjuvant chemotherapy: A case study with comparison to MRI," Med. Phys. 32, 1128-1139 (2005).
[CrossRef] [PubMed]

Grunwald, S.

A. Thomas, T. Fischer, H. Frey, R. Ohlinger, S. Grunwald, J. Blohmer, K. Winzer, S. Weber, G. Kristiansen, B. Ebert, and S. K¨ummel, "Real-time elastography - an advanced method of ultrasound: first results in 108 patients with breast lesions," Ultrasound Obstet. Gynecol. 28, 335-340 (2006).
[CrossRef] [PubMed]

Hall, D.

X. Intes, S. Djeziri, Z. Ichalalene, N. Mincu, Y. Wang, P. St-Jean, F. Lesage, D. Hall, D. Boas, M. Polyzos, D. Fleiszer, and B. Mesurolle, "Time-domain optical mammography SoftScan: Initial results," Acad. Radiol. 12, 934-947 (2005).
[CrossRef] [PubMed]

Halnan, K. E.

R. P. Beaney, T. Jones, A. A. Lammertsma, C. G. McKenzie, and K. E. Halnan, "Positron Emission Tomography for in-vivo measurement of regional blood-flow, oxygen utilization, and blood-volume in patients with breastcarcinoma," Lancet 323, 131-134 (1984).
[CrossRef]

Hammond, S.

D. White, H. Woodard, and S. Hammond, "Average soft-tissue and bone models for use in radiation dosimetry," Br. J. Radiol. 60, 907-913 (1987).
[CrossRef] [PubMed]

Hardin, R.

Hebden, J. C.

A. P. Gibson, T. Austin, N. L. Everdell, M. Schweiger, S. R. Arridge, J. H. Meek, J. S. Wyatt, D. T. Delpy, and J. C. Hebden, "Three-dimensional whole-head optical passive motor evoked responses in the tomography of neonate," Neuroimage 30, 521-528 (2006).
[CrossRef]

N. L. Everdell, A. P. Gibson, I. D. C. Tullis, T. Vaithianathan, J. C. Hebden, and D. T. Delpy, "A frequency multiplexed near-infrared topography system for imaging functional activation in the brain," Rev. Sci. Instrum. 76, 093705 (2005).
[CrossRef]

Hielscher, A. H.

Hoge, R. D.

T. J. Huppert, R. D. Hoge, A. M. Dale, M. A. Franceschini, and D. A. Boas, "Quantitative spatial comparison of diffuse optical imaging with blood oxygen level-dependent and arterial spin labeling-based functional magnetic resonance imaging," J. Biomed. Opt. 11, 064018 (2006).
[CrossRef] [PubMed]

Hsiang, D.

A. Cerussi, D. Hsiang, N. Shah, R. Mehta, A. Durkin, J. Butler, and B. J. Tromberg, "Predicting response to breast cancer neoadjuvant chemotherapy using diffuse optical spectroscopy," PNAS 104, 4014-4019 (2007).
[CrossRef] [PubMed]

A. Cerussi, N. Shah, D. Hsiang, A. Durkin, J. Butler, and B. J. Tromberg, "In vivo absorption, scattering, and physiologic properties of 58 malignant breast tumors determined by broadband diffuse optical spectroscopy," J. Biomed. Opt. 11, 044005 (2006).
[CrossRef] [PubMed]

N. Shah, A. E. Cerussi, D. Jakubowski, D. Hsiang, J. Butler, and B. J. Tromberg, "The role of diffuse optical spectroscopy in the clinical management of breast cancer," Dis. Markers 19, 95-105 (2003).

Huppert, T. J.

T. J. Huppert, M. S. Allen, H. Benav, P. B. Jones, and D. A. Boas, "A multicompartment vascular model for inferring baseline and functional changes in cerebral oxygen metabolism and arterial dilation," J. Cereb. Blood Flow Metab. 27, 1262-1279 (2007).
[CrossRef] [PubMed]

T. J. Huppert, R. D. Hoge, A. M. Dale, M. A. Franceschini, and D. A. Boas, "Quantitative spatial comparison of diffuse optical imaging with blood oxygen level-dependent and arterial spin labeling-based functional magnetic resonance imaging," J. Biomed. Opt. 11, 064018 (2006).
[CrossRef] [PubMed]

M. A. Franceschini, D. K. Joseph, T. J. Huppert, S. G. Diamond, and D. A. Boas, "Diffuse optical imaging of the whole head," J. Biomed. Opt. 11, 054007 (2006).
[CrossRef] [PubMed]

Hwang, E.

B. Chance, S. Nioka, J. Zhang, E. Conant, E. Hwang, S. Briest, S. Orel, M. D. Schnall, and B. Czerniecki, "Breast Cancer detection based on incremental Biochemical and Physiological properties of breast cancers: A six-year, two-site study 1," Acad. Radiol. 12, 925-933 (2005).
[CrossRef] [PubMed]

Hylton, N.

N. Shah, J. Gibbs, D. Wolverton, A. Cerussi, N. Hylton, and B. J. Tromberg, "Combined diffuse optical spectroscopy and contrast-enhanced magnetic resonance imaging for monitoring breast cancer neoadjuvant chemotherapy: a case study," J. Biomed. Opt. 10, 051503 (2005).
[CrossRef] [PubMed]

Ichalalene, Z.

X. Intes, S. Djeziri, Z. Ichalalene, N. Mincu, Y. Wang, P. St-Jean, F. Lesage, D. Hall, D. Boas, M. Polyzos, D. Fleiszer, and B. Mesurolle, "Time-domain optical mammography SoftScan: Initial results," Acad. Radiol. 12, 934-947 (2005).
[CrossRef] [PubMed]

Insana, M.

M. Insana, C. Pellot-Barakat, M. Sridhar, and K. Lindfors, "Viscoelastic Imaging of Breast Tumor Microenvi ronment with Ultrasound," J. Mammary Gland Biology and Neoplasia 9, 393-404 (2004).
[CrossRef]

Insana, M. F.

M. Sridhar and M. F. Insana, "Ultrasonic measurements of breast viscoelasticity," Med. Phys. 34, 4757-4767 (2007).
[CrossRef]

Intes, X.

X. Intes, S. Djeziri, Z. Ichalalene, N. Mincu, Y. Wang, P. St-Jean, F. Lesage, D. Hall, D. Boas, M. Polyzos, D. Fleiszer, and B. Mesurolle, "Time-domain optical mammography SoftScan: Initial results," Acad. Radiol. 12, 934-947 (2005).
[CrossRef] [PubMed]

Jakubowski, D.

N. Shah, A. E. Cerussi, D. Jakubowski, D. Hsiang, J. Butler, and B. J. Tromberg, "The role of diffuse optical spectroscopy in the clinical management of breast cancer," Dis. Markers 19, 95-105 (2003).

Jiang, H. B.

C. Q. Li, H. Z. Zhao, B. Anderson, and H. B. Jiang, "Multispectral breast imaging using a ten-wavelength, 64X64 source/detector channels silicon photodiode-based diffuse optical tomography system," Med. Phys. 33, 627-636 (2006).
[CrossRef] [PubMed]

Jiang, S. D.

S. Srinivasan, B. W. Pogue, B. Brooksby, S. D. Jiang, H. Dehghani, C. Kogel, W. A. Wells, S. P. Poplack, and K. D. Paulsen, "Near-infrared characterization of breast tumors in vivo using spectrally-constrained reconstruction," Technol. Cancer Res. Treat. 4, 513-526 (2005).
[PubMed]

S. D. Jiang, B. W. Pogue, K. D. Paulsen, C. Kogel, and S. P. Poplack, "In vivo near-infrared spectral detection of pressure-induced changes in breast tissue," Opt. Lett. 28, 1212-1214 (2003).
[CrossRef]

Jones, P. B.

T. J. Huppert, M. S. Allen, H. Benav, P. B. Jones, and D. A. Boas, "A multicompartment vascular model for inferring baseline and functional changes in cerebral oxygen metabolism and arterial dilation," J. Cereb. Blood Flow Metab. 27, 1262-1279 (2007).
[CrossRef] [PubMed]

Jones, T.

C. Wilson, A. A. Lammertsma, C. G. McKenzie, K. Sikora, and T. Jones, "Measurements of blood-flow and exchanging water space in breast-tumors using positron emission tomography - a rapid and noninvasive dynamic method," Cancer Research 52, 1592-1597 (1992).
[PubMed]

R. P. Beaney, T. Jones, A. A. Lammertsma, C. G. McKenzie, and K. E. Halnan, "Positron Emission Tomography for in-vivo measurement of regional blood-flow, oxygen utilization, and blood-volume in patients with breastcarcinoma," Lancet 323, 131-134 (1984).
[CrossRef]

Joseph, D. K.

M. A. Franceschini, D. K. Joseph, T. J. Huppert, S. G. Diamond, and D. A. Boas, "Diffuse optical imaging of the whole head," J. Biomed. Opt. 11, 054007 (2006).
[CrossRef] [PubMed]

K¨ummel, S.

A. Thomas, T. Fischer, H. Frey, R. Ohlinger, S. Grunwald, J. Blohmer, K. Winzer, S. Weber, G. Kristiansen, B. Ebert, and S. K¨ummel, "Real-time elastography - an advanced method of ultrasound: first results in 108 patients with breast lesions," Ultrasound Obstet. Gynecol. 28, 335-340 (2006).
[CrossRef] [PubMed]

Katz, M.

Kilmer, M. E.

Kim, S. G.

T. Q. Duong and S. G. Kim, "In vivo MR measurements of regional arterial and venous blood volume fractions in intact rat brain," Magn. Reson. Med. 43, 393-402 (2000).
[CrossRef] [PubMed]

Klemer, D.

Kogel, C.

S. Srinivasan, B. W. Pogue, B. Brooksby, S. D. Jiang, H. Dehghani, C. Kogel, W. A. Wells, S. P. Poplack, and K. D. Paulsen, "Near-infrared characterization of breast tumors in vivo using spectrally-constrained reconstruction," Technol. Cancer Res. Treat. 4, 513-526 (2005).
[PubMed]

S. D. Jiang, B. W. Pogue, K. D. Paulsen, C. Kogel, and S. P. Poplack, "In vivo near-infrared spectral detection of pressure-induced changes in breast tissue," Opt. Lett. 28, 1212-1214 (2003).
[CrossRef]

Konecky, S. D.

R. Choe, A. Corlu, K. Lee, T. Durduran, S. D. Konecky, M. Grosicka-Koptyra, S. R. Arridge, B. J. Czerniecki, D. L. Fraker, A. DeMichele, B. Chance, M. A. Rosen, and A. G. Yodh, "Diffuse optical tomography of breast cancer during neoadjuvant chemotherapy: A case study with comparison to MRI," Med. Phys. 32, 1128-1139 (2005).
[CrossRef] [PubMed]

Koo, P. C.

J. W. Chang, H. L. Graber, P. C. Koo, R. Aronson, S. L. S. Barbour, and R. L. Barbour, "Optical imaging of anatomical maps derived from magnetic resonance images using time-independent optical sources," IEEE Trans. Med. Imaging 16, 68-77 (1997).
[CrossRef] [PubMed]

Kopans, D. B.

A. Li, E. L. Miller, M. E. Kilmer, T. J. Brukilacchio, T. Chaves, J. Stott, Q. Zhang, T. Wu, M. Chorlton, R. H. Moore, D. B. Kopans, and D. A. Boas, "Tomographic optical breast imaging guided by three-dimensional mammography," Appl. Opt. 42, 5181-5190 (2003).
[CrossRef] [PubMed]

J. P. Delille, P. J. Slanetz, E. D. Yeh, D. B. Kopans, L. Garrido, "Breast Cancer: Regional Blood Flow and Blood Volume Measured with Magnetic Susceptibility-based MR Imaging-Initial Results," Radiology 223, 558-565 (2002).
[CrossRef] [PubMed]

Krainick-Strobel, U.

T. Xydeas, K. Siegmann, R. Sinkus, U. Krainick-Strobel, S. Miller, and C. Claussen, "Magnetic resonance elastography of the breast - Correlation of signal intensity data with viscoelastic properties," Invest. Radiol. 40, 412-420 (2005).
[CrossRef] [PubMed]

Kristiansen, G.

A. Thomas, T. Fischer, H. Frey, R. Ohlinger, S. Grunwald, J. Blohmer, K. Winzer, S. Weber, G. Kristiansen, B. Ebert, and S. K¨ummel, "Real-time elastography - an advanced method of ultrasound: first results in 108 patients with breast lesions," Ultrasound Obstet. Gynecol. 28, 335-340 (2006).
[CrossRef] [PubMed]

Krouskop, T. A.

T. Varghese, J. Ophir, and T. A. Krouskop, "Nonlinear stress-strain relationships in tissue and their effect on the contrast-to-noise ratio in elastograms," Ultrasound Med. Biol. 26, 839-851 (2000).
[CrossRef] [PubMed]

Lammertsma, A. A.

C. Wilson, A. A. Lammertsma, C. G. McKenzie, K. Sikora, and T. Jones, "Measurements of blood-flow and exchanging water space in breast-tumors using positron emission tomography - a rapid and noninvasive dynamic method," Cancer Research 52, 1592-1597 (1992).
[PubMed]

R. P. Beaney, T. Jones, A. A. Lammertsma, C. G. McKenzie, and K. E. Halnan, "Positron Emission Tomography for in-vivo measurement of regional blood-flow, oxygen utilization, and blood-volume in patients with breastcarcinoma," Lancet 323, 131-134 (1984).
[CrossRef]

Lawton, T. J.

D. A. Mankoff, L. K. Dunnwald, J. R. Gralow, G. K. Ellis, A. Charlop, T. J. Lawton, E. K. Schubert, J. Tseng, R. B. Livingston, "Blood Flow and Metabolism in Locally Advanced Breast Cancer: Relationship to Response to Therapy," J. Nucl. Med. 43, 500-509 (2002).
[PubMed]

Lee, K.

R. Choe, A. Corlu, K. Lee, T. Durduran, S. D. Konecky, M. Grosicka-Koptyra, S. R. Arridge, B. J. Czerniecki, D. L. Fraker, A. DeMichele, B. Chance, M. A. Rosen, and A. G. Yodh, "Diffuse optical tomography of breast cancer during neoadjuvant chemotherapy: A case study with comparison to MRI," Med. Phys. 32, 1128-1139 (2005).
[CrossRef] [PubMed]

Leiderman, R.

R. Leiderman, P. Barbone, A. Oberai, and J. Bamber, "Coupling between elastic strain and interstitial fluid flow: ramification for poroelastic imaging," Phys. Med. Biol. 51, 6291-6313 (2006).
[CrossRef] [PubMed]

Lesage, F.

X. Intes, S. Djeziri, Z. Ichalalene, N. Mincu, Y. Wang, P. St-Jean, F. Lesage, D. Hall, D. Boas, M. Polyzos, D. Fleiszer, and B. Mesurolle, "Time-domain optical mammography SoftScan: Initial results," Acad. Radiol. 12, 934-947 (2005).
[CrossRef] [PubMed]

Levin, M.

Levina, R.

Li, A.

Li, C. Q.

C. Q. Li, H. Z. Zhao, B. Anderson, and H. B. Jiang, "Multispectral breast imaging using a ten-wavelength, 64X64 source/detector channels silicon photodiode-based diffuse optical tomography system," Med. Phys. 33, 627-636 (2006).
[CrossRef] [PubMed]

Lin, W. L.

H. Y. An and W. L. Lin, "Cerebral venous and arterial blood volumes can be estimated separately in humans using magnetic resonance imaging," Magn. Reson. Med. 48, 583-588 (2002).
[CrossRef] [PubMed]

Lindfors, K.

M. Insana, C. Pellot-Barakat, M. Sridhar, and K. Lindfors, "Viscoelastic Imaging of Breast Tumor Microenvi ronment with Ultrasound," J. Mammary Gland Biology and Neoplasia 9, 393-404 (2004).
[CrossRef]

Livingston, R. B.

D. A. Mankoff, L. K. Dunnwald, J. R. Gralow, G. K. Ellis, A. Charlop, T. J. Lawton, E. K. Schubert, J. Tseng, R. B. Livingston, "Blood Flow and Metabolism in Locally Advanced Breast Cancer: Relationship to Response to Therapy," J. Nucl. Med. 43, 500-509 (2002).
[PubMed]

Macdonald, R.

H. Rinneberg, D. Grosenick, K. T. Moesta, H. Wabnitz, J. Mucke, G. Wubbeler, R. Macdonald, and P. Schlag, "Detection and characterization of breast tumours by time-domain scanning optical mammography," Opto-Electron. Rev. 16, 147-162 (2008).
[CrossRef]

Mankoff, D. A.

D. A. Mankoff, L. K. Dunnwald, J. R. Gralow, G. K. Ellis, A. Charlop, T. J. Lawton, E. K. Schubert, J. Tseng, R. B. Livingston, "Blood Flow and Metabolism in Locally Advanced Breast Cancer: Relationship to Response to Therapy," J. Nucl. Med. 43, 500-509 (2002).
[PubMed]

Mao, J. J.

R. X. Xu, D. C. Young, J. J. Mao, and S. P. Povoski, "A prospective pilot clinical trial evaluating the utility of a dynamic near-infrared imaging device for characterizing suspicious breast lesions," Breast Cancer Res. 9, R88 (2007).
[CrossRef] [PubMed]

McKenzie, C. G.

C. Wilson, A. A. Lammertsma, C. G. McKenzie, K. Sikora, and T. Jones, "Measurements of blood-flow and exchanging water space in breast-tumors using positron emission tomography - a rapid and noninvasive dynamic method," Cancer Research 52, 1592-1597 (1992).
[PubMed]

R. P. Beaney, T. Jones, A. A. Lammertsma, C. G. McKenzie, and K. E. Halnan, "Positron Emission Tomography for in-vivo measurement of regional blood-flow, oxygen utilization, and blood-volume in patients with breastcarcinoma," Lancet 323, 131-134 (1984).
[CrossRef]

Meek, J. H.

A. P. Gibson, T. Austin, N. L. Everdell, M. Schweiger, S. R. Arridge, J. H. Meek, J. S. Wyatt, D. T. Delpy, and J. C. Hebden, "Three-dimensional whole-head optical passive motor evoked responses in the tomography of neonate," Neuroimage 30, 521-528 (2006).
[CrossRef]

Mehta, R.

A. Cerussi, D. Hsiang, N. Shah, R. Mehta, A. Durkin, J. Butler, and B. J. Tromberg, "Predicting response to breast cancer neoadjuvant chemotherapy using diffuse optical spectroscopy," PNAS 104, 4014-4019 (2007).
[CrossRef] [PubMed]

Mesurolle, B.

X. Intes, S. Djeziri, Z. Ichalalene, N. Mincu, Y. Wang, P. St-Jean, F. Lesage, D. Hall, D. Boas, M. Polyzos, D. Fleiszer, and B. Mesurolle, "Time-domain optical mammography SoftScan: Initial results," Acad. Radiol. 12, 934-947 (2005).
[CrossRef] [PubMed]

Metaxas, D.

F. Azar, D. Metaxas, and M. Schnall, "Methods for modeling and predicting mechanical deformaions of the breast under external perturbations," Med. Image Anal. 6, 1-27 (2002).
[CrossRef] [PubMed]

Metaxas, D. N.

F. S. Azar, D. N. Metaxas, and M. D. Schnall, "A deformable finite element model of the breast for predicting mechanical deformations under external perturbations," Acad. Radiol. 8, 965-975 (2001).
[CrossRef] [PubMed]

Miller, E. L.

Miller, S.

T. Xydeas, K. Siegmann, R. Sinkus, U. Krainick-Strobel, S. Miller, and C. Claussen, "Magnetic resonance elastography of the breast - Correlation of signal intensity data with viscoelastic properties," Invest. Radiol. 40, 412-420 (2005).
[CrossRef] [PubMed]

Mincu, N.

X. Intes, S. Djeziri, Z. Ichalalene, N. Mincu, Y. Wang, P. St-Jean, F. Lesage, D. Hall, D. Boas, M. Polyzos, D. Fleiszer, and B. Mesurolle, "Time-domain optical mammography SoftScan: Initial results," Acad. Radiol. 12, 934-947 (2005).
[CrossRef] [PubMed]

Moesta, K. T.

H. Rinneberg, D. Grosenick, K. T. Moesta, H. Wabnitz, J. Mucke, G. Wubbeler, R. Macdonald, and P. Schlag, "Detection and characterization of breast tumours by time-domain scanning optical mammography," Opto-Electron. Rev. 16, 147-162 (2008).
[CrossRef]

Moore, R. H.

Mucke, J.

H. Rinneberg, D. Grosenick, K. T. Moesta, H. Wabnitz, J. Mucke, G. Wubbeler, R. Macdonald, and P. Schlag, "Detection and characterization of breast tumours by time-domain scanning optical mammography," Opto-Electron. Rev. 16, 147-162 (2008).
[CrossRef]

Nioka, S.

B. Chance, S. Nioka, J. Zhang, E. Conant, E. Hwang, S. Briest, S. Orel, M. D. Schnall, and B. Czerniecki, "Breast Cancer detection based on incremental Biochemical and Physiological properties of breast cancers: A six-year, two-site study 1," Acad. Radiol. 12, 925-933 (2005).
[CrossRef] [PubMed]

Ntziachristos, V.

V. Ntziachristos, A. G. Yodh, M. D. Schnall, and B. Chance, "MRI-guided diffuse optical spectroscopy of malignant and benign breast lesions," Neoplasia 4, 347-354 (2002).
[CrossRef] [PubMed]

V. Ntziachristos, A. G. Yodh, M. Schnall, and B. Chance, "Concurrent MRI and diffuse optical tomography of breast after indocyanine green enhancement," PNAS 97, 2767-2772 (2000).
[CrossRef] [PubMed]

Oberai, A.

R. Leiderman, P. Barbone, A. Oberai, and J. Bamber, "Coupling between elastic strain and interstitial fluid flow: ramification for poroelastic imaging," Phys. Med. Biol. 51, 6291-6313 (2006).
[CrossRef] [PubMed]

Ohlinger, R.

A. Thomas, T. Fischer, H. Frey, R. Ohlinger, S. Grunwald, J. Blohmer, K. Winzer, S. Weber, G. Kristiansen, B. Ebert, and S. K¨ummel, "Real-time elastography - an advanced method of ultrasound: first results in 108 patients with breast lesions," Ultrasound Obstet. Gynecol. 28, 335-340 (2006).
[CrossRef] [PubMed]

Ophir, J.

T. Varghese, J. Ophir, and T. A. Krouskop, "Nonlinear stress-strain relationships in tissue and their effect on the contrast-to-noise ratio in elastograms," Ultrasound Med. Biol. 26, 839-851 (2000).
[CrossRef] [PubMed]

Orel, S.

B. Chance, S. Nioka, J. Zhang, E. Conant, E. Hwang, S. Briest, S. Orel, M. D. Schnall, and B. Czerniecki, "Breast Cancer detection based on incremental Biochemical and Physiological properties of breast cancers: A six-year, two-site study 1," Acad. Radiol. 12, 925-933 (2005).
[CrossRef] [PubMed]

Paulsen, K. D.

S. Srinivasan, B. W. Pogue, B. Brooksby, S. D. Jiang, H. Dehghani, C. Kogel, W. A. Wells, S. P. Poplack, and K. D. Paulsen, "Near-infrared characterization of breast tumors in vivo using spectrally-constrained reconstruction," Technol. Cancer Res. Treat. 4, 513-526 (2005).
[PubMed]

S. D. Jiang, B. W. Pogue, K. D. Paulsen, C. Kogel, and S. P. Poplack, "In vivo near-infrared spectral detection of pressure-induced changes in breast tissue," Opt. Lett. 28, 1212-1214 (2003).
[CrossRef]

Pei, Y.

Pellot-Barakat, C.

M. Insana, C. Pellot-Barakat, M. Sridhar, and K. Lindfors, "Viscoelastic Imaging of Breast Tumor Microenvi ronment with Ultrasound," J. Mammary Gland Biology and Neoplasia 9, 393-404 (2004).
[CrossRef]

Pifferi, A.

L. Spinelli, A. Torricelli, A. Pifferi, P. Taroni, G. M. Danesini, and R. Cubeddu, "Bulk optical properties and tissue components in the female breast from multiwavelength time-resolved optical mammography," J. Biomed. Opt. 9, 1137-1142 (2004).
[CrossRef] [PubMed]

Pogue, B. W.

S. Srinivasan, B. W. Pogue, B. Brooksby, S. D. Jiang, H. Dehghani, C. Kogel, W. A. Wells, S. P. Poplack, and K. D. Paulsen, "Near-infrared characterization of breast tumors in vivo using spectrally-constrained reconstruction," Technol. Cancer Res. Treat. 4, 513-526 (2005).
[PubMed]

S. D. Jiang, B. W. Pogue, K. D. Paulsen, C. Kogel, and S. P. Poplack, "In vivo near-infrared spectral detection of pressure-induced changes in breast tissue," Opt. Lett. 28, 1212-1214 (2003).
[CrossRef]

Polyzos, M.

X. Intes, S. Djeziri, Z. Ichalalene, N. Mincu, Y. Wang, P. St-Jean, F. Lesage, D. Hall, D. Boas, M. Polyzos, D. Fleiszer, and B. Mesurolle, "Time-domain optical mammography SoftScan: Initial results," Acad. Radiol. 12, 934-947 (2005).
[CrossRef] [PubMed]

Poplack, S. P.

S. Srinivasan, B. W. Pogue, B. Brooksby, S. D. Jiang, H. Dehghani, C. Kogel, W. A. Wells, S. P. Poplack, and K. D. Paulsen, "Near-infrared characterization of breast tumors in vivo using spectrally-constrained reconstruction," Technol. Cancer Res. Treat. 4, 513-526 (2005).
[PubMed]

S. D. Jiang, B. W. Pogue, K. D. Paulsen, C. Kogel, and S. P. Poplack, "In vivo near-infrared spectral detection of pressure-induced changes in breast tissue," Opt. Lett. 28, 1212-1214 (2003).
[CrossRef]

Povoski, S. P.

R. X. Xu, D. C. Young, J. J. Mao, and S. P. Povoski, "A prospective pilot clinical trial evaluating the utility of a dynamic near-infrared imaging device for characterizing suspicious breast lesions," Breast Cancer Res. 9, R88 (2007).
[CrossRef] [PubMed]

Rinneberg, H.

H. Rinneberg, D. Grosenick, K. T. Moesta, H. Wabnitz, J. Mucke, G. Wubbeler, R. Macdonald, and P. Schlag, "Detection and characterization of breast tumours by time-domain scanning optical mammography," Opto-Electron. Rev. 16, 147-162 (2008).
[CrossRef]

Rosen, M. A.

R. Choe, A. Corlu, K. Lee, T. Durduran, S. D. Konecky, M. Grosicka-Koptyra, S. R. Arridge, B. J. Czerniecki, D. L. Fraker, A. DeMichele, B. Chance, M. A. Rosen, and A. G. Yodh, "Diffuse optical tomography of breast cancer during neoadjuvant chemotherapy: A case study with comparison to MRI," Med. Phys. 32, 1128-1139 (2005).
[CrossRef] [PubMed]

Schlag, P.

H. Rinneberg, D. Grosenick, K. T. Moesta, H. Wabnitz, J. Mucke, G. Wubbeler, R. Macdonald, and P. Schlag, "Detection and characterization of breast tumours by time-domain scanning optical mammography," Opto-Electron. Rev. 16, 147-162 (2008).
[CrossRef]

Schmitz, C.

Schmitz, C. H.

Schnall, M.

F. Azar, D. Metaxas, and M. Schnall, "Methods for modeling and predicting mechanical deformaions of the breast under external perturbations," Med. Image Anal. 6, 1-27 (2002).
[CrossRef] [PubMed]

V. Ntziachristos, A. G. Yodh, M. Schnall, and B. Chance, "Concurrent MRI and diffuse optical tomography of breast after indocyanine green enhancement," PNAS 97, 2767-2772 (2000).
[CrossRef] [PubMed]

Schnall, M. D.

B. Chance, S. Nioka, J. Zhang, E. Conant, E. Hwang, S. Briest, S. Orel, M. D. Schnall, and B. Czerniecki, "Breast Cancer detection based on incremental Biochemical and Physiological properties of breast cancers: A six-year, two-site study 1," Acad. Radiol. 12, 925-933 (2005).
[CrossRef] [PubMed]

V. Ntziachristos, A. G. Yodh, M. D. Schnall, and B. Chance, "MRI-guided diffuse optical spectroscopy of malignant and benign breast lesions," Neoplasia 4, 347-354 (2002).
[CrossRef] [PubMed]

F. S. Azar, D. N. Metaxas, and M. D. Schnall, "A deformable finite element model of the breast for predicting mechanical deformations under external perturbations," Acad. Radiol. 8, 965-975 (2001).
[CrossRef] [PubMed]

Schubert, E. K.

D. A. Mankoff, L. K. Dunnwald, J. R. Gralow, G. K. Ellis, A. Charlop, T. J. Lawton, E. K. Schubert, J. Tseng, R. B. Livingston, "Blood Flow and Metabolism in Locally Advanced Breast Cancer: Relationship to Response to Therapy," J. Nucl. Med. 43, 500-509 (2002).
[PubMed]

Schweiger, M.

A. P. Gibson, T. Austin, N. L. Everdell, M. Schweiger, S. R. Arridge, J. H. Meek, J. S. Wyatt, D. T. Delpy, and J. C. Hebden, "Three-dimensional whole-head optical passive motor evoked responses in the tomography of neonate," Neuroimage 30, 521-528 (2006).
[CrossRef]

Shah, N.

A. Cerussi, D. Hsiang, N. Shah, R. Mehta, A. Durkin, J. Butler, and B. J. Tromberg, "Predicting response to breast cancer neoadjuvant chemotherapy using diffuse optical spectroscopy," PNAS 104, 4014-4019 (2007).
[CrossRef] [PubMed]

A. Cerussi, N. Shah, D. Hsiang, A. Durkin, J. Butler, and B. J. Tromberg, "In vivo absorption, scattering, and physiologic properties of 58 malignant breast tumors determined by broadband diffuse optical spectroscopy," J. Biomed. Opt. 11, 044005 (2006).
[CrossRef] [PubMed]

N. Shah, J. Gibbs, D. Wolverton, A. Cerussi, N. Hylton, and B. J. Tromberg, "Combined diffuse optical spectroscopy and contrast-enhanced magnetic resonance imaging for monitoring breast cancer neoadjuvant chemotherapy: a case study," J. Biomed. Opt. 10, 051503 (2005).
[CrossRef] [PubMed]

N. Shah, A. E. Cerussi, D. Jakubowski, D. Hsiang, J. Butler, and B. J. Tromberg, "The role of diffuse optical spectroscopy in the clinical management of breast cancer," Dis. Markers 19, 95-105 (2003).

Siegmann, K.

T. Xydeas, K. Siegmann, R. Sinkus, U. Krainick-Strobel, S. Miller, and C. Claussen, "Magnetic resonance elastography of the breast - Correlation of signal intensity data with viscoelastic properties," Invest. Radiol. 40, 412-420 (2005).
[CrossRef] [PubMed]

Sikora, K.

C. Wilson, A. A. Lammertsma, C. G. McKenzie, K. Sikora, and T. Jones, "Measurements of blood-flow and exchanging water space in breast-tumors using positron emission tomography - a rapid and noninvasive dynamic method," Cancer Research 52, 1592-1597 (1992).
[PubMed]

Sinkus, R.

T. Xydeas, K. Siegmann, R. Sinkus, U. Krainick-Strobel, S. Miller, and C. Claussen, "Magnetic resonance elastography of the breast - Correlation of signal intensity data with viscoelastic properties," Invest. Radiol. 40, 412-420 (2005).
[CrossRef] [PubMed]

Slanetz, P. J.

J. P. Delille, P. J. Slanetz, E. D. Yeh, D. B. Kopans, L. Garrido, "Breast Cancer: Regional Blood Flow and Blood Volume Measured with Magnetic Susceptibility-based MR Imaging-Initial Results," Radiology 223, 558-565 (2002).
[CrossRef] [PubMed]

Solomon, W.

Spinelli, L.

L. Spinelli, A. Torricelli, A. Pifferi, P. Taroni, G. M. Danesini, and R. Cubeddu, "Bulk optical properties and tissue components in the female breast from multiwavelength time-resolved optical mammography," J. Biomed. Opt. 9, 1137-1142 (2004).
[CrossRef] [PubMed]

Sridhar, M.

M. Sridhar and M. F. Insana, "Ultrasonic measurements of breast viscoelasticity," Med. Phys. 34, 4757-4767 (2007).
[CrossRef]

M. Insana, C. Pellot-Barakat, M. Sridhar, and K. Lindfors, "Viscoelastic Imaging of Breast Tumor Microenvi ronment with Ultrasound," J. Mammary Gland Biology and Neoplasia 9, 393-404 (2004).
[CrossRef]

Srinivasan, S.

S. Srinivasan, B. W. Pogue, B. Brooksby, S. D. Jiang, H. Dehghani, C. Kogel, W. A. Wells, S. P. Poplack, and K. D. Paulsen, "Near-infrared characterization of breast tumors in vivo using spectrally-constrained reconstruction," Technol. Cancer Res. Treat. 4, 513-526 (2005).
[PubMed]

St-Jean, P.

X. Intes, S. Djeziri, Z. Ichalalene, N. Mincu, Y. Wang, P. St-Jean, F. Lesage, D. Hall, D. Boas, M. Polyzos, D. Fleiszer, and B. Mesurolle, "Time-domain optical mammography SoftScan: Initial results," Acad. Radiol. 12, 934-947 (2005).
[CrossRef] [PubMed]

Stott, J.

Taroni, P.

L. Spinelli, A. Torricelli, A. Pifferi, P. Taroni, G. M. Danesini, and R. Cubeddu, "Bulk optical properties and tissue components in the female breast from multiwavelength time-resolved optical mammography," J. Biomed. Opt. 9, 1137-1142 (2004).
[CrossRef] [PubMed]

Tchou, J. C.

Thomas, A.

A. Thomas, T. Fischer, H. Frey, R. Ohlinger, S. Grunwald, J. Blohmer, K. Winzer, S. Weber, G. Kristiansen, B. Ebert, and S. K¨ummel, "Real-time elastography - an advanced method of ultrasound: first results in 108 patients with breast lesions," Ultrasound Obstet. Gynecol. 28, 335-340 (2006).
[CrossRef] [PubMed]

Torricelli, A.

L. Spinelli, A. Torricelli, A. Pifferi, P. Taroni, G. M. Danesini, and R. Cubeddu, "Bulk optical properties and tissue components in the female breast from multiwavelength time-resolved optical mammography," J. Biomed. Opt. 9, 1137-1142 (2004).
[CrossRef] [PubMed]

Tromberg, B. J.

A. Cerussi, D. Hsiang, N. Shah, R. Mehta, A. Durkin, J. Butler, and B. J. Tromberg, "Predicting response to breast cancer neoadjuvant chemotherapy using diffuse optical spectroscopy," PNAS 104, 4014-4019 (2007).
[CrossRef] [PubMed]

A. Cerussi, N. Shah, D. Hsiang, A. Durkin, J. Butler, and B. J. Tromberg, "In vivo absorption, scattering, and physiologic properties of 58 malignant breast tumors determined by broadband diffuse optical spectroscopy," J. Biomed. Opt. 11, 044005 (2006).
[CrossRef] [PubMed]

N. Shah, J. Gibbs, D. Wolverton, A. Cerussi, N. Hylton, and B. J. Tromberg, "Combined diffuse optical spectroscopy and contrast-enhanced magnetic resonance imaging for monitoring breast cancer neoadjuvant chemotherapy: a case study," J. Biomed. Opt. 10, 051503 (2005).
[CrossRef] [PubMed]

N. Shah, A. E. Cerussi, D. Jakubowski, D. Hsiang, J. Butler, and B. J. Tromberg, "The role of diffuse optical spectroscopy in the clinical management of breast cancer," Dis. Markers 19, 95-105 (2003).

Tseng, J.

D. A. Mankoff, L. K. Dunnwald, J. R. Gralow, G. K. Ellis, A. Charlop, T. J. Lawton, E. K. Schubert, J. Tseng, R. B. Livingston, "Blood Flow and Metabolism in Locally Advanced Breast Cancer: Relationship to Response to Therapy," J. Nucl. Med. 43, 500-509 (2002).
[PubMed]

Tullis, I. D. C.

N. L. Everdell, A. P. Gibson, I. D. C. Tullis, T. Vaithianathan, J. C. Hebden, and D. T. Delpy, "A frequency multiplexed near-infrared topography system for imaging functional activation in the brain," Rev. Sci. Instrum. 76, 093705 (2005).
[CrossRef]

Vaithianathan, T.

N. L. Everdell, A. P. Gibson, I. D. C. Tullis, T. Vaithianathan, J. C. Hebden, and D. T. Delpy, "A frequency multiplexed near-infrared topography system for imaging functional activation in the brain," Rev. Sci. Instrum. 76, 093705 (2005).
[CrossRef]

Varghese, T.

T. Varghese, J. Ophir, and T. A. Krouskop, "Nonlinear stress-strain relationships in tissue and their effect on the contrast-to-noise ratio in elastograms," Ultrasound Med. Biol. 26, 839-851 (2000).
[CrossRef] [PubMed]

Wabnitz, H.

H. Rinneberg, D. Grosenick, K. T. Moesta, H. Wabnitz, J. Mucke, G. Wubbeler, R. Macdonald, and P. Schlag, "Detection and characterization of breast tumours by time-domain scanning optical mammography," Opto-Electron. Rev. 16, 147-162 (2008).
[CrossRef]

Wang, Y.

X. Intes, S. Djeziri, Z. Ichalalene, N. Mincu, Y. Wang, P. St-Jean, F. Lesage, D. Hall, D. Boas, M. Polyzos, D. Fleiszer, and B. Mesurolle, "Time-domain optical mammography SoftScan: Initial results," Acad. Radiol. 12, 934-947 (2005).
[CrossRef] [PubMed]

Weber, S.

A. Thomas, T. Fischer, H. Frey, R. Ohlinger, S. Grunwald, J. Blohmer, K. Winzer, S. Weber, G. Kristiansen, B. Ebert, and S. K¨ummel, "Real-time elastography - an advanced method of ultrasound: first results in 108 patients with breast lesions," Ultrasound Obstet. Gynecol. 28, 335-340 (2006).
[CrossRef] [PubMed]

Wells, W. A.

S. Srinivasan, B. W. Pogue, B. Brooksby, S. D. Jiang, H. Dehghani, C. Kogel, W. A. Wells, S. P. Poplack, and K. D. Paulsen, "Near-infrared characterization of breast tumors in vivo using spectrally-constrained reconstruction," Technol. Cancer Res. Treat. 4, 513-526 (2005).
[PubMed]

White, D.

D. White, H. Woodard, and S. Hammond, "Average soft-tissue and bone models for use in radiation dosimetry," Br. J. Radiol. 60, 907-913 (1987).
[CrossRef] [PubMed]

H. Woodard and D. White, "The composition of body tissues," Br. J. Radiol. 59, 1209-1219 (1986).
[CrossRef] [PubMed]

Wilson, C.

C. Wilson, A. A. Lammertsma, C. G. McKenzie, K. Sikora, and T. Jones, "Measurements of blood-flow and exchanging water space in breast-tumors using positron emission tomography - a rapid and noninvasive dynamic method," Cancer Research 52, 1592-1597 (1992).
[PubMed]

Winzer, K.

A. Thomas, T. Fischer, H. Frey, R. Ohlinger, S. Grunwald, J. Blohmer, K. Winzer, S. Weber, G. Kristiansen, B. Ebert, and S. K¨ummel, "Real-time elastography - an advanced method of ultrasound: first results in 108 patients with breast lesions," Ultrasound Obstet. Gynecol. 28, 335-340 (2006).
[CrossRef] [PubMed]

Wolverton, D.

N. Shah, J. Gibbs, D. Wolverton, A. Cerussi, N. Hylton, and B. J. Tromberg, "Combined diffuse optical spectroscopy and contrast-enhanced magnetic resonance imaging for monitoring breast cancer neoadjuvant chemotherapy: a case study," J. Biomed. Opt. 10, 051503 (2005).
[CrossRef] [PubMed]

Woodard, H.

D. White, H. Woodard, and S. Hammond, "Average soft-tissue and bone models for use in radiation dosimetry," Br. J. Radiol. 60, 907-913 (1987).
[CrossRef] [PubMed]

H. Woodard and D. White, "The composition of body tissues," Br. J. Radiol. 59, 1209-1219 (1986).
[CrossRef] [PubMed]

Wu, T.

Wubbeler, G.

H. Rinneberg, D. Grosenick, K. T. Moesta, H. Wabnitz, J. Mucke, G. Wubbeler, R. Macdonald, and P. Schlag, "Detection and characterization of breast tumours by time-domain scanning optical mammography," Opto-Electron. Rev. 16, 147-162 (2008).
[CrossRef]

Wyatt, J. S.

A. P. Gibson, T. Austin, N. L. Everdell, M. Schweiger, S. R. Arridge, J. H. Meek, J. S. Wyatt, D. T. Delpy, and J. C. Hebden, "Three-dimensional whole-head optical passive motor evoked responses in the tomography of neonate," Neuroimage 30, 521-528 (2006).
[CrossRef]

Xu, R. X.

R. X. Xu, D. C. Young, J. J. Mao, and S. P. Povoski, "A prospective pilot clinical trial evaluating the utility of a dynamic near-infrared imaging device for characterizing suspicious breast lesions," Breast Cancer Res. 9, R88 (2007).
[CrossRef] [PubMed]

Xydeas, T.

T. Xydeas, K. Siegmann, R. Sinkus, U. Krainick-Strobel, S. Miller, and C. Claussen, "Magnetic resonance elastography of the breast - Correlation of signal intensity data with viscoelastic properties," Invest. Radiol. 40, 412-420 (2005).
[CrossRef] [PubMed]

Yaling, P.

Yeh, E. D.

J. P. Delille, P. J. Slanetz, E. D. Yeh, D. B. Kopans, L. Garrido, "Breast Cancer: Regional Blood Flow and Blood Volume Measured with Magnetic Susceptibility-based MR Imaging-Initial Results," Radiology 223, 558-565 (2002).
[CrossRef] [PubMed]

Yodh, A. G.

T. Durduran, R. Choe, G. Q. Yu, C. Zhou, J. C. Tchou, B. J. Czerniecki, and A. G. Yodh, "Diffuse optical measurement of blood flow in breast tumors," Opt. Lett. 30, 2915-2917 (2005).
[CrossRef] [PubMed]

R. Choe, A. Corlu, K. Lee, T. Durduran, S. D. Konecky, M. Grosicka-Koptyra, S. R. Arridge, B. J. Czerniecki, D. L. Fraker, A. DeMichele, B. Chance, M. A. Rosen, and A. G. Yodh, "Diffuse optical tomography of breast cancer during neoadjuvant chemotherapy: A case study with comparison to MRI," Med. Phys. 32, 1128-1139 (2005).
[CrossRef] [PubMed]

V. Ntziachristos, A. G. Yodh, M. D. Schnall, and B. Chance, "MRI-guided diffuse optical spectroscopy of malignant and benign breast lesions," Neoplasia 4, 347-354 (2002).
[CrossRef] [PubMed]

V. Ntziachristos, A. G. Yodh, M. Schnall, and B. Chance, "Concurrent MRI and diffuse optical tomography of breast after indocyanine green enhancement," PNAS 97, 2767-2772 (2000).
[CrossRef] [PubMed]

Young, D. C.

R. X. Xu, D. C. Young, J. J. Mao, and S. P. Povoski, "A prospective pilot clinical trial evaluating the utility of a dynamic near-infrared imaging device for characterizing suspicious breast lesions," Breast Cancer Res. 9, R88 (2007).
[CrossRef] [PubMed]

Yu, G. Q.

Zhang, J.

B. Chance, S. Nioka, J. Zhang, E. Conant, E. Hwang, S. Briest, S. Orel, M. D. Schnall, and B. Czerniecki, "Breast Cancer detection based on incremental Biochemical and Physiological properties of breast cancers: A six-year, two-site study 1," Acad. Radiol. 12, 925-933 (2005).
[CrossRef] [PubMed]

Zhang, Q.

Zhao, H. Z.

C. Q. Li, H. Z. Zhao, B. Anderson, and H. B. Jiang, "Multispectral breast imaging using a ten-wavelength, 64X64 source/detector channels silicon photodiode-based diffuse optical tomography system," Med. Phys. 33, 627-636 (2006).
[CrossRef] [PubMed]

Zhong, S.

Zhou, C.

Acad. Radiol. (3)

B. Chance, S. Nioka, J. Zhang, E. Conant, E. Hwang, S. Briest, S. Orel, M. D. Schnall, and B. Czerniecki, "Breast Cancer detection based on incremental Biochemical and Physiological properties of breast cancers: A six-year, two-site study 1," Acad. Radiol. 12, 925-933 (2005).
[CrossRef] [PubMed]

X. Intes, S. Djeziri, Z. Ichalalene, N. Mincu, Y. Wang, P. St-Jean, F. Lesage, D. Hall, D. Boas, M. Polyzos, D. Fleiszer, and B. Mesurolle, "Time-domain optical mammography SoftScan: Initial results," Acad. Radiol. 12, 934-947 (2005).
[CrossRef] [PubMed]

F. S. Azar, D. N. Metaxas, and M. D. Schnall, "A deformable finite element model of the breast for predicting mechanical deformations under external perturbations," Acad. Radiol. 8, 965-975 (2001).
[CrossRef] [PubMed]

Am. J. Physiol. (Heart and Circulatory Physiology) (1)

C. Desjardins and B. Duling, "Microvessel hematocrit: measurement and implications for capillary oxygen transport," Am. J. Physiol. (Heart and Circulatory Physiology) 252, H494-H503 (1987).

Appl. Opt. (3)

Br. J. Radiol. (2)

H. Woodard and D. White, "The composition of body tissues," Br. J. Radiol. 59, 1209-1219 (1986).
[CrossRef] [PubMed]

D. White, H. Woodard, and S. Hammond, "Average soft-tissue and bone models for use in radiation dosimetry," Br. J. Radiol. 60, 907-913 (1987).
[CrossRef] [PubMed]

Breast Cancer Res. (1)

R. X. Xu, D. C. Young, J. J. Mao, and S. P. Povoski, "A prospective pilot clinical trial evaluating the utility of a dynamic near-infrared imaging device for characterizing suspicious breast lesions," Breast Cancer Res. 9, R88 (2007).
[CrossRef] [PubMed]

Cancer Research (1)

C. Wilson, A. A. Lammertsma, C. G. McKenzie, K. Sikora, and T. Jones, "Measurements of blood-flow and exchanging water space in breast-tumors using positron emission tomography - a rapid and noninvasive dynamic method," Cancer Research 52, 1592-1597 (1992).
[PubMed]

Dis. Markers (1)

N. Shah, A. E. Cerussi, D. Jakubowski, D. Hsiang, J. Butler, and B. J. Tromberg, "The role of diffuse optical spectroscopy in the clinical management of breast cancer," Dis. Markers 19, 95-105 (2003).

IEEE Trans. Med. Imaging (1)

J. W. Chang, H. L. Graber, P. C. Koo, R. Aronson, S. L. S. Barbour, and R. L. Barbour, "Optical imaging of anatomical maps derived from magnetic resonance images using time-independent optical sources," IEEE Trans. Med. Imaging 16, 68-77 (1997).
[CrossRef] [PubMed]

Invest. Radiol. (1)

T. Xydeas, K. Siegmann, R. Sinkus, U. Krainick-Strobel, S. Miller, and C. Claussen, "Magnetic resonance elastography of the breast - Correlation of signal intensity data with viscoelastic properties," Invest. Radiol. 40, 412-420 (2005).
[CrossRef] [PubMed]

J. Biomed. Opt. (5)

T. J. Huppert, R. D. Hoge, A. M. Dale, M. A. Franceschini, and D. A. Boas, "Quantitative spatial comparison of diffuse optical imaging with blood oxygen level-dependent and arterial spin labeling-based functional magnetic resonance imaging," J. Biomed. Opt. 11, 064018 (2006).
[CrossRef] [PubMed]

M. A. Franceschini, D. K. Joseph, T. J. Huppert, S. G. Diamond, and D. A. Boas, "Diffuse optical imaging of the whole head," J. Biomed. Opt. 11, 054007 (2006).
[CrossRef] [PubMed]

N. Shah, J. Gibbs, D. Wolverton, A. Cerussi, N. Hylton, and B. J. Tromberg, "Combined diffuse optical spectroscopy and contrast-enhanced magnetic resonance imaging for monitoring breast cancer neoadjuvant chemotherapy: a case study," J. Biomed. Opt. 10, 051503 (2005).
[CrossRef] [PubMed]

A. Cerussi, N. Shah, D. Hsiang, A. Durkin, J. Butler, and B. J. Tromberg, "In vivo absorption, scattering, and physiologic properties of 58 malignant breast tumors determined by broadband diffuse optical spectroscopy," J. Biomed. Opt. 11, 044005 (2006).
[CrossRef] [PubMed]

L. Spinelli, A. Torricelli, A. Pifferi, P. Taroni, G. M. Danesini, and R. Cubeddu, "Bulk optical properties and tissue components in the female breast from multiwavelength time-resolved optical mammography," J. Biomed. Opt. 9, 1137-1142 (2004).
[CrossRef] [PubMed]

J. Cereb. Blood Flow Metab. (1)

T. J. Huppert, M. S. Allen, H. Benav, P. B. Jones, and D. A. Boas, "A multicompartment vascular model for inferring baseline and functional changes in cerebral oxygen metabolism and arterial dilation," J. Cereb. Blood Flow Metab. 27, 1262-1279 (2007).
[CrossRef] [PubMed]

J. Mammary Gland Biology and Neoplasia (1)

M. Insana, C. Pellot-Barakat, M. Sridhar, and K. Lindfors, "Viscoelastic Imaging of Breast Tumor Microenvi ronment with Ultrasound," J. Mammary Gland Biology and Neoplasia 9, 393-404 (2004).
[CrossRef]

J. Nucl. Med. (1)

D. A. Mankoff, L. K. Dunnwald, J. R. Gralow, G. K. Ellis, A. Charlop, T. J. Lawton, E. K. Schubert, J. Tseng, R. B. Livingston, "Blood Flow and Metabolism in Locally Advanced Breast Cancer: Relationship to Response to Therapy," J. Nucl. Med. 43, 500-509 (2002).
[PubMed]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

Lancet (1)

R. P. Beaney, T. Jones, A. A. Lammertsma, C. G. McKenzie, and K. E. Halnan, "Positron Emission Tomography for in-vivo measurement of regional blood-flow, oxygen utilization, and blood-volume in patients with breastcarcinoma," Lancet 323, 131-134 (1984).
[CrossRef]

Magn. Reson. Med. (2)

H. Y. An and W. L. Lin, "Cerebral venous and arterial blood volumes can be estimated separately in humans using magnetic resonance imaging," Magn. Reson. Med. 48, 583-588 (2002).
[CrossRef] [PubMed]

T. Q. Duong and S. G. Kim, "In vivo MR measurements of regional arterial and venous blood volume fractions in intact rat brain," Magn. Reson. Med. 43, 393-402 (2000).
[CrossRef] [PubMed]

Med. Image Anal. (1)

F. Azar, D. Metaxas, and M. Schnall, "Methods for modeling and predicting mechanical deformaions of the breast under external perturbations," Med. Image Anal. 6, 1-27 (2002).
[CrossRef] [PubMed]

Med. Phys. (3)

M. Sridhar and M. F. Insana, "Ultrasonic measurements of breast viscoelasticity," Med. Phys. 34, 4757-4767 (2007).
[CrossRef]

C. Q. Li, H. Z. Zhao, B. Anderson, and H. B. Jiang, "Multispectral breast imaging using a ten-wavelength, 64X64 source/detector channels silicon photodiode-based diffuse optical tomography system," Med. Phys. 33, 627-636 (2006).
[CrossRef] [PubMed]

R. Choe, A. Corlu, K. Lee, T. Durduran, S. D. Konecky, M. Grosicka-Koptyra, S. R. Arridge, B. J. Czerniecki, D. L. Fraker, A. DeMichele, B. Chance, M. A. Rosen, and A. G. Yodh, "Diffuse optical tomography of breast cancer during neoadjuvant chemotherapy: A case study with comparison to MRI," Med. Phys. 32, 1128-1139 (2005).
[CrossRef] [PubMed]

Neoplasia (1)

V. Ntziachristos, A. G. Yodh, M. D. Schnall, and B. Chance, "MRI-guided diffuse optical spectroscopy of malignant and benign breast lesions," Neoplasia 4, 347-354 (2002).
[CrossRef] [PubMed]

Neuroimage (1)

A. P. Gibson, T. Austin, N. L. Everdell, M. Schweiger, S. R. Arridge, J. H. Meek, J. S. Wyatt, D. T. Delpy, and J. C. Hebden, "Three-dimensional whole-head optical passive motor evoked responses in the tomography of neonate," Neuroimage 30, 521-528 (2006).
[CrossRef]

Opt. Express (1)

Opt. Lett. (2)

Opto-Electron. Rev. (1)

H. Rinneberg, D. Grosenick, K. T. Moesta, H. Wabnitz, J. Mucke, G. Wubbeler, R. Macdonald, and P. Schlag, "Detection and characterization of breast tumours by time-domain scanning optical mammography," Opto-Electron. Rev. 16, 147-162 (2008).
[CrossRef]

Phys. Med. Biol. (1)

R. Leiderman, P. Barbone, A. Oberai, and J. Bamber, "Coupling between elastic strain and interstitial fluid flow: ramification for poroelastic imaging," Phys. Med. Biol. 51, 6291-6313 (2006).
[CrossRef] [PubMed]

PNAS (2)

V. Ntziachristos, A. G. Yodh, M. Schnall, and B. Chance, "Concurrent MRI and diffuse optical tomography of breast after indocyanine green enhancement," PNAS 97, 2767-2772 (2000).
[CrossRef] [PubMed]

A. Cerussi, D. Hsiang, N. Shah, R. Mehta, A. Durkin, J. Butler, and B. J. Tromberg, "Predicting response to breast cancer neoadjuvant chemotherapy using diffuse optical spectroscopy," PNAS 104, 4014-4019 (2007).
[CrossRef] [PubMed]

Radiology (1)

J. P. Delille, P. J. Slanetz, E. D. Yeh, D. B. Kopans, L. Garrido, "Breast Cancer: Regional Blood Flow and Blood Volume Measured with Magnetic Susceptibility-based MR Imaging-Initial Results," Radiology 223, 558-565 (2002).
[CrossRef] [PubMed]

Rev. Sci. Instrum. (1)

N. L. Everdell, A. P. Gibson, I. D. C. Tullis, T. Vaithianathan, J. C. Hebden, and D. T. Delpy, "A frequency multiplexed near-infrared topography system for imaging functional activation in the brain," Rev. Sci. Instrum. 76, 093705 (2005).
[CrossRef]

Technol. Cancer Res. Treat. (1)

S. Srinivasan, B. W. Pogue, B. Brooksby, S. D. Jiang, H. Dehghani, C. Kogel, W. A. Wells, S. P. Poplack, and K. D. Paulsen, "Near-infrared characterization of breast tumors in vivo using spectrally-constrained reconstruction," Technol. Cancer Res. Treat. 4, 513-526 (2005).
[PubMed]

Ultrasound Med. Biol. (1)

T. Varghese, J. Ophir, and T. A. Krouskop, "Nonlinear stress-strain relationships in tissue and their effect on the contrast-to-noise ratio in elastograms," Ultrasound Med. Biol. 26, 839-851 (2000).
[CrossRef] [PubMed]

Ultrasound Obstet. Gynecol. (1)

A. Thomas, T. Fischer, H. Frey, R. Ohlinger, S. Grunwald, J. Blohmer, K. Winzer, S. Weber, G. Kristiansen, B. Ebert, and S. K¨ummel, "Real-time elastography - an advanced method of ultrasound: first results in 108 patients with breast lesions," Ultrasound Obstet. Gynecol. 28, 335-340 (2006).
[CrossRef] [PubMed]

Other (5)

S. Carp, T. Kauffman, Q. Fang, E. Rafferty, R. Moore, D. Kopans, and D. Boas, "Compression induced changes in the physiological state of the breast as observed through frequency domain photon migration measurements," J. Biomed. Opt.  11, 064,016 (2006).
[CrossRef]

C. H. Schmitz, M. Locker, J. M. Lasker, A. H. Hielscher, and R. L. Barbour, "Instrumentation for fast functional optical tomography," Rev. Sci. Instrum.  73, 429-439, Part 1, (2002).
[CrossRef]

Q. Zhang, T. Brukilacchio, A. Li, J. Stott, T. Chaves, T. Wu, M. Chorlton, E. Rafferty, R. Moore, D. Kopans, and D. Boas, "Coregistered tomographic x-ray and optical breast imaging: initial results," J. Biomed. Opt.  10, 024,033 (2005).
[CrossRef] [PubMed]

R. Berkow, M. Beers, R. Bogin, and A. Fletcher, The Merck Manual of Medical Information (Home Edition), "Common Medical Tests," (Merck Research Laboratories, Whitehouse Station, New Jersey, 1997) Chap. A. III, pp. 1375-1376.

P. Taroni, D. Comelli, A. Pifferi, A. Torricelli, and R. Cubeddu, "Absorption of collagen: effects on the estimate of breast composition and related diagnostic implications," J. Biomed. Opt.  12, Art. No. 014021 (2007).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Experimental setup. A computer controlled translation stage applies compression to a subjects’ breasts while diffuse reflection measurements are acquired at several source detector separations. Strain gauges are integrated into the compression frame for force monitoring.

Fig. 2.
Fig. 2.

Representative hemodynamic measurement. An initial decrease in blood volume and a small decrease in saturation are observed during the initial compression, followed by a slow increase in blood volume and a continued decrease in saturation. Data from three subjects is presented, with the total hemoglobin [HbT] trace on the left, followed by the hemoglobin saturation time course, and finally, the compression force needed to maintain the position of the compression plates on the right.

Fig. 3.
Fig. 3.

Total hemoglobin concentration vs pressure plots from three subjects, showing lower apparent compliance at high pressure and higher apparent compliance at lower pressures. Data is taken from measurements performed on the same volunteers shown in Figure 2.

Fig. 4.
Fig. 4.

Metabolic model fitting showing the improvement brought on by subtracting the influence of the change in [HbT] on the SO 2 trace. a) Raw measurement; b) Corrected SO 2 trace

Tables (5)

Tables Icon

Table 1. [HbT] decrease during compression and subsequent recovery during tissue relaxation

Tables Icon

Table 2. Pressure relaxation characteristics

Tables Icon

Table 3. Pressure relaxation dynamics

Tables Icon

Table 4. Metabolic analysis criteria summary

Tables Icon

Table 5. Summary of metabolic parameters estimated from measurements satisfying the inclusion criteria listed above, using, respectively, the model in Ref. 24 (Carp2006) and the metabolic model described in §2.4 including the blood volume correction described in the beginning of the current section

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

μ a = ω 2 c t ( S Φ S AC S AC S Φ )
μ s = S AC 2 S Φ 2 3 μ a μ a
d [ H b O 2 ] dt = OC 4 V t + F in [ H b T ] b S a , o 2 V t F out [ H b T ] b S ν , o 2 V t
F out = F in d [ H b T ] t dt V t [ H b T ] b
S ν , O 2 = S O 2 f S a , o 2 1 f
d [ H b O 2 ] dt = S O 2 d [ H b T ] t dt + [ H b T ] t d S O 2 dt
S O 2 d [ H b T ] t dt + [ H b T ] t d S O 2 dt = OC 4 V t + F in [ H b T ] b S a , O 2 V t
( F in [ H b T ] b V t d [ H b T ] t dt ) S O 2 f S a , O 2 1 f
d S O 2 dt = 1 [ H b T ] t ( OC 4 V t + F in [ H b T ] b S a , O 2 V t + ( F in [ H b T ] b V t d [ H b T ] t dt ) f S a , O 2 1 f ) +
+ S O 2 [ H b T ] t ( ( F in [ H b T ] b V t d [ H b T ] t dt ) 1 1 f d [ H B T ] t dt )
d SO 2 ( t ) dt = a ( t ) + b ( t ) SO 2 ( t ) , SO 2 | t = 0 = SO 2 , init
a ( t ) = 1 [ H b T ] t ( OC 4 V t + F in [ H b T ] b S a , O 2 V t + ( F in [ H b T ] t V t d [ H b T ] t dt ) f S a , O 2 1 f )
b ( t ) = 1 [ H b T ] t ( ( F in [ H b T ] b V t d [ H b T ] t dt ) 1 1 f + d [ H b T ] t dt )
[ H b O 2 ] corrected ( t ) = [ H b O 2 ] ( t ) S a , O 2 ( [ H b T ] t ( t ) [ H b T ] t , begin )
SO 2 , corrected ( t ) = [ H b O 2 ] corrected ( t ) ( [ H b O 2 ] corrected ( t ) + [ H b R ] ( t ) )

Metrics