Abstract

Studies on telecom-band entangled photon-pair sources for entanglement distribution have so far focused on their narrowband operations. Fiber-based sources are seriously limited by spontaneous Raman scattering while sources based on quasi-phase-matched crystals or waveguides are usually narrowband because of long device lengths and/or operations far from degeneracy. An entanglement distributor would have to multiplex many such narrowband sources before entanglement distribution to fully utilize the available fiber transmission bandwidth. In this work, we demonstrate a broadband source of polarization-entangled photon-pairs suitable for wavelength-multiplexed entanglement distribution over optical fiber. We show that our source is potentially capable of simultaneously supporting up to forty-four independent wavelength channels.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. K. Ekert, "Quantum cryptography based on Bell's theorem," Phys. Rev. Lett. 67, 661-663 (1991).
    [CrossRef] [PubMed]
  2. J. I. Cirac, A. K. Ekert, S. F. Huelga, and C. Macchiavello, "Distributed quantum computation over noisy channels," Phys. Rev. A 59, 4249-4254 (1999).
  3. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, 2000).
  4. M. B. Plenio and V. Vedral, "Teleportation, entanglement and thermodynamics in the quantum world," Contemp. Phys. 39, 431-446 (1998).
    [CrossRef]
  5. L.-M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, "Long-distance quantum communication with atomic ensembles and linear optics," Nature 414, 413-418 (2001).
    [CrossRef] [PubMed]
  6. H.-J. Briegel, W. Dur, J. I. Cirac, and P. Zoller, "Quantum repeaters: The role of imperfect local operations in quantum communication," Phys. Rev. Lett. 81, 5932-5935 (1998).
    [CrossRef]
  7. H. C. Lim, A. Yoshizawa, H. Tsuchida, and K. Kikuchi, "Distribution of polarization-entangled photon-pairs produced via spontaneous parametric down-conversion within a local-area fiber network: Theoretical model and experiment," Opt. Express 16, 14512-14523 (2008).
    [CrossRef] [PubMed]
  8. A. Yoshizawa, R. Kaji, and H. Tsuchida, "Generation of polarisation-entangled photon pairs at 1550 nm using two PPLN waveguides," Electron. Lett. 39, 621-622 (2003).
    [CrossRef]
  9. H. Takesue and K. Inoue, "Generation of polarization-entangled photon pairs and violation of Bell's inequality using spontaneous four-wave mixing in a fiber loop," Phys. Rev. A 70, 031802(R) (2004).
  10. X. Li, P. L. Voss, J. E. Sharping, and P. Kumar, "Optical-fiber source of polarization-entangled photons in the 1550 nm telecom band," Phys. Rev. Lett. 94, 053601 (2005).
    [CrossRef] [PubMed]
  11. H. Takesue and K. Inoue, "Generation of 1.5-?mband time-bin entanglement using spontaneous fiber four-wave mixing and planar light-wave circuit interferometers," Phys. Rev. A 72, 041804(R) (2005).
  12. T. Honjo, H. Takesue, and K. Inoue, "Generation of energy-time entangled photon pairs in1.5-?m band with periodically poled lithium niobate waveguide," Opt. Express 15, 1679-1683 (2007).
    [CrossRef] [PubMed]
  13. S. Odate, A. Yoshizawa, and H. Tsuchida, "Polarisation-entangled photon-pair source at 1550 nm using 1-mm-long PPLN waveguide in fibre-loop configuration," Electron. Lett. 43, 1376-1377 (2007).
    [CrossRef]
  14. H. C. Lim, A. Yoshizawa, H. Tsuchida, and K. Kikuchi, "Stable source of high quality telecom-band polarization-entangled photon-pairs based on a single, pulse-pumped, short PPLN waveguide," Opt. Express 16, 12460-12468 (2008).
    [CrossRef] [PubMed]
  15. F. Konig, E. J. Mason, F. N. C. Wong, and M. A. Albota, "Efficient and spectrally bright source of polarization-entangled photons," Phys. Rev. A 71, 033805 (2005).
  16. S. Sauge, M. Swillo, S. Albert-Seifried, G. B. Xavier, J. Waldeback, M. Tengner, D. Ljunggren, and A. Karlsson, "Narrowband polarization-entangled photon pairs distributed over a WDM link for qubit networks," Opt. Express 15, 6926-6933 (2007).
    [CrossRef] [PubMed]
  17. C. Liang, K. F. Lee, J. Chen, and P. Kumar, "Distribution of fiber-generated polarization entangled photon-pairs over 100 km of standard fiber in OC-192 WDM environment," Proc. Optical Fiber Commun. Conf. (OFC), postdeadline paper PDP35 (2006).
  18. H. Hubel, M. R. Vanner, T. Lederer, B. Blauensteiner, T. Lorunser, A. Poppe, and A. Zeilinger, "High-fidelity transmission of polarization encoded qubits from an entangled source over 100 km of fiber," Opt. Express 15, 7853-7862 (2007).
    [CrossRef] [PubMed]
  19. T. Honjo, H. Takesue, H. Kamada, Y. Nishida, O. Tadanaga, M. Asobe, and K. Inoue, "Long-distance distribution of time-bin entangled photon pairs over 100 km using frequency up-conversion detectors," Opt. Express 15, 13957-13964 (2007).
    [CrossRef] [PubMed]
  20. Q. Zhang, H. Takesue, S. W. Nam, C. Langrock, X. Xie, B. Baek, M. M. Fejer, and Y. Yamamoto, "Distribution of time-energy entanglement over 100 km fiber using superconducting single-photon detectors," Opt. Express 16, 5776-5781 (2008).
    [CrossRef] [PubMed]
  21. K. Inoue and K. Shimizu, "Generation of quantum-correlated photon pairs in optical fiber: Influence of spontaneous Raman scattering," Jpn. J. Appl. Phys. 43, 8048-8052 (2004).
    [CrossRef]
  22. H. Takesue and K. Inoue, "1.5-μm band quantum-correlated photon pair generation in dispersion-shifted fiber: suppression of noise photons by cooling fiber," Opt. Express 13, 7832-7839 (2005).
    [CrossRef] [PubMed]
  23. G. P. Agrawal, Fiber-Optic Communication Systems, 3rd Ed. (Wiley, 2002).
    [CrossRef]
  24. D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, "Measurement of qubits," Phys. Rev. A 64, 052312 (2001).

2008 (3)

2007 (5)

2005 (3)

F. Konig, E. J. Mason, F. N. C. Wong, and M. A. Albota, "Efficient and spectrally bright source of polarization-entangled photons," Phys. Rev. A 71, 033805 (2005).

X. Li, P. L. Voss, J. E. Sharping, and P. Kumar, "Optical-fiber source of polarization-entangled photons in the 1550 nm telecom band," Phys. Rev. Lett. 94, 053601 (2005).
[CrossRef] [PubMed]

H. Takesue and K. Inoue, "1.5-μm band quantum-correlated photon pair generation in dispersion-shifted fiber: suppression of noise photons by cooling fiber," Opt. Express 13, 7832-7839 (2005).
[CrossRef] [PubMed]

2004 (1)

K. Inoue and K. Shimizu, "Generation of quantum-correlated photon pairs in optical fiber: Influence of spontaneous Raman scattering," Jpn. J. Appl. Phys. 43, 8048-8052 (2004).
[CrossRef]

2003 (1)

A. Yoshizawa, R. Kaji, and H. Tsuchida, "Generation of polarisation-entangled photon pairs at 1550 nm using two PPLN waveguides," Electron. Lett. 39, 621-622 (2003).
[CrossRef]

2001 (2)

L.-M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, "Long-distance quantum communication with atomic ensembles and linear optics," Nature 414, 413-418 (2001).
[CrossRef] [PubMed]

D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, "Measurement of qubits," Phys. Rev. A 64, 052312 (2001).

1999 (1)

J. I. Cirac, A. K. Ekert, S. F. Huelga, and C. Macchiavello, "Distributed quantum computation over noisy channels," Phys. Rev. A 59, 4249-4254 (1999).

1998 (2)

M. B. Plenio and V. Vedral, "Teleportation, entanglement and thermodynamics in the quantum world," Contemp. Phys. 39, 431-446 (1998).
[CrossRef]

H.-J. Briegel, W. Dur, J. I. Cirac, and P. Zoller, "Quantum repeaters: The role of imperfect local operations in quantum communication," Phys. Rev. Lett. 81, 5932-5935 (1998).
[CrossRef]

1991 (1)

A. K. Ekert, "Quantum cryptography based on Bell's theorem," Phys. Rev. Lett. 67, 661-663 (1991).
[CrossRef] [PubMed]

Albert-Seifried, S.

Albota, M. A.

F. Konig, E. J. Mason, F. N. C. Wong, and M. A. Albota, "Efficient and spectrally bright source of polarization-entangled photons," Phys. Rev. A 71, 033805 (2005).

Asobe, M.

Baek, B.

Blauensteiner, B.

Briegel, H.-J.

H.-J. Briegel, W. Dur, J. I. Cirac, and P. Zoller, "Quantum repeaters: The role of imperfect local operations in quantum communication," Phys. Rev. Lett. 81, 5932-5935 (1998).
[CrossRef]

Cirac, J. I.

L.-M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, "Long-distance quantum communication with atomic ensembles and linear optics," Nature 414, 413-418 (2001).
[CrossRef] [PubMed]

J. I. Cirac, A. K. Ekert, S. F. Huelga, and C. Macchiavello, "Distributed quantum computation over noisy channels," Phys. Rev. A 59, 4249-4254 (1999).

H.-J. Briegel, W. Dur, J. I. Cirac, and P. Zoller, "Quantum repeaters: The role of imperfect local operations in quantum communication," Phys. Rev. Lett. 81, 5932-5935 (1998).
[CrossRef]

Duan, L.-M.

L.-M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, "Long-distance quantum communication with atomic ensembles and linear optics," Nature 414, 413-418 (2001).
[CrossRef] [PubMed]

Dur, W.

H.-J. Briegel, W. Dur, J. I. Cirac, and P. Zoller, "Quantum repeaters: The role of imperfect local operations in quantum communication," Phys. Rev. Lett. 81, 5932-5935 (1998).
[CrossRef]

Ekert, A. K.

J. I. Cirac, A. K. Ekert, S. F. Huelga, and C. Macchiavello, "Distributed quantum computation over noisy channels," Phys. Rev. A 59, 4249-4254 (1999).

A. K. Ekert, "Quantum cryptography based on Bell's theorem," Phys. Rev. Lett. 67, 661-663 (1991).
[CrossRef] [PubMed]

Fejer, M. M.

Honjo, T.

Hubel, H.

Huelga, S. F.

J. I. Cirac, A. K. Ekert, S. F. Huelga, and C. Macchiavello, "Distributed quantum computation over noisy channels," Phys. Rev. A 59, 4249-4254 (1999).

Inoue, K.

James, D. F. V.

D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, "Measurement of qubits," Phys. Rev. A 64, 052312 (2001).

Kaji, R.

A. Yoshizawa, R. Kaji, and H. Tsuchida, "Generation of polarisation-entangled photon pairs at 1550 nm using two PPLN waveguides," Electron. Lett. 39, 621-622 (2003).
[CrossRef]

Kamada, H.

Karlsson, A.

Kikuchi, K.

Konig, F.

F. Konig, E. J. Mason, F. N. C. Wong, and M. A. Albota, "Efficient and spectrally bright source of polarization-entangled photons," Phys. Rev. A 71, 033805 (2005).

Kumar, P.

X. Li, P. L. Voss, J. E. Sharping, and P. Kumar, "Optical-fiber source of polarization-entangled photons in the 1550 nm telecom band," Phys. Rev. Lett. 94, 053601 (2005).
[CrossRef] [PubMed]

Kwiat, P. G.

D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, "Measurement of qubits," Phys. Rev. A 64, 052312 (2001).

Langrock, C.

Lederer, T.

Li, X.

X. Li, P. L. Voss, J. E. Sharping, and P. Kumar, "Optical-fiber source of polarization-entangled photons in the 1550 nm telecom band," Phys. Rev. Lett. 94, 053601 (2005).
[CrossRef] [PubMed]

Lim, H. C.

Ljunggren, D.

Lorunser, T.

Lukin, M. D.

L.-M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, "Long-distance quantum communication with atomic ensembles and linear optics," Nature 414, 413-418 (2001).
[CrossRef] [PubMed]

Macchiavello, C.

J. I. Cirac, A. K. Ekert, S. F. Huelga, and C. Macchiavello, "Distributed quantum computation over noisy channels," Phys. Rev. A 59, 4249-4254 (1999).

Mason, E. J.

F. Konig, E. J. Mason, F. N. C. Wong, and M. A. Albota, "Efficient and spectrally bright source of polarization-entangled photons," Phys. Rev. A 71, 033805 (2005).

Munro, W. J.

D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, "Measurement of qubits," Phys. Rev. A 64, 052312 (2001).

Nam, S. W.

Nishida, Y.

Odate, S.

S. Odate, A. Yoshizawa, and H. Tsuchida, "Polarisation-entangled photon-pair source at 1550 nm using 1-mm-long PPLN waveguide in fibre-loop configuration," Electron. Lett. 43, 1376-1377 (2007).
[CrossRef]

Plenio, M. B.

M. B. Plenio and V. Vedral, "Teleportation, entanglement and thermodynamics in the quantum world," Contemp. Phys. 39, 431-446 (1998).
[CrossRef]

Poppe, A.

Sauge, S.

Sharping, J. E.

X. Li, P. L. Voss, J. E. Sharping, and P. Kumar, "Optical-fiber source of polarization-entangled photons in the 1550 nm telecom band," Phys. Rev. Lett. 94, 053601 (2005).
[CrossRef] [PubMed]

Shimizu, K.

K. Inoue and K. Shimizu, "Generation of quantum-correlated photon pairs in optical fiber: Influence of spontaneous Raman scattering," Jpn. J. Appl. Phys. 43, 8048-8052 (2004).
[CrossRef]

Swillo, M.

Tadanaga, O.

Takesue, H.

Tengner, M.

Tsuchida, H.

Vanner, M. R.

Vedral, V.

M. B. Plenio and V. Vedral, "Teleportation, entanglement and thermodynamics in the quantum world," Contemp. Phys. 39, 431-446 (1998).
[CrossRef]

Voss, P. L.

X. Li, P. L. Voss, J. E. Sharping, and P. Kumar, "Optical-fiber source of polarization-entangled photons in the 1550 nm telecom band," Phys. Rev. Lett. 94, 053601 (2005).
[CrossRef] [PubMed]

Waldeback, J.

White, A. G.

D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, "Measurement of qubits," Phys. Rev. A 64, 052312 (2001).

Wong, F. N. C.

F. Konig, E. J. Mason, F. N. C. Wong, and M. A. Albota, "Efficient and spectrally bright source of polarization-entangled photons," Phys. Rev. A 71, 033805 (2005).

Xavier, G. B.

Xie, X.

Yamamoto, Y.

Yoshizawa, A.

Zeilinger, A.

Zhang, Q.

Zoller, P.

L.-M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, "Long-distance quantum communication with atomic ensembles and linear optics," Nature 414, 413-418 (2001).
[CrossRef] [PubMed]

H.-J. Briegel, W. Dur, J. I. Cirac, and P. Zoller, "Quantum repeaters: The role of imperfect local operations in quantum communication," Phys. Rev. Lett. 81, 5932-5935 (1998).
[CrossRef]

Contemp. Phys. (1)

M. B. Plenio and V. Vedral, "Teleportation, entanglement and thermodynamics in the quantum world," Contemp. Phys. 39, 431-446 (1998).
[CrossRef]

Electron. Lett. (2)

A. Yoshizawa, R. Kaji, and H. Tsuchida, "Generation of polarisation-entangled photon pairs at 1550 nm using two PPLN waveguides," Electron. Lett. 39, 621-622 (2003).
[CrossRef]

S. Odate, A. Yoshizawa, and H. Tsuchida, "Polarisation-entangled photon-pair source at 1550 nm using 1-mm-long PPLN waveguide in fibre-loop configuration," Electron. Lett. 43, 1376-1377 (2007).
[CrossRef]

Jpn. J. Appl. Phys. (1)

K. Inoue and K. Shimizu, "Generation of quantum-correlated photon pairs in optical fiber: Influence of spontaneous Raman scattering," Jpn. J. Appl. Phys. 43, 8048-8052 (2004).
[CrossRef]

Nature (1)

L.-M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, "Long-distance quantum communication with atomic ensembles and linear optics," Nature 414, 413-418 (2001).
[CrossRef] [PubMed]

Opt. Express (8)

H. Takesue and K. Inoue, "1.5-μm band quantum-correlated photon pair generation in dispersion-shifted fiber: suppression of noise photons by cooling fiber," Opt. Express 13, 7832-7839 (2005).
[CrossRef] [PubMed]

T. Honjo, H. Takesue, and K. Inoue, "Generation of energy-time entangled photon pairs in1.5-?m band with periodically poled lithium niobate waveguide," Opt. Express 15, 1679-1683 (2007).
[CrossRef] [PubMed]

S. Sauge, M. Swillo, S. Albert-Seifried, G. B. Xavier, J. Waldeback, M. Tengner, D. Ljunggren, and A. Karlsson, "Narrowband polarization-entangled photon pairs distributed over a WDM link for qubit networks," Opt. Express 15, 6926-6933 (2007).
[CrossRef] [PubMed]

H. Hubel, M. R. Vanner, T. Lederer, B. Blauensteiner, T. Lorunser, A. Poppe, and A. Zeilinger, "High-fidelity transmission of polarization encoded qubits from an entangled source over 100 km of fiber," Opt. Express 15, 7853-7862 (2007).
[CrossRef] [PubMed]

T. Honjo, H. Takesue, H. Kamada, Y. Nishida, O. Tadanaga, M. Asobe, and K. Inoue, "Long-distance distribution of time-bin entangled photon pairs over 100 km using frequency up-conversion detectors," Opt. Express 15, 13957-13964 (2007).
[CrossRef] [PubMed]

Q. Zhang, H. Takesue, S. W. Nam, C. Langrock, X. Xie, B. Baek, M. M. Fejer, and Y. Yamamoto, "Distribution of time-energy entanglement over 100 km fiber using superconducting single-photon detectors," Opt. Express 16, 5776-5781 (2008).
[CrossRef] [PubMed]

H. C. Lim, A. Yoshizawa, H. Tsuchida, and K. Kikuchi, "Stable source of high quality telecom-band polarization-entangled photon-pairs based on a single, pulse-pumped, short PPLN waveguide," Opt. Express 16, 12460-12468 (2008).
[CrossRef] [PubMed]

H. C. Lim, A. Yoshizawa, H. Tsuchida, and K. Kikuchi, "Distribution of polarization-entangled photon-pairs produced via spontaneous parametric down-conversion within a local-area fiber network: Theoretical model and experiment," Opt. Express 16, 14512-14523 (2008).
[CrossRef] [PubMed]

Phys. Rev. A (3)

J. I. Cirac, A. K. Ekert, S. F. Huelga, and C. Macchiavello, "Distributed quantum computation over noisy channels," Phys. Rev. A 59, 4249-4254 (1999).

F. Konig, E. J. Mason, F. N. C. Wong, and M. A. Albota, "Efficient and spectrally bright source of polarization-entangled photons," Phys. Rev. A 71, 033805 (2005).

D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, "Measurement of qubits," Phys. Rev. A 64, 052312 (2001).

Phys. Rev. Lett. (3)

A. K. Ekert, "Quantum cryptography based on Bell's theorem," Phys. Rev. Lett. 67, 661-663 (1991).
[CrossRef] [PubMed]

H.-J. Briegel, W. Dur, J. I. Cirac, and P. Zoller, "Quantum repeaters: The role of imperfect local operations in quantum communication," Phys. Rev. Lett. 81, 5932-5935 (1998).
[CrossRef]

X. Li, P. L. Voss, J. E. Sharping, and P. Kumar, "Optical-fiber source of polarization-entangled photons in the 1550 nm telecom band," Phys. Rev. Lett. 94, 053601 (2005).
[CrossRef] [PubMed]

Other (5)

H. Takesue and K. Inoue, "Generation of 1.5-?mband time-bin entanglement using spontaneous fiber four-wave mixing and planar light-wave circuit interferometers," Phys. Rev. A 72, 041804(R) (2005).

H. Takesue and K. Inoue, "Generation of polarization-entangled photon pairs and violation of Bell's inequality using spontaneous four-wave mixing in a fiber loop," Phys. Rev. A 70, 031802(R) (2004).

M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, 2000).

C. Liang, K. F. Lee, J. Chen, and P. Kumar, "Distribution of fiber-generated polarization entangled photon-pairs over 100 km of standard fiber in OC-192 WDM environment," Proc. Optical Fiber Commun. Conf. (OFC), postdeadline paper PDP35 (2006).

G. P. Agrawal, Fiber-Optic Communication Systems, 3rd Ed. (Wiley, 2002).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(color online) Concept of multi-channel wavelength-multiplexed entanglement distribution. An entanglement distributor playing the role of a service provider uses a single broadband source of entangled photon-pairs to distribute entanglement to application users. AWG: arrayed waveguide grating

Fig. 2.
Fig. 2.

(color online) Schematic of the experiment. Red arrows show input pump laser. Black arrows show telecom-band photon-pairs created in the PPLN waveguide. ATT: attenuator, BPF: band-pass filter, CW: continuous-wave, DM: dichroic mirror, HWP: half-wave plate, PBS: polarization beam-splitter, PC: polarization controller, PMF: polarization-maintaining fiber, POL: polarizer, PPLN: periodically-poled lithium niobate waveguide, QWP: quarter-wave plate, SMF: single-mode fiber, SPCM: single-photon counter module

Fig. 3.
Fig. 3.

(color online) Each individual channel consists of a signal channel and a corresponding idler channel that are entangled in polarization. Signal and idler wavelengths shown are determined for a pump wavelength at 776 nm.

Fig. 4.
Fig. 4.

(a) Two-photon interference fringe visibility and (b) entanglement fidelity of the generated photon-pairs versus photon-pair generation rate for Channel 27. The theoretical curve assumes a thermally distributed photon-pair number.

Fig. 5.
Fig. 5.

Entanglement fidelity of selected channels, for both cw pumping (open circles) and pulse pumping (filled circles). The lines are included to aid visualization.

Metrics