Abstract

The electromagnetic eigenmodes of and light transmission through a C-aperture to the far field, and to a storage medium, have been studied based on the full vectorial finite difference method. It is found that the cutoff wavelength of C-aperture waveguides in a gold film is much longer than that in a perfect electric conductor, and the fundamental mode is confined in the gap and polarized with the electric field along the gap. The light transmission resonance through C-apertures to far field and to a storage medium occurs at wavelengths below the waveguide cutoff wavelength. Measurements on the fabricated C-apertures confirm the mode confinement and transmission resonance.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Betzig, J. K. Trautman, R. Wolfe, E. M. Gyorgy, P. L. Finn, M. H. Kryder, and C. H. Chang, "Near-field magneto-optics and high density data storage," Appl. Phys. Lett. 61, 142-144 (1992).
    [CrossRef]
  2. T. Thio, K. M. Pellerin, R. A. Linke, H. J. Lezec, and T. W. Ebbesen, "Enhanced light transmission through a single subwavelength aperture," Opt. Lett. 26, 1972-1974 (2001).
    [CrossRef]
  3. J. Hashizume and F. Koyama, "Plasmon-enhancement of optical near-field of metal nanoaperture surface-emitting laser," Appl. Phys. Lett. 84, 3226-3228 (2004).
    [CrossRef]
  4. A. Partovi, D. Peale, M. Wuttig, C. A. Murray, G. Zydzik, L. Hopkins, K. Baldwin, W. S. Hobson, J. Wynn, J. Lopata, L. Dhar, R. Chichester, and J. H-J Yeh, "High-power laser light source for near-field optics and its application to high-density optical data storage," Appl. Phys. Lett. 75, 1515-1517 (1999).
    [CrossRef]
  5. J. A. Matteo, D. P. Fromm, Y. Yuen, P. J. Schuck, W. E. Moerner, and L. Hesselink, "Spectral analysis of strongly enhanced visible light transmission through single C-shaped nanoapertures," Appl. Phys. Lett. 85, 648-650 (2004).
    [CrossRef]
  6. R. Grobe, R. Schoelkopf, and D. Prober, "Optical antenna: Towards a unity efficiency near-field optical probe, "Appl. Phys. Lett. 70, 1354-1356 (1997).
    [CrossRef]
  7. H. F. Hamann, Y. C. Martin, and H. K. Wickramasinghe, "Thermally assisted recording beyond traditional limits," Appl. Phys. Lett. 84, 810-812 (2004).
    [CrossRef]
  8. T. Matsumoto, Y. Anzai, T. Shintani, K. Nakamura, and T. Nishida, "Writing 40 nm marks by using a beaked metallic plate near-field optical probe," Opt. Lett. 31, 259-261 (2006).
    [CrossRef] [PubMed]
  9. P. Muhlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, "Resonant Optical Antennas," Science 308, 1607-1609 (2005).
  10. E. Cubukcu, E. A. Kort, K. B. Crozier, and F. Capasso, "Plasmonic laser antenna," Appl. Phys. Lett. 89, 093120 (2006).
    [CrossRef]
  11. H. Shin, P. B. Catrysse, and S. Fan, "Effect of the plasmonic dispersion relation on the transmission properties of subwavelength cylindrical holes," Phys. Rev. B 72, 085436 (2005).
  12. K. J. Webb and J. Li, "Analysis of transmission through small apertures in conducting films," Phys. Rev. B 73, 033401 (2006).
  13. R. Gordon and A. G. Brolo, "Increased cut-off wavelength for a subwavelength hole in a real metal," Opt. Express 13, 1933-1938 (2005).
    [CrossRef] [PubMed]
  14. F. J. Garcia-Vidal, L. Martin-Moreno, E. Moreno, L. K. S. Kumar, and R. Gordon, "Transmission of light through a single rectangular hole in a real metal," Phys. Rev. B 74, 153411 (2006).
  15. X. Shi and L. Hesselink, "Ultrahigh light transmission through a C-shaped nanoaperture," Opt. Lett. 28, 1320-1322 (2003).
    [CrossRef] [PubMed]
  16. A. R. Zakharian, M. Mansuripur, and J. V. Moloney, "Transmission of light through small elliptical apertures," Opt. Express 12, 2631-2648 (2004).
    [CrossRef] [PubMed]
  17. K. Tanaka and M. Tanaka, "Simulation of confined and enhanced optical near-fields for an I-shaped aperture in a pyramidal structure on a thick metallic screen," J. Appl. Phys. 95, 3765-3771 (2004).
    [CrossRef]
  18. L. Wang and X. Xu, "High transmission nanoscale bowtie-shaped aperture probe for near-field optical imaging," Appl. Phys. Lett. 90, 261105 (2007).
    [CrossRef]
  19. F. Chen, A. Itagi, J. A. Bain, D. D. Stancil, and T. E. Schlesinger, L. Stebounova, G. C. Walker, and B. B. Akhremitchev, "Imaging of optical field confinement in ridge waveguides fabricated on very-small-aperture laser," Appl. Phys. Lett. 83, 3245-3247 (2003).
    [CrossRef]
  20. K. Sendur, W. Challener, and C. Peng "Ridge waveguide as a near field aperture for high density data storage," J. Appl. Phys. 96, 2743-2752 (2004).
    [CrossRef]
  21. E. X. Jin and X. Xu, "Obtaining super resolution light spot using surface plasmon assisted sharp ridge nanoaperture," Appl. Phys. Lett. 86, 111106 (2005).
    [CrossRef]
  22. L. Sun and L. Hesselink, "Low-loss subwavelength metal C-aperture waveguide," Opt. Lett. 31, 3606-3608 (2006).
    [CrossRef] [PubMed]
  23. Y. Chen and J. Fang, "High-transmission hybrid-effect-assisted nanoaperture," Opt. Lett. 31, 655-657 (2006).
    [CrossRef] [PubMed]
  24. P. Hansen, L. Hesselink, and B. Leen, "Design of a subwavelength bent C-aperture waveguide," Opt. Lett. 32, 1737-1739 (2007).
    [CrossRef] [PubMed]
  25. S. Hopfer, "The design of ridged waveguides," IRE Trans. Microwave Theory Tech. 3, 20-29 (1955).
    [CrossRef]
  26. Z. Zhu and T. G. Brown, "Full-vectorial finite-difference analysis of microstructured optical fibers," Opt. Express 10, 853-864 (2002).
    [PubMed]
  27. S. Guo, F. Wu, S. Albin, H. Tai, and R. Rogowski, "Loss and dispersion analysis of microstructured fibers by finite-difference medthod," Opt. Express 12, 3341-3352 (2004).
    [CrossRef] [PubMed]
  28. K. S. Yee, "Numerical solution of initial boundary value problem involving Maxwell's equations in isotropic media," IEEE Trans. Antennas Propag. 14, 302-307 (1966).
    [CrossRef]
  29. K. S. Kunz and R. J. Luebbers, The Finite Difference Time Domain Method for Electromagnetics (CRC, Boca Raton, FL, 1993).
  30. S. D. Gedney, "An anisotropic perfectly matched layer-absorbing medium for the truncation of FDTD lattices," IEEE Trans. Antennas and Propag. 44, 1630-1639 (1996).
    [CrossRef]
  31. R. Lehoucq, K. Maschhoff, D. Sorensen, and C. Yang, ARPACK software, http://www.caam.rice.edu/software/ARPACK/.
  32. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, Orlando, FL, 1985).
  33. E. Wolf, "Electromagnetic diffraction in optical system I: an integral representation of the image field in an aplanatic system," Proc. R. Soc. London Ser. A 253, 349-357 (1959).
    [CrossRef]
  34. B. Richards and E. Wolf, "Electromagnetic diffraction in optical system II: structure of the image field in an aplanatic system," Proc. R. Soc. London Ser. A 253, 358-379 (1959).
    [CrossRef]

2007 (2)

L. Wang and X. Xu, "High transmission nanoscale bowtie-shaped aperture probe for near-field optical imaging," Appl. Phys. Lett. 90, 261105 (2007).
[CrossRef]

P. Hansen, L. Hesselink, and B. Leen, "Design of a subwavelength bent C-aperture waveguide," Opt. Lett. 32, 1737-1739 (2007).
[CrossRef] [PubMed]

2006 (6)

T. Matsumoto, Y. Anzai, T. Shintani, K. Nakamura, and T. Nishida, "Writing 40 nm marks by using a beaked metallic plate near-field optical probe," Opt. Lett. 31, 259-261 (2006).
[CrossRef] [PubMed]

Y. Chen and J. Fang, "High-transmission hybrid-effect-assisted nanoaperture," Opt. Lett. 31, 655-657 (2006).
[CrossRef] [PubMed]

L. Sun and L. Hesselink, "Low-loss subwavelength metal C-aperture waveguide," Opt. Lett. 31, 3606-3608 (2006).
[CrossRef] [PubMed]

K. J. Webb and J. Li, "Analysis of transmission through small apertures in conducting films," Phys. Rev. B 73, 033401 (2006).

F. J. Garcia-Vidal, L. Martin-Moreno, E. Moreno, L. K. S. Kumar, and R. Gordon, "Transmission of light through a single rectangular hole in a real metal," Phys. Rev. B 74, 153411 (2006).

E. Cubukcu, E. A. Kort, K. B. Crozier, and F. Capasso, "Plasmonic laser antenna," Appl. Phys. Lett. 89, 093120 (2006).
[CrossRef]

2005 (4)

H. Shin, P. B. Catrysse, and S. Fan, "Effect of the plasmonic dispersion relation on the transmission properties of subwavelength cylindrical holes," Phys. Rev. B 72, 085436 (2005).

P. Muhlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, "Resonant Optical Antennas," Science 308, 1607-1609 (2005).

E. X. Jin and X. Xu, "Obtaining super resolution light spot using surface plasmon assisted sharp ridge nanoaperture," Appl. Phys. Lett. 86, 111106 (2005).
[CrossRef]

R. Gordon and A. G. Brolo, "Increased cut-off wavelength for a subwavelength hole in a real metal," Opt. Express 13, 1933-1938 (2005).
[CrossRef] [PubMed]

2004 (7)

K. Sendur, W. Challener, and C. Peng "Ridge waveguide as a near field aperture for high density data storage," J. Appl. Phys. 96, 2743-2752 (2004).
[CrossRef]

A. R. Zakharian, M. Mansuripur, and J. V. Moloney, "Transmission of light through small elliptical apertures," Opt. Express 12, 2631-2648 (2004).
[CrossRef] [PubMed]

S. Guo, F. Wu, S. Albin, H. Tai, and R. Rogowski, "Loss and dispersion analysis of microstructured fibers by finite-difference medthod," Opt. Express 12, 3341-3352 (2004).
[CrossRef] [PubMed]

K. Tanaka and M. Tanaka, "Simulation of confined and enhanced optical near-fields for an I-shaped aperture in a pyramidal structure on a thick metallic screen," J. Appl. Phys. 95, 3765-3771 (2004).
[CrossRef]

H. F. Hamann, Y. C. Martin, and H. K. Wickramasinghe, "Thermally assisted recording beyond traditional limits," Appl. Phys. Lett. 84, 810-812 (2004).
[CrossRef]

J. Hashizume and F. Koyama, "Plasmon-enhancement of optical near-field of metal nanoaperture surface-emitting laser," Appl. Phys. Lett. 84, 3226-3228 (2004).
[CrossRef]

J. A. Matteo, D. P. Fromm, Y. Yuen, P. J. Schuck, W. E. Moerner, and L. Hesselink, "Spectral analysis of strongly enhanced visible light transmission through single C-shaped nanoapertures," Appl. Phys. Lett. 85, 648-650 (2004).
[CrossRef]

2003 (2)

F. Chen, A. Itagi, J. A. Bain, D. D. Stancil, and T. E. Schlesinger, L. Stebounova, G. C. Walker, and B. B. Akhremitchev, "Imaging of optical field confinement in ridge waveguides fabricated on very-small-aperture laser," Appl. Phys. Lett. 83, 3245-3247 (2003).
[CrossRef]

X. Shi and L. Hesselink, "Ultrahigh light transmission through a C-shaped nanoaperture," Opt. Lett. 28, 1320-1322 (2003).
[CrossRef] [PubMed]

2002 (1)

2001 (1)

1999 (1)

A. Partovi, D. Peale, M. Wuttig, C. A. Murray, G. Zydzik, L. Hopkins, K. Baldwin, W. S. Hobson, J. Wynn, J. Lopata, L. Dhar, R. Chichester, and J. H-J Yeh, "High-power laser light source for near-field optics and its application to high-density optical data storage," Appl. Phys. Lett. 75, 1515-1517 (1999).
[CrossRef]

1997 (1)

R. Grobe, R. Schoelkopf, and D. Prober, "Optical antenna: Towards a unity efficiency near-field optical probe, "Appl. Phys. Lett. 70, 1354-1356 (1997).
[CrossRef]

1996 (1)

S. D. Gedney, "An anisotropic perfectly matched layer-absorbing medium for the truncation of FDTD lattices," IEEE Trans. Antennas and Propag. 44, 1630-1639 (1996).
[CrossRef]

1992 (1)

E. Betzig, J. K. Trautman, R. Wolfe, E. M. Gyorgy, P. L. Finn, M. H. Kryder, and C. H. Chang, "Near-field magneto-optics and high density data storage," Appl. Phys. Lett. 61, 142-144 (1992).
[CrossRef]

1966 (1)

K. S. Yee, "Numerical solution of initial boundary value problem involving Maxwell's equations in isotropic media," IEEE Trans. Antennas Propag. 14, 302-307 (1966).
[CrossRef]

1959 (2)

E. Wolf, "Electromagnetic diffraction in optical system I: an integral representation of the image field in an aplanatic system," Proc. R. Soc. London Ser. A 253, 349-357 (1959).
[CrossRef]

B. Richards and E. Wolf, "Electromagnetic diffraction in optical system II: structure of the image field in an aplanatic system," Proc. R. Soc. London Ser. A 253, 358-379 (1959).
[CrossRef]

1955 (1)

S. Hopfer, "The design of ridged waveguides," IRE Trans. Microwave Theory Tech. 3, 20-29 (1955).
[CrossRef]

Akhremitchev, B. B.

F. Chen, A. Itagi, J. A. Bain, D. D. Stancil, and T. E. Schlesinger, L. Stebounova, G. C. Walker, and B. B. Akhremitchev, "Imaging of optical field confinement in ridge waveguides fabricated on very-small-aperture laser," Appl. Phys. Lett. 83, 3245-3247 (2003).
[CrossRef]

Albin, S.

Anzai, Y.

Bain, J. A.

F. Chen, A. Itagi, J. A. Bain, D. D. Stancil, and T. E. Schlesinger, L. Stebounova, G. C. Walker, and B. B. Akhremitchev, "Imaging of optical field confinement in ridge waveguides fabricated on very-small-aperture laser," Appl. Phys. Lett. 83, 3245-3247 (2003).
[CrossRef]

Baldwin, K.

A. Partovi, D. Peale, M. Wuttig, C. A. Murray, G. Zydzik, L. Hopkins, K. Baldwin, W. S. Hobson, J. Wynn, J. Lopata, L. Dhar, R. Chichester, and J. H-J Yeh, "High-power laser light source for near-field optics and its application to high-density optical data storage," Appl. Phys. Lett. 75, 1515-1517 (1999).
[CrossRef]

Betzig, E.

E. Betzig, J. K. Trautman, R. Wolfe, E. M. Gyorgy, P. L. Finn, M. H. Kryder, and C. H. Chang, "Near-field magneto-optics and high density data storage," Appl. Phys. Lett. 61, 142-144 (1992).
[CrossRef]

Brolo, A. G.

Brown, T. G.

Capasso, F.

E. Cubukcu, E. A. Kort, K. B. Crozier, and F. Capasso, "Plasmonic laser antenna," Appl. Phys. Lett. 89, 093120 (2006).
[CrossRef]

Catrysse, P. B.

H. Shin, P. B. Catrysse, and S. Fan, "Effect of the plasmonic dispersion relation on the transmission properties of subwavelength cylindrical holes," Phys. Rev. B 72, 085436 (2005).

Challener, W.

K. Sendur, W. Challener, and C. Peng "Ridge waveguide as a near field aperture for high density data storage," J. Appl. Phys. 96, 2743-2752 (2004).
[CrossRef]

Chang, C. H.

E. Betzig, J. K. Trautman, R. Wolfe, E. M. Gyorgy, P. L. Finn, M. H. Kryder, and C. H. Chang, "Near-field magneto-optics and high density data storage," Appl. Phys. Lett. 61, 142-144 (1992).
[CrossRef]

Chen, F.

F. Chen, A. Itagi, J. A. Bain, D. D. Stancil, and T. E. Schlesinger, L. Stebounova, G. C. Walker, and B. B. Akhremitchev, "Imaging of optical field confinement in ridge waveguides fabricated on very-small-aperture laser," Appl. Phys. Lett. 83, 3245-3247 (2003).
[CrossRef]

Chen, Y.

Chichester, R.

A. Partovi, D. Peale, M. Wuttig, C. A. Murray, G. Zydzik, L. Hopkins, K. Baldwin, W. S. Hobson, J. Wynn, J. Lopata, L. Dhar, R. Chichester, and J. H-J Yeh, "High-power laser light source for near-field optics and its application to high-density optical data storage," Appl. Phys. Lett. 75, 1515-1517 (1999).
[CrossRef]

Crozier, K. B.

E. Cubukcu, E. A. Kort, K. B. Crozier, and F. Capasso, "Plasmonic laser antenna," Appl. Phys. Lett. 89, 093120 (2006).
[CrossRef]

Cubukcu, E.

E. Cubukcu, E. A. Kort, K. B. Crozier, and F. Capasso, "Plasmonic laser antenna," Appl. Phys. Lett. 89, 093120 (2006).
[CrossRef]

Dhar, L.

A. Partovi, D. Peale, M. Wuttig, C. A. Murray, G. Zydzik, L. Hopkins, K. Baldwin, W. S. Hobson, J. Wynn, J. Lopata, L. Dhar, R. Chichester, and J. H-J Yeh, "High-power laser light source for near-field optics and its application to high-density optical data storage," Appl. Phys. Lett. 75, 1515-1517 (1999).
[CrossRef]

Ebbesen, T. W.

Eisler, H. J.

P. Muhlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, "Resonant Optical Antennas," Science 308, 1607-1609 (2005).

Fan, S.

H. Shin, P. B. Catrysse, and S. Fan, "Effect of the plasmonic dispersion relation on the transmission properties of subwavelength cylindrical holes," Phys. Rev. B 72, 085436 (2005).

Fang, J.

Finn, P. L.

E. Betzig, J. K. Trautman, R. Wolfe, E. M. Gyorgy, P. L. Finn, M. H. Kryder, and C. H. Chang, "Near-field magneto-optics and high density data storage," Appl. Phys. Lett. 61, 142-144 (1992).
[CrossRef]

Fromm, D. P.

J. A. Matteo, D. P. Fromm, Y. Yuen, P. J. Schuck, W. E. Moerner, and L. Hesselink, "Spectral analysis of strongly enhanced visible light transmission through single C-shaped nanoapertures," Appl. Phys. Lett. 85, 648-650 (2004).
[CrossRef]

Garcia-Vidal, F. J.

F. J. Garcia-Vidal, L. Martin-Moreno, E. Moreno, L. K. S. Kumar, and R. Gordon, "Transmission of light through a single rectangular hole in a real metal," Phys. Rev. B 74, 153411 (2006).

Gedney, S. D.

S. D. Gedney, "An anisotropic perfectly matched layer-absorbing medium for the truncation of FDTD lattices," IEEE Trans. Antennas and Propag. 44, 1630-1639 (1996).
[CrossRef]

Gordon, R.

F. J. Garcia-Vidal, L. Martin-Moreno, E. Moreno, L. K. S. Kumar, and R. Gordon, "Transmission of light through a single rectangular hole in a real metal," Phys. Rev. B 74, 153411 (2006).

R. Gordon and A. G. Brolo, "Increased cut-off wavelength for a subwavelength hole in a real metal," Opt. Express 13, 1933-1938 (2005).
[CrossRef] [PubMed]

Grobe, R.

R. Grobe, R. Schoelkopf, and D. Prober, "Optical antenna: Towards a unity efficiency near-field optical probe, "Appl. Phys. Lett. 70, 1354-1356 (1997).
[CrossRef]

Guo, S.

Gyorgy, E. M.

E. Betzig, J. K. Trautman, R. Wolfe, E. M. Gyorgy, P. L. Finn, M. H. Kryder, and C. H. Chang, "Near-field magneto-optics and high density data storage," Appl. Phys. Lett. 61, 142-144 (1992).
[CrossRef]

Hamann, H. F.

H. F. Hamann, Y. C. Martin, and H. K. Wickramasinghe, "Thermally assisted recording beyond traditional limits," Appl. Phys. Lett. 84, 810-812 (2004).
[CrossRef]

Hansen, P.

Hashizume, J.

J. Hashizume and F. Koyama, "Plasmon-enhancement of optical near-field of metal nanoaperture surface-emitting laser," Appl. Phys. Lett. 84, 3226-3228 (2004).
[CrossRef]

Hecht, B.

P. Muhlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, "Resonant Optical Antennas," Science 308, 1607-1609 (2005).

Hesselink, L.

Hobson, W. S.

A. Partovi, D. Peale, M. Wuttig, C. A. Murray, G. Zydzik, L. Hopkins, K. Baldwin, W. S. Hobson, J. Wynn, J. Lopata, L. Dhar, R. Chichester, and J. H-J Yeh, "High-power laser light source for near-field optics and its application to high-density optical data storage," Appl. Phys. Lett. 75, 1515-1517 (1999).
[CrossRef]

Hopfer, S.

S. Hopfer, "The design of ridged waveguides," IRE Trans. Microwave Theory Tech. 3, 20-29 (1955).
[CrossRef]

Hopkins, L.

A. Partovi, D. Peale, M. Wuttig, C. A. Murray, G. Zydzik, L. Hopkins, K. Baldwin, W. S. Hobson, J. Wynn, J. Lopata, L. Dhar, R. Chichester, and J. H-J Yeh, "High-power laser light source for near-field optics and its application to high-density optical data storage," Appl. Phys. Lett. 75, 1515-1517 (1999).
[CrossRef]

Itagi, A.

F. Chen, A. Itagi, J. A. Bain, D. D. Stancil, and T. E. Schlesinger, L. Stebounova, G. C. Walker, and B. B. Akhremitchev, "Imaging of optical field confinement in ridge waveguides fabricated on very-small-aperture laser," Appl. Phys. Lett. 83, 3245-3247 (2003).
[CrossRef]

Jin, E. X.

E. X. Jin and X. Xu, "Obtaining super resolution light spot using surface plasmon assisted sharp ridge nanoaperture," Appl. Phys. Lett. 86, 111106 (2005).
[CrossRef]

Kort, E. A.

E. Cubukcu, E. A. Kort, K. B. Crozier, and F. Capasso, "Plasmonic laser antenna," Appl. Phys. Lett. 89, 093120 (2006).
[CrossRef]

Koyama, F.

J. Hashizume and F. Koyama, "Plasmon-enhancement of optical near-field of metal nanoaperture surface-emitting laser," Appl. Phys. Lett. 84, 3226-3228 (2004).
[CrossRef]

Kryder, M. H.

E. Betzig, J. K. Trautman, R. Wolfe, E. M. Gyorgy, P. L. Finn, M. H. Kryder, and C. H. Chang, "Near-field magneto-optics and high density data storage," Appl. Phys. Lett. 61, 142-144 (1992).
[CrossRef]

Kumar, L. K. S.

F. J. Garcia-Vidal, L. Martin-Moreno, E. Moreno, L. K. S. Kumar, and R. Gordon, "Transmission of light through a single rectangular hole in a real metal," Phys. Rev. B 74, 153411 (2006).

Leen, B.

Lezec, H. J.

Li, J.

K. J. Webb and J. Li, "Analysis of transmission through small apertures in conducting films," Phys. Rev. B 73, 033401 (2006).

Linke, R. A.

Lopata, J.

A. Partovi, D. Peale, M. Wuttig, C. A. Murray, G. Zydzik, L. Hopkins, K. Baldwin, W. S. Hobson, J. Wynn, J. Lopata, L. Dhar, R. Chichester, and J. H-J Yeh, "High-power laser light source for near-field optics and its application to high-density optical data storage," Appl. Phys. Lett. 75, 1515-1517 (1999).
[CrossRef]

Mansuripur, M.

Martin, O. J. F.

P. Muhlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, "Resonant Optical Antennas," Science 308, 1607-1609 (2005).

Martin, Y. C.

H. F. Hamann, Y. C. Martin, and H. K. Wickramasinghe, "Thermally assisted recording beyond traditional limits," Appl. Phys. Lett. 84, 810-812 (2004).
[CrossRef]

Martin-Moreno, L.

F. J. Garcia-Vidal, L. Martin-Moreno, E. Moreno, L. K. S. Kumar, and R. Gordon, "Transmission of light through a single rectangular hole in a real metal," Phys. Rev. B 74, 153411 (2006).

Matsumoto, T.

Matteo, J. A.

J. A. Matteo, D. P. Fromm, Y. Yuen, P. J. Schuck, W. E. Moerner, and L. Hesselink, "Spectral analysis of strongly enhanced visible light transmission through single C-shaped nanoapertures," Appl. Phys. Lett. 85, 648-650 (2004).
[CrossRef]

Moerner, W. E.

J. A. Matteo, D. P. Fromm, Y. Yuen, P. J. Schuck, W. E. Moerner, and L. Hesselink, "Spectral analysis of strongly enhanced visible light transmission through single C-shaped nanoapertures," Appl. Phys. Lett. 85, 648-650 (2004).
[CrossRef]

Moloney, J. V.

Moreno, E.

F. J. Garcia-Vidal, L. Martin-Moreno, E. Moreno, L. K. S. Kumar, and R. Gordon, "Transmission of light through a single rectangular hole in a real metal," Phys. Rev. B 74, 153411 (2006).

Muhlschlegel, P.

P. Muhlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, "Resonant Optical Antennas," Science 308, 1607-1609 (2005).

Murray, C. A.

A. Partovi, D. Peale, M. Wuttig, C. A. Murray, G. Zydzik, L. Hopkins, K. Baldwin, W. S. Hobson, J. Wynn, J. Lopata, L. Dhar, R. Chichester, and J. H-J Yeh, "High-power laser light source for near-field optics and its application to high-density optical data storage," Appl. Phys. Lett. 75, 1515-1517 (1999).
[CrossRef]

Nakamura, K.

Nishida, T.

Partovi, A.

A. Partovi, D. Peale, M. Wuttig, C. A. Murray, G. Zydzik, L. Hopkins, K. Baldwin, W. S. Hobson, J. Wynn, J. Lopata, L. Dhar, R. Chichester, and J. H-J Yeh, "High-power laser light source for near-field optics and its application to high-density optical data storage," Appl. Phys. Lett. 75, 1515-1517 (1999).
[CrossRef]

Peale, D.

A. Partovi, D. Peale, M. Wuttig, C. A. Murray, G. Zydzik, L. Hopkins, K. Baldwin, W. S. Hobson, J. Wynn, J. Lopata, L. Dhar, R. Chichester, and J. H-J Yeh, "High-power laser light source for near-field optics and its application to high-density optical data storage," Appl. Phys. Lett. 75, 1515-1517 (1999).
[CrossRef]

Pellerin, K. M.

Peng, C.

K. Sendur, W. Challener, and C. Peng "Ridge waveguide as a near field aperture for high density data storage," J. Appl. Phys. 96, 2743-2752 (2004).
[CrossRef]

Pohl, D. W.

P. Muhlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, "Resonant Optical Antennas," Science 308, 1607-1609 (2005).

Prober, D.

R. Grobe, R. Schoelkopf, and D. Prober, "Optical antenna: Towards a unity efficiency near-field optical probe, "Appl. Phys. Lett. 70, 1354-1356 (1997).
[CrossRef]

Richards, B.

B. Richards and E. Wolf, "Electromagnetic diffraction in optical system II: structure of the image field in an aplanatic system," Proc. R. Soc. London Ser. A 253, 358-379 (1959).
[CrossRef]

Rogowski, R.

Schlesinger, T. E.

F. Chen, A. Itagi, J. A. Bain, D. D. Stancil, and T. E. Schlesinger, L. Stebounova, G. C. Walker, and B. B. Akhremitchev, "Imaging of optical field confinement in ridge waveguides fabricated on very-small-aperture laser," Appl. Phys. Lett. 83, 3245-3247 (2003).
[CrossRef]

Schoelkopf, R.

R. Grobe, R. Schoelkopf, and D. Prober, "Optical antenna: Towards a unity efficiency near-field optical probe, "Appl. Phys. Lett. 70, 1354-1356 (1997).
[CrossRef]

Schuck, P. J.

J. A. Matteo, D. P. Fromm, Y. Yuen, P. J. Schuck, W. E. Moerner, and L. Hesselink, "Spectral analysis of strongly enhanced visible light transmission through single C-shaped nanoapertures," Appl. Phys. Lett. 85, 648-650 (2004).
[CrossRef]

Sendur, K.

K. Sendur, W. Challener, and C. Peng "Ridge waveguide as a near field aperture for high density data storage," J. Appl. Phys. 96, 2743-2752 (2004).
[CrossRef]

Shi, X.

Shin, H.

H. Shin, P. B. Catrysse, and S. Fan, "Effect of the plasmonic dispersion relation on the transmission properties of subwavelength cylindrical holes," Phys. Rev. B 72, 085436 (2005).

Shintani, T.

Stancil, D. D.

F. Chen, A. Itagi, J. A. Bain, D. D. Stancil, and T. E. Schlesinger, L. Stebounova, G. C. Walker, and B. B. Akhremitchev, "Imaging of optical field confinement in ridge waveguides fabricated on very-small-aperture laser," Appl. Phys. Lett. 83, 3245-3247 (2003).
[CrossRef]

Stebounova, L.

F. Chen, A. Itagi, J. A. Bain, D. D. Stancil, and T. E. Schlesinger, L. Stebounova, G. C. Walker, and B. B. Akhremitchev, "Imaging of optical field confinement in ridge waveguides fabricated on very-small-aperture laser," Appl. Phys. Lett. 83, 3245-3247 (2003).
[CrossRef]

Sun, L.

Tai, H.

Tanaka, K.

K. Tanaka and M. Tanaka, "Simulation of confined and enhanced optical near-fields for an I-shaped aperture in a pyramidal structure on a thick metallic screen," J. Appl. Phys. 95, 3765-3771 (2004).
[CrossRef]

Tanaka, M.

K. Tanaka and M. Tanaka, "Simulation of confined and enhanced optical near-fields for an I-shaped aperture in a pyramidal structure on a thick metallic screen," J. Appl. Phys. 95, 3765-3771 (2004).
[CrossRef]

Thio, T.

Trautman, J. K.

E. Betzig, J. K. Trautman, R. Wolfe, E. M. Gyorgy, P. L. Finn, M. H. Kryder, and C. H. Chang, "Near-field magneto-optics and high density data storage," Appl. Phys. Lett. 61, 142-144 (1992).
[CrossRef]

Walker, G. C.

F. Chen, A. Itagi, J. A. Bain, D. D. Stancil, and T. E. Schlesinger, L. Stebounova, G. C. Walker, and B. B. Akhremitchev, "Imaging of optical field confinement in ridge waveguides fabricated on very-small-aperture laser," Appl. Phys. Lett. 83, 3245-3247 (2003).
[CrossRef]

Wang, L.

L. Wang and X. Xu, "High transmission nanoscale bowtie-shaped aperture probe for near-field optical imaging," Appl. Phys. Lett. 90, 261105 (2007).
[CrossRef]

Webb, K. J.

K. J. Webb and J. Li, "Analysis of transmission through small apertures in conducting films," Phys. Rev. B 73, 033401 (2006).

Wickramasinghe, H. K.

H. F. Hamann, Y. C. Martin, and H. K. Wickramasinghe, "Thermally assisted recording beyond traditional limits," Appl. Phys. Lett. 84, 810-812 (2004).
[CrossRef]

Wolf, E.

B. Richards and E. Wolf, "Electromagnetic diffraction in optical system II: structure of the image field in an aplanatic system," Proc. R. Soc. London Ser. A 253, 358-379 (1959).
[CrossRef]

E. Wolf, "Electromagnetic diffraction in optical system I: an integral representation of the image field in an aplanatic system," Proc. R. Soc. London Ser. A 253, 349-357 (1959).
[CrossRef]

Wolfe, R.

E. Betzig, J. K. Trautman, R. Wolfe, E. M. Gyorgy, P. L. Finn, M. H. Kryder, and C. H. Chang, "Near-field magneto-optics and high density data storage," Appl. Phys. Lett. 61, 142-144 (1992).
[CrossRef]

Wu, F.

Wuttig, M.

A. Partovi, D. Peale, M. Wuttig, C. A. Murray, G. Zydzik, L. Hopkins, K. Baldwin, W. S. Hobson, J. Wynn, J. Lopata, L. Dhar, R. Chichester, and J. H-J Yeh, "High-power laser light source for near-field optics and its application to high-density optical data storage," Appl. Phys. Lett. 75, 1515-1517 (1999).
[CrossRef]

Wynn, J.

A. Partovi, D. Peale, M. Wuttig, C. A. Murray, G. Zydzik, L. Hopkins, K. Baldwin, W. S. Hobson, J. Wynn, J. Lopata, L. Dhar, R. Chichester, and J. H-J Yeh, "High-power laser light source for near-field optics and its application to high-density optical data storage," Appl. Phys. Lett. 75, 1515-1517 (1999).
[CrossRef]

Xu, X.

L. Wang and X. Xu, "High transmission nanoscale bowtie-shaped aperture probe for near-field optical imaging," Appl. Phys. Lett. 90, 261105 (2007).
[CrossRef]

E. X. Jin and X. Xu, "Obtaining super resolution light spot using surface plasmon assisted sharp ridge nanoaperture," Appl. Phys. Lett. 86, 111106 (2005).
[CrossRef]

Yee, K. S.

K. S. Yee, "Numerical solution of initial boundary value problem involving Maxwell's equations in isotropic media," IEEE Trans. Antennas Propag. 14, 302-307 (1966).
[CrossRef]

Yeh, J. H-J

A. Partovi, D. Peale, M. Wuttig, C. A. Murray, G. Zydzik, L. Hopkins, K. Baldwin, W. S. Hobson, J. Wynn, J. Lopata, L. Dhar, R. Chichester, and J. H-J Yeh, "High-power laser light source for near-field optics and its application to high-density optical data storage," Appl. Phys. Lett. 75, 1515-1517 (1999).
[CrossRef]

Yuen, Y.

J. A. Matteo, D. P. Fromm, Y. Yuen, P. J. Schuck, W. E. Moerner, and L. Hesselink, "Spectral analysis of strongly enhanced visible light transmission through single C-shaped nanoapertures," Appl. Phys. Lett. 85, 648-650 (2004).
[CrossRef]

Zakharian, A. R.

Zhu, Z.

Zydzik, G.

A. Partovi, D. Peale, M. Wuttig, C. A. Murray, G. Zydzik, L. Hopkins, K. Baldwin, W. S. Hobson, J. Wynn, J. Lopata, L. Dhar, R. Chichester, and J. H-J Yeh, "High-power laser light source for near-field optics and its application to high-density optical data storage," Appl. Phys. Lett. 75, 1515-1517 (1999).
[CrossRef]

Appl. Phys. Lett. (10)

J. Hashizume and F. Koyama, "Plasmon-enhancement of optical near-field of metal nanoaperture surface-emitting laser," Appl. Phys. Lett. 84, 3226-3228 (2004).
[CrossRef]

A. Partovi, D. Peale, M. Wuttig, C. A. Murray, G. Zydzik, L. Hopkins, K. Baldwin, W. S. Hobson, J. Wynn, J. Lopata, L. Dhar, R. Chichester, and J. H-J Yeh, "High-power laser light source for near-field optics and its application to high-density optical data storage," Appl. Phys. Lett. 75, 1515-1517 (1999).
[CrossRef]

J. A. Matteo, D. P. Fromm, Y. Yuen, P. J. Schuck, W. E. Moerner, and L. Hesselink, "Spectral analysis of strongly enhanced visible light transmission through single C-shaped nanoapertures," Appl. Phys. Lett. 85, 648-650 (2004).
[CrossRef]

R. Grobe, R. Schoelkopf, and D. Prober, "Optical antenna: Towards a unity efficiency near-field optical probe, "Appl. Phys. Lett. 70, 1354-1356 (1997).
[CrossRef]

H. F. Hamann, Y. C. Martin, and H. K. Wickramasinghe, "Thermally assisted recording beyond traditional limits," Appl. Phys. Lett. 84, 810-812 (2004).
[CrossRef]

E. Cubukcu, E. A. Kort, K. B. Crozier, and F. Capasso, "Plasmonic laser antenna," Appl. Phys. Lett. 89, 093120 (2006).
[CrossRef]

E. Betzig, J. K. Trautman, R. Wolfe, E. M. Gyorgy, P. L. Finn, M. H. Kryder, and C. H. Chang, "Near-field magneto-optics and high density data storage," Appl. Phys. Lett. 61, 142-144 (1992).
[CrossRef]

L. Wang and X. Xu, "High transmission nanoscale bowtie-shaped aperture probe for near-field optical imaging," Appl. Phys. Lett. 90, 261105 (2007).
[CrossRef]

F. Chen, A. Itagi, J. A. Bain, D. D. Stancil, and T. E. Schlesinger, L. Stebounova, G. C. Walker, and B. B. Akhremitchev, "Imaging of optical field confinement in ridge waveguides fabricated on very-small-aperture laser," Appl. Phys. Lett. 83, 3245-3247 (2003).
[CrossRef]

E. X. Jin and X. Xu, "Obtaining super resolution light spot using surface plasmon assisted sharp ridge nanoaperture," Appl. Phys. Lett. 86, 111106 (2005).
[CrossRef]

IEEE Trans. Antennas and Propag. (1)

S. D. Gedney, "An anisotropic perfectly matched layer-absorbing medium for the truncation of FDTD lattices," IEEE Trans. Antennas and Propag. 44, 1630-1639 (1996).
[CrossRef]

IEEE Trans. Antennas Propag. (1)

K. S. Yee, "Numerical solution of initial boundary value problem involving Maxwell's equations in isotropic media," IEEE Trans. Antennas Propag. 14, 302-307 (1966).
[CrossRef]

IRE Trans. Microwave Theory Tech. (1)

S. Hopfer, "The design of ridged waveguides," IRE Trans. Microwave Theory Tech. 3, 20-29 (1955).
[CrossRef]

J. Appl. Phys. (2)

K. Sendur, W. Challener, and C. Peng "Ridge waveguide as a near field aperture for high density data storage," J. Appl. Phys. 96, 2743-2752 (2004).
[CrossRef]

K. Tanaka and M. Tanaka, "Simulation of confined and enhanced optical near-fields for an I-shaped aperture in a pyramidal structure on a thick metallic screen," J. Appl. Phys. 95, 3765-3771 (2004).
[CrossRef]

Opt. Express (4)

Opt. Lett. (6)

Phys. Rev. B (3)

F. J. Garcia-Vidal, L. Martin-Moreno, E. Moreno, L. K. S. Kumar, and R. Gordon, "Transmission of light through a single rectangular hole in a real metal," Phys. Rev. B 74, 153411 (2006).

H. Shin, P. B. Catrysse, and S. Fan, "Effect of the plasmonic dispersion relation on the transmission properties of subwavelength cylindrical holes," Phys. Rev. B 72, 085436 (2005).

K. J. Webb and J. Li, "Analysis of transmission through small apertures in conducting films," Phys. Rev. B 73, 033401 (2006).

Proc. R. Soc. London Ser. A (2)

E. Wolf, "Electromagnetic diffraction in optical system I: an integral representation of the image field in an aplanatic system," Proc. R. Soc. London Ser. A 253, 349-357 (1959).
[CrossRef]

B. Richards and E. Wolf, "Electromagnetic diffraction in optical system II: structure of the image field in an aplanatic system," Proc. R. Soc. London Ser. A 253, 358-379 (1959).
[CrossRef]

Science (1)

P. Muhlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, "Resonant Optical Antennas," Science 308, 1607-1609 (2005).

Other (3)

K. S. Kunz and R. J. Luebbers, The Finite Difference Time Domain Method for Electromagnetics (CRC, Boca Raton, FL, 1993).

R. Lehoucq, K. Maschhoff, D. Sorensen, and C. Yang, ARPACK software, http://www.caam.rice.edu/software/ARPACK/.

E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, Orlando, FL, 1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Cross-sectional viewing of single-ridged waveguide in gold. XYZ is a right-handed Cartesian coordinate system with xy plane parallel to the waveguide cross section.

Fig. 2.
Fig. 2.

Real and imaginary parts of the effective index neff as a function of wavelength.

Fig. 3.
Fig. 3.

Computed plots of Ex, Ez amplitude (V/m) and the z-component Pz of the Poynting vector (w/m2)) in the waveguide cross-section. The total power flowing along the waveguide is 1 watt. The dash line shows the C-shaped aperture.

Fig. 4.
Fig. 4.

(a) Scanning electron micrograph of the fabricated C-aperture. (b) Measured light intensity distribution through the C-aperture. The frame in (b) is 2 µm by 2 µm. The maximum intensity is 105k counts/s and the average background is 62k counts/s. The C-aperture has the dimension: a=293 nm, b=97 nm, w=48 nm, g=40 nm. Excitation light wavelength λ=690 nm.

Fig. 5.
Fig. 5.

(a) Diagram of a single C-aperture perforated on a gold film coated on a glass substrate. A linearly polarized beam of light is incident onto the aperture through a substrate and collected by an objective lens of numerical aperture NA=0.9. (b) Normalized transmission through the C-aperture versus gold film thickness at light wavelength λ=689, 729, 775, 802, and 826.6 nm.

Fig. 6.
Fig. 6.

Measured C-aperture transmission as a function of light wavelength. The fabricated C-aperture is a=235 nm, b=113 nm, w=63 nm, and g=50 nm. The gold film is 200 nm thick.

Fig. 7.
Fig. 7.

(a) A linearly polarized beam of light is focused onto a C-aperture perforated on a gold film coated on a glass hemisphere by an objective lens of numerical aperture NA=0.9. Below the C-aperture, a magnetic medium, composed of a Co magnetic layer, a ZnS-SiO2 dielectric layer, and a gold heat sink layer on a glass substrate, is placed. (b) Peak absorptivity as a function of gold film thickness at light wavelength λ=775, 802, 826.6, 858, and 910 nm.

Fig. 8.
Fig. 8.

Profile of light absorption per unit volume (unit: watt/µm3) at the middle plane of the storage layer.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

× E = j k 0 ( Z 0 H ) μ r s ,
× ( Z 0 H ) = j k 0 E ε r s
s = ( s y s x s x s y s x s y ) ,
s x = k x + j σ x ω ε 0 , s y = k y + j σ y ω ε 0

Metrics