Abstract

An optimum SBS gain profile is designed to achieve better slow-light performance. It consists of a nearly flat-top profile with sharp edges. Tunable delays up to 3 pulse widths for 100-ps-long input pulses, corresponding to 10 Gb/s data rates, are found while keeping an output-input pulse-width ratio below 1.8. Bit-error-rate (BER) measurements performed for a non-return-to-zero modulation format demonstrates 28 ps of delay under error-free operation.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, "Tunable all-optical delays via Brillouin slow light in optical fiber," Phys. Rev. Lett. 94, 153902 (2005).
    [CrossRef] [PubMed]
  2. K. Y. Song, M.G. Herráez, and L. Thévenaz, "Observation of pulse delaying and advancement in optical fibers using stimulated Brillouin scattering," Opt. Express 13, 82-88 (2005).
    [CrossRef] [PubMed]
  3. D. M. Beggs, T. P. White, L. O'Faolain, and T. F. Krauss, "Ultracompact and low-power optical switch based on silicon photonic crystals," Opt. Lett. 33, 147-149 (2008).
    [CrossRef] [PubMed]
  4. B. Zhang, L. S. Yang, J. Y. Yang, I. Fazal, and A. Willner, "A Single Slow-Light Element for Independent Delay Control and Synchronization on Multiple Gb/s Data Channels," IEEE Phton. Technol. Lett. 19, 1081-1083 (2007).
    [CrossRef]
  5. J. Capmany and D. Novak, "Microwave photonics combines two worlds," Nature Photon. 1, 319-330 (2007).
    [CrossRef]
  6. Z. Zhu, A. M. C. Dawes, D. J. Gauthier, L. Zhang, and A. E. Willner, "Broadband SBS slow light in an optical fiber," J. Lightwave Tech. 25, 201-206 (2007).
    [CrossRef]
  7. M. G. Herráez, K. Y. Song, and L. Thévenaz, "Arbitrary-bandwidth Brillouin slow light in optical fibers," Opt. Express 14, 1395-1400 (2006).
    [CrossRef] [PubMed]
  8. K. Y. Song and K. Hotate, "25 GHz bandwidth Brillouin slow light in optical fibers," Opt. Lett. 32, 217-219 (2007).
    [CrossRef] [PubMed]
  9. M. D. Stenner and M. A. Neifeld, Z. Zhu, A. M. C. Dawes, and D. J. Gauthier, "Distortion management in slow-light pulse delay," Opt. Express 13, 9995-10002 (2005).
    [CrossRef] [PubMed]
  10. T. Schneider, M. Junker, K. U. Lauterbach, and R. Henker, "Distortion reduction in cascaded slow light delays," Electron. Lett. 42, 1110-1111 (2006).
    [CrossRef]
  11. Z. Shi, R. Pant, Z. Zhu, M. D. Stenner, M. A. Neifeld, D. J. Gauthier, and R. W. Boyd, "Design of a tunable time-delay element using multiple gain lines for increased fractional delay with high data fidelity," Opt. Lett. 32, 1986-1988 (2007).
    [CrossRef] [PubMed]
  12. T. Sakamoto, T. Yamamoto, K. Shiraki, and T. Kurashima, "Low distortion slow light in flat Brillouin gain spectrum by using optical frequency comb," Opt. Express 16, 8026-8032 (2008).
    [CrossRef] [PubMed]
  13. Z. Lu, Y. Dong, and Q. Li, "Slow light in multi-line Brillouin gain spectrum," Opt. Express 15, 1871-1877 (2007).
    [CrossRef] [PubMed]
  14. L. Yi, Y. Jaouen, W. Hu, Y. Su, and S. Bigo, "Improved slow-light performance of 10 Gb/s NRZ, PSBT and DPSK signals in fiber broadband SBS," Opt. Express 15, 16972-16979 (2007).
    [CrossRef] [PubMed]
  15. R. Pant, M. D. Stenner, M. A. Neifeld, and D. J. Gauthier, "Optimal pump profile designs for broadband SBS slow-light systems," Opt. Express 16, 2764-2777 (2008).
    [CrossRef] [PubMed]
  16. T. Schneider, "Time delay limits of stimulated-Brillouin-scattering-based slow light systems," Opt. Lett. 33, 1398 (2008)
    [CrossRef] [PubMed]
  17. T. Tanemura, Y. Takushima, and K. Kikuchi, "Narrowband optical filter, with a variable transmission spectrum, using stimulated Brillouin scattering in optical fiber," Opt. Lett. 27, 1552-1554 (2002).
    [CrossRef]
  18. J. B. Khurgin, "Performance limits of delay lines based on optical amplifiers," Opt. Lett. 31, 948-950 (2006).
    [CrossRef] [PubMed]
  19. A. Zadok, A. Eyal, and M. Tur, "Gigahertz-wide optically reconfigurable filters using stimulated Brillouin scattering," J. Light. Tech. 25, 2168-2174 (2007).
    [CrossRef]
  20. H. Shalom, A. Zadok, M. Tur, P. J. Legg, W. D. Cornwell, and I. Andonovic, "On the Various Time Constants of Wavelength Changes of a DFB Laser Under Direct Modulation," IEEE J. Quant. Elect. 34, 1816-1822 (1998).
    [CrossRef]
  21. A. Zadok, A. Eyal, and M. Tur, "Extended delay of broadband signals in stimulated Brillouin scattering slow light using synthesized pump chirp," Opt. Express 14, 8498-8505 (2006).
    [CrossRef] [PubMed]
  22. A. Zadok, O. Raz, A. Eyal, and M. Tur, "Optically Controlled Low-Distortion Delay of GHz-Wide Radio-Frequency Signals Using Slow Light in Fibers," IEEE Photonics Technol. Lett. 19, 462-464 (2007).
    [CrossRef]
  23. D. Cotter, "Suppression of Stimulated Brillouin Scattering during transmission of high-power narrowband laser light in monomode fiber," Electron. Lett. 18, 638-640 (1982).
    [CrossRef]
  24. M. Denariez and G. Bret, "Investigation of Rayleigh wings and Brillouin stimulated scattering in liquids," Phys. Rev. 171, 160-171 (1968).
    [CrossRef]
  25. B. Zhang, L. Yan, I. Fazal, L. Zhang, A. E. Willner, Z. Zhu, and D. J. Gauthier, "Slow light on Gbit/s differentialphase-shift-keying signals," Opt. Express 15, 1878-1883 (2007).
    [CrossRef] [PubMed]

2008 (4)

2007 (10)

B. Zhang, L. S. Yang, J. Y. Yang, I. Fazal, and A. Willner, "A Single Slow-Light Element for Independent Delay Control and Synchronization on Multiple Gb/s Data Channels," IEEE Phton. Technol. Lett. 19, 1081-1083 (2007).
[CrossRef]

J. Capmany and D. Novak, "Microwave photonics combines two worlds," Nature Photon. 1, 319-330 (2007).
[CrossRef]

Z. Zhu, A. M. C. Dawes, D. J. Gauthier, L. Zhang, and A. E. Willner, "Broadband SBS slow light in an optical fiber," J. Lightwave Tech. 25, 201-206 (2007).
[CrossRef]

A. Zadok, A. Eyal, and M. Tur, "Gigahertz-wide optically reconfigurable filters using stimulated Brillouin scattering," J. Light. Tech. 25, 2168-2174 (2007).
[CrossRef]

A. Zadok, O. Raz, A. Eyal, and M. Tur, "Optically Controlled Low-Distortion Delay of GHz-Wide Radio-Frequency Signals Using Slow Light in Fibers," IEEE Photonics Technol. Lett. 19, 462-464 (2007).
[CrossRef]

K. Y. Song and K. Hotate, "25 GHz bandwidth Brillouin slow light in optical fibers," Opt. Lett. 32, 217-219 (2007).
[CrossRef] [PubMed]

Z. Lu, Y. Dong, and Q. Li, "Slow light in multi-line Brillouin gain spectrum," Opt. Express 15, 1871-1877 (2007).
[CrossRef] [PubMed]

B. Zhang, L. Yan, I. Fazal, L. Zhang, A. E. Willner, Z. Zhu, and D. J. Gauthier, "Slow light on Gbit/s differentialphase-shift-keying signals," Opt. Express 15, 1878-1883 (2007).
[CrossRef] [PubMed]

Z. Shi, R. Pant, Z. Zhu, M. D. Stenner, M. A. Neifeld, D. J. Gauthier, and R. W. Boyd, "Design of a tunable time-delay element using multiple gain lines for increased fractional delay with high data fidelity," Opt. Lett. 32, 1986-1988 (2007).
[CrossRef] [PubMed]

L. Yi, Y. Jaouen, W. Hu, Y. Su, and S. Bigo, "Improved slow-light performance of 10 Gb/s NRZ, PSBT and DPSK signals in fiber broadband SBS," Opt. Express 15, 16972-16979 (2007).
[CrossRef] [PubMed]

2006 (4)

2005 (3)

2002 (1)

1998 (1)

H. Shalom, A. Zadok, M. Tur, P. J. Legg, W. D. Cornwell, and I. Andonovic, "On the Various Time Constants of Wavelength Changes of a DFB Laser Under Direct Modulation," IEEE J. Quant. Elect. 34, 1816-1822 (1998).
[CrossRef]

1982 (1)

D. Cotter, "Suppression of Stimulated Brillouin Scattering during transmission of high-power narrowband laser light in monomode fiber," Electron. Lett. 18, 638-640 (1982).
[CrossRef]

1968 (1)

M. Denariez and G. Bret, "Investigation of Rayleigh wings and Brillouin stimulated scattering in liquids," Phys. Rev. 171, 160-171 (1968).
[CrossRef]

Andonovic, I.

H. Shalom, A. Zadok, M. Tur, P. J. Legg, W. D. Cornwell, and I. Andonovic, "On the Various Time Constants of Wavelength Changes of a DFB Laser Under Direct Modulation," IEEE J. Quant. Elect. 34, 1816-1822 (1998).
[CrossRef]

Beggs, D. M.

Bigelow, M. S.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, "Tunable all-optical delays via Brillouin slow light in optical fiber," Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef] [PubMed]

Bigo, S.

Boyd, R. W.

Z. Shi, R. Pant, Z. Zhu, M. D. Stenner, M. A. Neifeld, D. J. Gauthier, and R. W. Boyd, "Design of a tunable time-delay element using multiple gain lines for increased fractional delay with high data fidelity," Opt. Lett. 32, 1986-1988 (2007).
[CrossRef] [PubMed]

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, "Tunable all-optical delays via Brillouin slow light in optical fiber," Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef] [PubMed]

Bret, G.

M. Denariez and G. Bret, "Investigation of Rayleigh wings and Brillouin stimulated scattering in liquids," Phys. Rev. 171, 160-171 (1968).
[CrossRef]

Capmany, J.

J. Capmany and D. Novak, "Microwave photonics combines two worlds," Nature Photon. 1, 319-330 (2007).
[CrossRef]

Cornwell, W. D.

H. Shalom, A. Zadok, M. Tur, P. J. Legg, W. D. Cornwell, and I. Andonovic, "On the Various Time Constants of Wavelength Changes of a DFB Laser Under Direct Modulation," IEEE J. Quant. Elect. 34, 1816-1822 (1998).
[CrossRef]

Cotter, D.

D. Cotter, "Suppression of Stimulated Brillouin Scattering during transmission of high-power narrowband laser light in monomode fiber," Electron. Lett. 18, 638-640 (1982).
[CrossRef]

Dawes, A. M. C.

Z. Zhu, A. M. C. Dawes, D. J. Gauthier, L. Zhang, and A. E. Willner, "Broadband SBS slow light in an optical fiber," J. Lightwave Tech. 25, 201-206 (2007).
[CrossRef]

M. D. Stenner and M. A. Neifeld, Z. Zhu, A. M. C. Dawes, and D. J. Gauthier, "Distortion management in slow-light pulse delay," Opt. Express 13, 9995-10002 (2005).
[CrossRef] [PubMed]

Denariez, M.

M. Denariez and G. Bret, "Investigation of Rayleigh wings and Brillouin stimulated scattering in liquids," Phys. Rev. 171, 160-171 (1968).
[CrossRef]

Dong, Y.

Eyal, A.

A. Zadok, A. Eyal, and M. Tur, "Gigahertz-wide optically reconfigurable filters using stimulated Brillouin scattering," J. Light. Tech. 25, 2168-2174 (2007).
[CrossRef]

A. Zadok, O. Raz, A. Eyal, and M. Tur, "Optically Controlled Low-Distortion Delay of GHz-Wide Radio-Frequency Signals Using Slow Light in Fibers," IEEE Photonics Technol. Lett. 19, 462-464 (2007).
[CrossRef]

A. Zadok, A. Eyal, and M. Tur, "Extended delay of broadband signals in stimulated Brillouin scattering slow light using synthesized pump chirp," Opt. Express 14, 8498-8505 (2006).
[CrossRef] [PubMed]

Fazal, I.

B. Zhang, L. S. Yang, J. Y. Yang, I. Fazal, and A. Willner, "A Single Slow-Light Element for Independent Delay Control and Synchronization on Multiple Gb/s Data Channels," IEEE Phton. Technol. Lett. 19, 1081-1083 (2007).
[CrossRef]

B. Zhang, L. Yan, I. Fazal, L. Zhang, A. E. Willner, Z. Zhu, and D. J. Gauthier, "Slow light on Gbit/s differentialphase-shift-keying signals," Opt. Express 15, 1878-1883 (2007).
[CrossRef] [PubMed]

Gaeta, A. L.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, "Tunable all-optical delays via Brillouin slow light in optical fiber," Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef] [PubMed]

Gauthier, D. J.

Henker, R.

T. Schneider, M. Junker, K. U. Lauterbach, and R. Henker, "Distortion reduction in cascaded slow light delays," Electron. Lett. 42, 1110-1111 (2006).
[CrossRef]

Herráez, M. G.

Herráez, M.G.

Hotate, K.

Hu, W.

Jaouen, Y.

Junker, M.

T. Schneider, M. Junker, K. U. Lauterbach, and R. Henker, "Distortion reduction in cascaded slow light delays," Electron. Lett. 42, 1110-1111 (2006).
[CrossRef]

Khurgin, J. B.

Kikuchi, K.

Krauss, T. F.

Kurashima, T.

Lauterbach, K. U.

T. Schneider, M. Junker, K. U. Lauterbach, and R. Henker, "Distortion reduction in cascaded slow light delays," Electron. Lett. 42, 1110-1111 (2006).
[CrossRef]

Legg, P. J.

H. Shalom, A. Zadok, M. Tur, P. J. Legg, W. D. Cornwell, and I. Andonovic, "On the Various Time Constants of Wavelength Changes of a DFB Laser Under Direct Modulation," IEEE J. Quant. Elect. 34, 1816-1822 (1998).
[CrossRef]

Li, Q.

Lu, Z.

Neifeld, M. A.

Novak, D.

J. Capmany and D. Novak, "Microwave photonics combines two worlds," Nature Photon. 1, 319-330 (2007).
[CrossRef]

O'Faolain, L.

Okawachi, Y.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, "Tunable all-optical delays via Brillouin slow light in optical fiber," Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef] [PubMed]

Pant, R.

Raz, O.

A. Zadok, O. Raz, A. Eyal, and M. Tur, "Optically Controlled Low-Distortion Delay of GHz-Wide Radio-Frequency Signals Using Slow Light in Fibers," IEEE Photonics Technol. Lett. 19, 462-464 (2007).
[CrossRef]

Sakamoto, T.

Schneider, T.

T. Schneider, "Time delay limits of stimulated-Brillouin-scattering-based slow light systems," Opt. Lett. 33, 1398 (2008)
[CrossRef] [PubMed]

T. Schneider, M. Junker, K. U. Lauterbach, and R. Henker, "Distortion reduction in cascaded slow light delays," Electron. Lett. 42, 1110-1111 (2006).
[CrossRef]

Schweinsberg, A.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, "Tunable all-optical delays via Brillouin slow light in optical fiber," Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef] [PubMed]

Shalom, H.

H. Shalom, A. Zadok, M. Tur, P. J. Legg, W. D. Cornwell, and I. Andonovic, "On the Various Time Constants of Wavelength Changes of a DFB Laser Under Direct Modulation," IEEE J. Quant. Elect. 34, 1816-1822 (1998).
[CrossRef]

Sharping, J. E.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, "Tunable all-optical delays via Brillouin slow light in optical fiber," Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef] [PubMed]

Shi, Z.

Shiraki, K.

Song, K. Y.

Stenner, M. D.

Su, Y.

Takushima, Y.

Tanemura, T.

Thévenaz, L.

Tur, M.

A. Zadok, A. Eyal, and M. Tur, "Gigahertz-wide optically reconfigurable filters using stimulated Brillouin scattering," J. Light. Tech. 25, 2168-2174 (2007).
[CrossRef]

A. Zadok, O. Raz, A. Eyal, and M. Tur, "Optically Controlled Low-Distortion Delay of GHz-Wide Radio-Frequency Signals Using Slow Light in Fibers," IEEE Photonics Technol. Lett. 19, 462-464 (2007).
[CrossRef]

A. Zadok, A. Eyal, and M. Tur, "Extended delay of broadband signals in stimulated Brillouin scattering slow light using synthesized pump chirp," Opt. Express 14, 8498-8505 (2006).
[CrossRef] [PubMed]

H. Shalom, A. Zadok, M. Tur, P. J. Legg, W. D. Cornwell, and I. Andonovic, "On the Various Time Constants of Wavelength Changes of a DFB Laser Under Direct Modulation," IEEE J. Quant. Elect. 34, 1816-1822 (1998).
[CrossRef]

White, T. P.

Willner, A.

B. Zhang, L. S. Yang, J. Y. Yang, I. Fazal, and A. Willner, "A Single Slow-Light Element for Independent Delay Control and Synchronization on Multiple Gb/s Data Channels," IEEE Phton. Technol. Lett. 19, 1081-1083 (2007).
[CrossRef]

Willner, A. E.

B. Zhang, L. Yan, I. Fazal, L. Zhang, A. E. Willner, Z. Zhu, and D. J. Gauthier, "Slow light on Gbit/s differentialphase-shift-keying signals," Opt. Express 15, 1878-1883 (2007).
[CrossRef] [PubMed]

Z. Zhu, A. M. C. Dawes, D. J. Gauthier, L. Zhang, and A. E. Willner, "Broadband SBS slow light in an optical fiber," J. Lightwave Tech. 25, 201-206 (2007).
[CrossRef]

Yamamoto, T.

Yan, L.

Yang, J. Y.

B. Zhang, L. S. Yang, J. Y. Yang, I. Fazal, and A. Willner, "A Single Slow-Light Element for Independent Delay Control and Synchronization on Multiple Gb/s Data Channels," IEEE Phton. Technol. Lett. 19, 1081-1083 (2007).
[CrossRef]

Yang, L. S.

B. Zhang, L. S. Yang, J. Y. Yang, I. Fazal, and A. Willner, "A Single Slow-Light Element for Independent Delay Control and Synchronization on Multiple Gb/s Data Channels," IEEE Phton. Technol. Lett. 19, 1081-1083 (2007).
[CrossRef]

Yi, L.

Zadok, A.

A. Zadok, O. Raz, A. Eyal, and M. Tur, "Optically Controlled Low-Distortion Delay of GHz-Wide Radio-Frequency Signals Using Slow Light in Fibers," IEEE Photonics Technol. Lett. 19, 462-464 (2007).
[CrossRef]

A. Zadok, A. Eyal, and M. Tur, "Gigahertz-wide optically reconfigurable filters using stimulated Brillouin scattering," J. Light. Tech. 25, 2168-2174 (2007).
[CrossRef]

A. Zadok, A. Eyal, and M. Tur, "Extended delay of broadband signals in stimulated Brillouin scattering slow light using synthesized pump chirp," Opt. Express 14, 8498-8505 (2006).
[CrossRef] [PubMed]

H. Shalom, A. Zadok, M. Tur, P. J. Legg, W. D. Cornwell, and I. Andonovic, "On the Various Time Constants of Wavelength Changes of a DFB Laser Under Direct Modulation," IEEE J. Quant. Elect. 34, 1816-1822 (1998).
[CrossRef]

Zhang, B.

B. Zhang, L. S. Yang, J. Y. Yang, I. Fazal, and A. Willner, "A Single Slow-Light Element for Independent Delay Control and Synchronization on Multiple Gb/s Data Channels," IEEE Phton. Technol. Lett. 19, 1081-1083 (2007).
[CrossRef]

B. Zhang, L. Yan, I. Fazal, L. Zhang, A. E. Willner, Z. Zhu, and D. J. Gauthier, "Slow light on Gbit/s differentialphase-shift-keying signals," Opt. Express 15, 1878-1883 (2007).
[CrossRef] [PubMed]

Zhang, L.

B. Zhang, L. Yan, I. Fazal, L. Zhang, A. E. Willner, Z. Zhu, and D. J. Gauthier, "Slow light on Gbit/s differentialphase-shift-keying signals," Opt. Express 15, 1878-1883 (2007).
[CrossRef] [PubMed]

Z. Zhu, A. M. C. Dawes, D. J. Gauthier, L. Zhang, and A. E. Willner, "Broadband SBS slow light in an optical fiber," J. Lightwave Tech. 25, 201-206 (2007).
[CrossRef]

Zhu, Z.

Electron. Lett. (2)

T. Schneider, M. Junker, K. U. Lauterbach, and R. Henker, "Distortion reduction in cascaded slow light delays," Electron. Lett. 42, 1110-1111 (2006).
[CrossRef]

D. Cotter, "Suppression of Stimulated Brillouin Scattering during transmission of high-power narrowband laser light in monomode fiber," Electron. Lett. 18, 638-640 (1982).
[CrossRef]

IEEE J. Quant. Elect. (1)

H. Shalom, A. Zadok, M. Tur, P. J. Legg, W. D. Cornwell, and I. Andonovic, "On the Various Time Constants of Wavelength Changes of a DFB Laser Under Direct Modulation," IEEE J. Quant. Elect. 34, 1816-1822 (1998).
[CrossRef]

IEEE Photonics Technol. Lett. (1)

A. Zadok, O. Raz, A. Eyal, and M. Tur, "Optically Controlled Low-Distortion Delay of GHz-Wide Radio-Frequency Signals Using Slow Light in Fibers," IEEE Photonics Technol. Lett. 19, 462-464 (2007).
[CrossRef]

IEEE Phton. Technol. Lett. (1)

B. Zhang, L. S. Yang, J. Y. Yang, I. Fazal, and A. Willner, "A Single Slow-Light Element for Independent Delay Control and Synchronization on Multiple Gb/s Data Channels," IEEE Phton. Technol. Lett. 19, 1081-1083 (2007).
[CrossRef]

J. Light. Tech. (1)

A. Zadok, A. Eyal, and M. Tur, "Gigahertz-wide optically reconfigurable filters using stimulated Brillouin scattering," J. Light. Tech. 25, 2168-2174 (2007).
[CrossRef]

J. Lightwave Tech. (1)

Z. Zhu, A. M. C. Dawes, D. J. Gauthier, L. Zhang, and A. E. Willner, "Broadband SBS slow light in an optical fiber," J. Lightwave Tech. 25, 201-206 (2007).
[CrossRef]

Nature Photon. (1)

J. Capmany and D. Novak, "Microwave photonics combines two worlds," Nature Photon. 1, 319-330 (2007).
[CrossRef]

Opt. Express (9)

A. Zadok, A. Eyal, and M. Tur, "Extended delay of broadband signals in stimulated Brillouin scattering slow light using synthesized pump chirp," Opt. Express 14, 8498-8505 (2006).
[CrossRef] [PubMed]

K. Y. Song, M.G. Herráez, and L. Thévenaz, "Observation of pulse delaying and advancement in optical fibers using stimulated Brillouin scattering," Opt. Express 13, 82-88 (2005).
[CrossRef] [PubMed]

M. D. Stenner and M. A. Neifeld, Z. Zhu, A. M. C. Dawes, and D. J. Gauthier, "Distortion management in slow-light pulse delay," Opt. Express 13, 9995-10002 (2005).
[CrossRef] [PubMed]

M. G. Herráez, K. Y. Song, and L. Thévenaz, "Arbitrary-bandwidth Brillouin slow light in optical fibers," Opt. Express 14, 1395-1400 (2006).
[CrossRef] [PubMed]

Z. Lu, Y. Dong, and Q. Li, "Slow light in multi-line Brillouin gain spectrum," Opt. Express 15, 1871-1877 (2007).
[CrossRef] [PubMed]

B. Zhang, L. Yan, I. Fazal, L. Zhang, A. E. Willner, Z. Zhu, and D. J. Gauthier, "Slow light on Gbit/s differentialphase-shift-keying signals," Opt. Express 15, 1878-1883 (2007).
[CrossRef] [PubMed]

L. Yi, Y. Jaouen, W. Hu, Y. Su, and S. Bigo, "Improved slow-light performance of 10 Gb/s NRZ, PSBT and DPSK signals in fiber broadband SBS," Opt. Express 15, 16972-16979 (2007).
[CrossRef] [PubMed]

R. Pant, M. D. Stenner, M. A. Neifeld, and D. J. Gauthier, "Optimal pump profile designs for broadband SBS slow-light systems," Opt. Express 16, 2764-2777 (2008).
[CrossRef] [PubMed]

T. Sakamoto, T. Yamamoto, K. Shiraki, and T. Kurashima, "Low distortion slow light in flat Brillouin gain spectrum by using optical frequency comb," Opt. Express 16, 8026-8032 (2008).
[CrossRef] [PubMed]

Opt. Lett. (6)

Phys. Rev. (1)

M. Denariez and G. Bret, "Investigation of Rayleigh wings and Brillouin stimulated scattering in liquids," Phys. Rev. 171, 160-171 (1968).
[CrossRef]

Phys. Rev. Lett. (1)

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, "Tunable all-optical delays via Brillouin slow light in optical fiber," Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Adiabatic frequency chirp of the Sumitomo laser. Experimentally measured (solid squares) stationary values of the frequency shift as a function of the step change in the injection current i-i 0. Fit to the data (solid line) using the function Δν(t)=0.29 GHz+0.36 GHz/mA·(i-i 0) + 0.0013 GHz/mA2·(i-i 0)2, where i 0 is 30 mA.

Fig. 2.
Fig. 2.

Modulation waveform (left column) and measured SBS gain profile (right column) for triangular modulation (upper row), with the addition of the quadratic term (middle row), and for the optimum waveform (lower row). Here, i 0=90 mA.

Fig. 3.
Fig. 3.

Experimental setup. The pump laser (DFB1) is modulated by the optimal waveform using an arbitrary waveform generator (AWF) which is computer-controlled. The Er-doped fiber amplifier (EDFA) is used to increase the pump power. Fiber polarization controllers (FPC) are used to match the polarizations of the pump and the signal. The pulses are generated by a pattern generator (PG) that drives a Mach Zehnder Modulator (MZM) placed after the signal laser (DFB2). A photodetector (PD) and a 50-GHz bandwidth sampling oscilloscope (OS) are used to record the pulses.

Fig. 4.
Fig. 4.

(a) Fractional delay vs input pump power for experimental data (blue circle) and simulations for the optimal gain profile (black line) and Gaussian gain profile (red dashed line). (b) Output-to-input pulse-width ratio for experimental data (blue circle) and simulations for optimal profile (black solid line) and Gaussian gain profile (red dashed line) (c) Reference pulse (black line) and delayed pulse (red line) for 360 mW showing a fractional delay of 2.6 and an output-to-input pulse-width ratio of 1.7.

Fig. 5.
Fig. 5.

(a) Gain profile of 9.2 GHz of bandwidth obtained using the Fitel laser with chirp parameters in Table 2. (b) Reference pulse (black line) and delayed pulse (red line) for a pump power of 495 mW. The fractional delay is 2.1 and the output-to-input width ratio is 1.3. (c) Fractional delay vs. input pump power for 100-ps-long pulses. (d) Output-to-input width ratio vs input pump power. Simulations for an optimum flat-top gain profile (black line) and for a Gaussian profile (red dotted line) are also shown.

Fig. 6.
Fig. 6.

Eye diagrams of pseudo-random bit sequence in the (a) absence and (b) presence of the pump laser with a power of 160 mW.

Tables (2)

Tables Icon

Table 1. Time constants and coefficients of the impulse response of the thermal chirp.

Tables Icon

Table 2. Time constants and coefficients of the impulse response of the thermal chirp for the Fitel laser.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

v ( t ) v 0 = α [ i ( t ) i 0 ] 2 + β [ i ( t ) i 0 ] h T [ i ( t ) i 0 ] .
h T = Σ a n e t τ n .
i ( t ) = Δ i max { a t 2 + ( 4 T a T 4 ) t if   t T 4 a t 2 ( 4 T + a 3 T 4 ) t + 2 + 2 a T 2 4 2 if   T 4 < t 3 T 4 a t 2 + ( 4 T a 9 T 4 ) t + 5 a T 2 4 4 if   3 T 4 < t T .
d Δ v ( t ) d t 12 α a Δ i max 2 T t 2 + Δ i max ( 16 α Δ i max T 2 + a β + 10 a Δ i max α ) t
  Δ i max [ β ( 4 T + 3 a T 4 ) + 16 α Δ i max ( 1 T + a T 4 ) ] ,

Metrics