Abstract

We report on theoretical and experimental investigations on spontaneous and stimulated Brillouin scattering during operation of a high-power single-frequency polarization-maintaining ytterbium doped fiber amplifier. For different amplifier configurations with co- and counter-propagating seed and pump radiation the evolution of Brillouin scattering spectra was investigated with a heterodyne detection scheme. Spontaneous Brillouin gain spectra at low powers were additionally investigated using a pump-probe technique. The data obtained from these experiments have been compared with a theoretical model based on coupled intensity equations. A Brillouin scattering suppression has been investigated theoretically and experimentally with externally applied temperature gradients along the fiber resulting in up to 3.5 dB suppression and 115 W of amplifier output power.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. G. Smith, "Optical power handling capacity of low loss optical fibres as determined by stimulated Raman and Brillouin scattering," Appl. Opt. 11, 2489-2494 (1972).
    [CrossRef] [PubMed]
  2. A. Liem, J. Limpert, H. Zellmer, and A. Tünnermann, "100-W single-frequency master-oscillator fiber power amplifier," Opt. Lett. 28,1537-1539 (2003).
    [CrossRef] [PubMed]
  3. R.W. Boyd, K. Rzazewski, and P. Narum, "Noise initiation of stimulated Brillouin scattering," Phys. Rev. A 42, 5514-5521 (1990).
    [CrossRef] [PubMed]
  4. M. Niklès, L. Thévenaz, and P. A. Robert, "Brillouin Gain Spectrum Characterization in Single-Mode Optical Fibers," J. Lightwave Technol. 15, 1842-1851 (1997).
    [CrossRef]
  5. A. Yeniay, J.-M. Delavaux, and J. Toulouse, "Spontaneous and Stimulated Brillouin Scattering Gain Spectra in Optical Fibers," IEEE J. Lightwave Technol. 20, 1425-1432 (2002).
    [CrossRef]
  6. B. Y. Zel??dovich, N. F. Pilipetsky, and V. V. Shkunov, Principles of Phase Conjugation (Springer-Verlag, Berlin, 1985).
  7. N. Yoshizawa, T. Horigushi, and T. Kurashima, "Proposal for stimulated Brillouin scattering suppression by fiber cabling," Electron. Lett. 27, 1100-1101 (1991).
    [CrossRef]
  8. Y. Imai and N. Shimada, "Dependence of Stimulated Brillouin Scattering on Temperature Distribution in Polarization-Maintaining Fibers," IEEE Photon. Technol. Lett. 5, 1335-1337 (1993).
    [CrossRef]
  9. X. P. Mao, R. W. Tkach, A. R. Chraplyvy, R. M. Jopson, and R. M. Derosier, "Stimulated Brillouin Threshold Dependence on Fiber Type and Uniformity," IEEE Photon. Technol. Lett. 4, 66-69 (1992).
    [CrossRef]
  10. Y. Jeong, J. Nilsson, J. K. Sahu, D. N. Payne, L. M. B. Hickey, and P. W. Turner, "Power Scaling of Single-Frequency Ytterbium-Doped Fiber Master-Oscillator Power-Amplifier Sourcecs up to 500 W," IEEE J. Quantum Electron. 13,546-551 (2007).
    [CrossRef]
  11. S. Gray, A. Liu, D. T. Walton, J. Wang, M.-J. Li, X. Chen, A. B. Ruffin, J. A. DeMeritt, and L. A. Zenteno, "502 Watt, single transverse mode, narrow linewidth, bidirectionally pumped Yb-doped fiber amplifier," Opt. Express 15, 17044-17050 (2007), opticsinfobase.org/abstract.cfm?URI=oe-15-25-17044.
    [CrossRef] [PubMed]
  12. A. Liu, "Suppressing stimulated Brillouin scattering in fiber amplifiers using nonuniform fiber and temperature gradient," Opt. Express 15, 977-984 (2007), opticsinfobase.org/abstract.cfm?URI=oe-15-3-977.
    [CrossRef] [PubMed]
  13. A. Hardy and R. Oron, "Signal Amplification in Strongly Pumped Fiber Amplifiers," IEEE J. Quantum Electron. 33, 307-313 (1997).
    [CrossRef]
  14. D. C. Brown and H. J. Hoffman, "Thermal, Stress, and Thermo-Optic Effects in High Average Power Double-Clad Silica Fiber Lasers," IEEE J. Quantum Electron. 37, 207-216 (2001).
    [CrossRef]
  15. N. A. Brilliant, "Stimulated Brillouin scattering in a dual-clad fiber amplifier," J. Opt. Soc. Am. B 19, 2551-2557 (2002).
    [CrossRef]
  16. J. P. Koplow, L. Goldberg, R. P. Moeller, and D. A. V. Kliner, "Single-mode operation of a coiled multimode fiber," Opt. Lett. 25, 442-444 (2000).
    [CrossRef]
  17. M. Horowitz, A. R. Chraplyvy, R. W. Tkach, and J. L. Zyskind, "Broad-Band Transmitted Intensity Noise Induced by Stokes and Anti-Stokes Brillouin Scattering in Single-Mode Fibers," IEEE Phot. Technol. Lett. 9, 124-126 (1997).
    [CrossRef]
  18. D. P. Machewirth, Q. Wang, B. Samson, K. Tankala, M. O'Connor, and M. Alam, "Current developments in high-power monolithic polarization maintaining fiber amplifiers for coherent beam combining applications," Proc. SPIE 6453, 64531F (2007).
    [CrossRef]

2007 (2)

Y. Jeong, J. Nilsson, J. K. Sahu, D. N. Payne, L. M. B. Hickey, and P. W. Turner, "Power Scaling of Single-Frequency Ytterbium-Doped Fiber Master-Oscillator Power-Amplifier Sourcecs up to 500 W," IEEE J. Quantum Electron. 13,546-551 (2007).
[CrossRef]

D. P. Machewirth, Q. Wang, B. Samson, K. Tankala, M. O'Connor, and M. Alam, "Current developments in high-power monolithic polarization maintaining fiber amplifiers for coherent beam combining applications," Proc. SPIE 6453, 64531F (2007).
[CrossRef]

2003 (1)

2002 (2)

N. A. Brilliant, "Stimulated Brillouin scattering in a dual-clad fiber amplifier," J. Opt. Soc. Am. B 19, 2551-2557 (2002).
[CrossRef]

A. Yeniay, J.-M. Delavaux, and J. Toulouse, "Spontaneous and Stimulated Brillouin Scattering Gain Spectra in Optical Fibers," IEEE J. Lightwave Technol. 20, 1425-1432 (2002).
[CrossRef]

2001 (1)

D. C. Brown and H. J. Hoffman, "Thermal, Stress, and Thermo-Optic Effects in High Average Power Double-Clad Silica Fiber Lasers," IEEE J. Quantum Electron. 37, 207-216 (2001).
[CrossRef]

2000 (1)

1997 (3)

M. Horowitz, A. R. Chraplyvy, R. W. Tkach, and J. L. Zyskind, "Broad-Band Transmitted Intensity Noise Induced by Stokes and Anti-Stokes Brillouin Scattering in Single-Mode Fibers," IEEE Phot. Technol. Lett. 9, 124-126 (1997).
[CrossRef]

M. Niklès, L. Thévenaz, and P. A. Robert, "Brillouin Gain Spectrum Characterization in Single-Mode Optical Fibers," J. Lightwave Technol. 15, 1842-1851 (1997).
[CrossRef]

A. Hardy and R. Oron, "Signal Amplification in Strongly Pumped Fiber Amplifiers," IEEE J. Quantum Electron. 33, 307-313 (1997).
[CrossRef]

1993 (1)

Y. Imai and N. Shimada, "Dependence of Stimulated Brillouin Scattering on Temperature Distribution in Polarization-Maintaining Fibers," IEEE Photon. Technol. Lett. 5, 1335-1337 (1993).
[CrossRef]

1992 (1)

X. P. Mao, R. W. Tkach, A. R. Chraplyvy, R. M. Jopson, and R. M. Derosier, "Stimulated Brillouin Threshold Dependence on Fiber Type and Uniformity," IEEE Photon. Technol. Lett. 4, 66-69 (1992).
[CrossRef]

1991 (1)

N. Yoshizawa, T. Horigushi, and T. Kurashima, "Proposal for stimulated Brillouin scattering suppression by fiber cabling," Electron. Lett. 27, 1100-1101 (1991).
[CrossRef]

1990 (1)

R.W. Boyd, K. Rzazewski, and P. Narum, "Noise initiation of stimulated Brillouin scattering," Phys. Rev. A 42, 5514-5521 (1990).
[CrossRef] [PubMed]

1972 (1)

Alam, M.

D. P. Machewirth, Q. Wang, B. Samson, K. Tankala, M. O'Connor, and M. Alam, "Current developments in high-power monolithic polarization maintaining fiber amplifiers for coherent beam combining applications," Proc. SPIE 6453, 64531F (2007).
[CrossRef]

Boyd, R.W.

R.W. Boyd, K. Rzazewski, and P. Narum, "Noise initiation of stimulated Brillouin scattering," Phys. Rev. A 42, 5514-5521 (1990).
[CrossRef] [PubMed]

Brilliant, N. A.

Brown, D. C.

D. C. Brown and H. J. Hoffman, "Thermal, Stress, and Thermo-Optic Effects in High Average Power Double-Clad Silica Fiber Lasers," IEEE J. Quantum Electron. 37, 207-216 (2001).
[CrossRef]

Chraplyvy, A. R.

M. Horowitz, A. R. Chraplyvy, R. W. Tkach, and J. L. Zyskind, "Broad-Band Transmitted Intensity Noise Induced by Stokes and Anti-Stokes Brillouin Scattering in Single-Mode Fibers," IEEE Phot. Technol. Lett. 9, 124-126 (1997).
[CrossRef]

X. P. Mao, R. W. Tkach, A. R. Chraplyvy, R. M. Jopson, and R. M. Derosier, "Stimulated Brillouin Threshold Dependence on Fiber Type and Uniformity," IEEE Photon. Technol. Lett. 4, 66-69 (1992).
[CrossRef]

Delavaux, J.-M.

A. Yeniay, J.-M. Delavaux, and J. Toulouse, "Spontaneous and Stimulated Brillouin Scattering Gain Spectra in Optical Fibers," IEEE J. Lightwave Technol. 20, 1425-1432 (2002).
[CrossRef]

Derosier, R. M.

X. P. Mao, R. W. Tkach, A. R. Chraplyvy, R. M. Jopson, and R. M. Derosier, "Stimulated Brillouin Threshold Dependence on Fiber Type and Uniformity," IEEE Photon. Technol. Lett. 4, 66-69 (1992).
[CrossRef]

Goldberg, L.

Hardy, A.

A. Hardy and R. Oron, "Signal Amplification in Strongly Pumped Fiber Amplifiers," IEEE J. Quantum Electron. 33, 307-313 (1997).
[CrossRef]

Hickey, L. M. B.

Y. Jeong, J. Nilsson, J. K. Sahu, D. N. Payne, L. M. B. Hickey, and P. W. Turner, "Power Scaling of Single-Frequency Ytterbium-Doped Fiber Master-Oscillator Power-Amplifier Sourcecs up to 500 W," IEEE J. Quantum Electron. 13,546-551 (2007).
[CrossRef]

Hoffman, H. J.

D. C. Brown and H. J. Hoffman, "Thermal, Stress, and Thermo-Optic Effects in High Average Power Double-Clad Silica Fiber Lasers," IEEE J. Quantum Electron. 37, 207-216 (2001).
[CrossRef]

Horigushi, T.

N. Yoshizawa, T. Horigushi, and T. Kurashima, "Proposal for stimulated Brillouin scattering suppression by fiber cabling," Electron. Lett. 27, 1100-1101 (1991).
[CrossRef]

Horowitz, M.

M. Horowitz, A. R. Chraplyvy, R. W. Tkach, and J. L. Zyskind, "Broad-Band Transmitted Intensity Noise Induced by Stokes and Anti-Stokes Brillouin Scattering in Single-Mode Fibers," IEEE Phot. Technol. Lett. 9, 124-126 (1997).
[CrossRef]

Imai, Y.

Y. Imai and N. Shimada, "Dependence of Stimulated Brillouin Scattering on Temperature Distribution in Polarization-Maintaining Fibers," IEEE Photon. Technol. Lett. 5, 1335-1337 (1993).
[CrossRef]

Jeong, Y.

Y. Jeong, J. Nilsson, J. K. Sahu, D. N. Payne, L. M. B. Hickey, and P. W. Turner, "Power Scaling of Single-Frequency Ytterbium-Doped Fiber Master-Oscillator Power-Amplifier Sourcecs up to 500 W," IEEE J. Quantum Electron. 13,546-551 (2007).
[CrossRef]

Jopson, R. M.

X. P. Mao, R. W. Tkach, A. R. Chraplyvy, R. M. Jopson, and R. M. Derosier, "Stimulated Brillouin Threshold Dependence on Fiber Type and Uniformity," IEEE Photon. Technol. Lett. 4, 66-69 (1992).
[CrossRef]

Kliner, D. A. V.

Koplow, J. P.

Kurashima, T.

N. Yoshizawa, T. Horigushi, and T. Kurashima, "Proposal for stimulated Brillouin scattering suppression by fiber cabling," Electron. Lett. 27, 1100-1101 (1991).
[CrossRef]

Liem, A.

Limpert, J.

Machewirth, D. P.

D. P. Machewirth, Q. Wang, B. Samson, K. Tankala, M. O'Connor, and M. Alam, "Current developments in high-power monolithic polarization maintaining fiber amplifiers for coherent beam combining applications," Proc. SPIE 6453, 64531F (2007).
[CrossRef]

Mao, X. P.

X. P. Mao, R. W. Tkach, A. R. Chraplyvy, R. M. Jopson, and R. M. Derosier, "Stimulated Brillouin Threshold Dependence on Fiber Type and Uniformity," IEEE Photon. Technol. Lett. 4, 66-69 (1992).
[CrossRef]

Moeller, R. P.

Narum, P.

R.W. Boyd, K. Rzazewski, and P. Narum, "Noise initiation of stimulated Brillouin scattering," Phys. Rev. A 42, 5514-5521 (1990).
[CrossRef] [PubMed]

Niklès, M.

M. Niklès, L. Thévenaz, and P. A. Robert, "Brillouin Gain Spectrum Characterization in Single-Mode Optical Fibers," J. Lightwave Technol. 15, 1842-1851 (1997).
[CrossRef]

Nilsson, J.

Y. Jeong, J. Nilsson, J. K. Sahu, D. N. Payne, L. M. B. Hickey, and P. W. Turner, "Power Scaling of Single-Frequency Ytterbium-Doped Fiber Master-Oscillator Power-Amplifier Sourcecs up to 500 W," IEEE J. Quantum Electron. 13,546-551 (2007).
[CrossRef]

O'Connor, M.

D. P. Machewirth, Q. Wang, B. Samson, K. Tankala, M. O'Connor, and M. Alam, "Current developments in high-power monolithic polarization maintaining fiber amplifiers for coherent beam combining applications," Proc. SPIE 6453, 64531F (2007).
[CrossRef]

Oron, R.

A. Hardy and R. Oron, "Signal Amplification in Strongly Pumped Fiber Amplifiers," IEEE J. Quantum Electron. 33, 307-313 (1997).
[CrossRef]

Payne, D. N.

Y. Jeong, J. Nilsson, J. K. Sahu, D. N. Payne, L. M. B. Hickey, and P. W. Turner, "Power Scaling of Single-Frequency Ytterbium-Doped Fiber Master-Oscillator Power-Amplifier Sourcecs up to 500 W," IEEE J. Quantum Electron. 13,546-551 (2007).
[CrossRef]

Robert, P. A.

M. Niklès, L. Thévenaz, and P. A. Robert, "Brillouin Gain Spectrum Characterization in Single-Mode Optical Fibers," J. Lightwave Technol. 15, 1842-1851 (1997).
[CrossRef]

Rzazewski, K.

R.W. Boyd, K. Rzazewski, and P. Narum, "Noise initiation of stimulated Brillouin scattering," Phys. Rev. A 42, 5514-5521 (1990).
[CrossRef] [PubMed]

Sahu, J. K.

Y. Jeong, J. Nilsson, J. K. Sahu, D. N. Payne, L. M. B. Hickey, and P. W. Turner, "Power Scaling of Single-Frequency Ytterbium-Doped Fiber Master-Oscillator Power-Amplifier Sourcecs up to 500 W," IEEE J. Quantum Electron. 13,546-551 (2007).
[CrossRef]

Samson, B.

D. P. Machewirth, Q. Wang, B. Samson, K. Tankala, M. O'Connor, and M. Alam, "Current developments in high-power monolithic polarization maintaining fiber amplifiers for coherent beam combining applications," Proc. SPIE 6453, 64531F (2007).
[CrossRef]

Shimada, N.

Y. Imai and N. Shimada, "Dependence of Stimulated Brillouin Scattering on Temperature Distribution in Polarization-Maintaining Fibers," IEEE Photon. Technol. Lett. 5, 1335-1337 (1993).
[CrossRef]

Smith, R. G.

Tankala, K.

D. P. Machewirth, Q. Wang, B. Samson, K. Tankala, M. O'Connor, and M. Alam, "Current developments in high-power monolithic polarization maintaining fiber amplifiers for coherent beam combining applications," Proc. SPIE 6453, 64531F (2007).
[CrossRef]

Thévenaz, L.

M. Niklès, L. Thévenaz, and P. A. Robert, "Brillouin Gain Spectrum Characterization in Single-Mode Optical Fibers," J. Lightwave Technol. 15, 1842-1851 (1997).
[CrossRef]

Tkach, R. W.

M. Horowitz, A. R. Chraplyvy, R. W. Tkach, and J. L. Zyskind, "Broad-Band Transmitted Intensity Noise Induced by Stokes and Anti-Stokes Brillouin Scattering in Single-Mode Fibers," IEEE Phot. Technol. Lett. 9, 124-126 (1997).
[CrossRef]

X. P. Mao, R. W. Tkach, A. R. Chraplyvy, R. M. Jopson, and R. M. Derosier, "Stimulated Brillouin Threshold Dependence on Fiber Type and Uniformity," IEEE Photon. Technol. Lett. 4, 66-69 (1992).
[CrossRef]

Toulouse, J.

A. Yeniay, J.-M. Delavaux, and J. Toulouse, "Spontaneous and Stimulated Brillouin Scattering Gain Spectra in Optical Fibers," IEEE J. Lightwave Technol. 20, 1425-1432 (2002).
[CrossRef]

Tünnermann, A.

Turner, P. W.

Y. Jeong, J. Nilsson, J. K. Sahu, D. N. Payne, L. M. B. Hickey, and P. W. Turner, "Power Scaling of Single-Frequency Ytterbium-Doped Fiber Master-Oscillator Power-Amplifier Sourcecs up to 500 W," IEEE J. Quantum Electron. 13,546-551 (2007).
[CrossRef]

Wang, Q.

D. P. Machewirth, Q. Wang, B. Samson, K. Tankala, M. O'Connor, and M. Alam, "Current developments in high-power monolithic polarization maintaining fiber amplifiers for coherent beam combining applications," Proc. SPIE 6453, 64531F (2007).
[CrossRef]

Yeniay, A.

A. Yeniay, J.-M. Delavaux, and J. Toulouse, "Spontaneous and Stimulated Brillouin Scattering Gain Spectra in Optical Fibers," IEEE J. Lightwave Technol. 20, 1425-1432 (2002).
[CrossRef]

Yoshizawa, N.

N. Yoshizawa, T. Horigushi, and T. Kurashima, "Proposal for stimulated Brillouin scattering suppression by fiber cabling," Electron. Lett. 27, 1100-1101 (1991).
[CrossRef]

Zellmer, H.

Zyskind, J. L.

M. Horowitz, A. R. Chraplyvy, R. W. Tkach, and J. L. Zyskind, "Broad-Band Transmitted Intensity Noise Induced by Stokes and Anti-Stokes Brillouin Scattering in Single-Mode Fibers," IEEE Phot. Technol. Lett. 9, 124-126 (1997).
[CrossRef]

Appl. Opt. (1)

Electron. Lett. (1)

N. Yoshizawa, T. Horigushi, and T. Kurashima, "Proposal for stimulated Brillouin scattering suppression by fiber cabling," Electron. Lett. 27, 1100-1101 (1991).
[CrossRef]

IEEE J. Lightwave Technol. (1)

A. Yeniay, J.-M. Delavaux, and J. Toulouse, "Spontaneous and Stimulated Brillouin Scattering Gain Spectra in Optical Fibers," IEEE J. Lightwave Technol. 20, 1425-1432 (2002).
[CrossRef]

IEEE J. Quantum Electron. (2)

A. Hardy and R. Oron, "Signal Amplification in Strongly Pumped Fiber Amplifiers," IEEE J. Quantum Electron. 33, 307-313 (1997).
[CrossRef]

D. C. Brown and H. J. Hoffman, "Thermal, Stress, and Thermo-Optic Effects in High Average Power Double-Clad Silica Fiber Lasers," IEEE J. Quantum Electron. 37, 207-216 (2001).
[CrossRef]

IEEE J. Quantum Electron. (1)

Y. Jeong, J. Nilsson, J. K. Sahu, D. N. Payne, L. M. B. Hickey, and P. W. Turner, "Power Scaling of Single-Frequency Ytterbium-Doped Fiber Master-Oscillator Power-Amplifier Sourcecs up to 500 W," IEEE J. Quantum Electron. 13,546-551 (2007).
[CrossRef]

IEEE Phot. Technol. Lett. (1)

M. Horowitz, A. R. Chraplyvy, R. W. Tkach, and J. L. Zyskind, "Broad-Band Transmitted Intensity Noise Induced by Stokes and Anti-Stokes Brillouin Scattering in Single-Mode Fibers," IEEE Phot. Technol. Lett. 9, 124-126 (1997).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

Y. Imai and N. Shimada, "Dependence of Stimulated Brillouin Scattering on Temperature Distribution in Polarization-Maintaining Fibers," IEEE Photon. Technol. Lett. 5, 1335-1337 (1993).
[CrossRef]

X. P. Mao, R. W. Tkach, A. R. Chraplyvy, R. M. Jopson, and R. M. Derosier, "Stimulated Brillouin Threshold Dependence on Fiber Type and Uniformity," IEEE Photon. Technol. Lett. 4, 66-69 (1992).
[CrossRef]

J. Lightwave Technol. (1)

M. Niklès, L. Thévenaz, and P. A. Robert, "Brillouin Gain Spectrum Characterization in Single-Mode Optical Fibers," J. Lightwave Technol. 15, 1842-1851 (1997).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Lett. (2)

Phys. Rev. A (1)

R.W. Boyd, K. Rzazewski, and P. Narum, "Noise initiation of stimulated Brillouin scattering," Phys. Rev. A 42, 5514-5521 (1990).
[CrossRef] [PubMed]

Proc. SPIE (1)

D. P. Machewirth, Q. Wang, B. Samson, K. Tankala, M. O'Connor, and M. Alam, "Current developments in high-power monolithic polarization maintaining fiber amplifiers for coherent beam combining applications," Proc. SPIE 6453, 64531F (2007).
[CrossRef]

Other (3)

B. Y. Zel??dovich, N. F. Pilipetsky, and V. V. Shkunov, Principles of Phase Conjugation (Springer-Verlag, Berlin, 1985).

S. Gray, A. Liu, D. T. Walton, J. Wang, M.-J. Li, X. Chen, A. B. Ruffin, J. A. DeMeritt, and L. A. Zenteno, "502 Watt, single transverse mode, narrow linewidth, bidirectionally pumped Yb-doped fiber amplifier," Opt. Express 15, 17044-17050 (2007), opticsinfobase.org/abstract.cfm?URI=oe-15-25-17044.
[CrossRef] [PubMed]

A. Liu, "Suppressing stimulated Brillouin scattering in fiber amplifiers using nonuniform fiber and temperature gradient," Opt. Express 15, 977-984 (2007), opticsinfobase.org/abstract.cfm?URI=oe-15-3-977.
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

(a) Fiber amplifier setup for co- or counter-propagating seed and pump light. GS glass sheet, DC dichroic mirror. (b) Heterodyne detection system. GS glass sheet, DC dichroic mirror, IF interference filter.

Fig. 2.
Fig. 2.

Pump-probe setup for measurement of spontaneous BS gain spectrum. GS glass sheet.

Fig. 3.
Fig. 3.

(a) Pump-probe Brillouin scattering gain spectrum measured at 1.2 W coupled seed power. (b) Brillouin scattering spectral width (FWHM) as function of coupled seed power.

Fig. 4.
Fig. 4.

(a) Relative intensity noise spectra of amplifier output beam at 30 W and 54 W in counter-pump configuration and NPRO. (b) Relative intensity noise at 5 MHz versus amplifier output power for co- and counter-pump configuration.

Fig. 5.
Fig. 5.

Heterodyne detection of the Brillouin scattering spectra at 5 W and 92 W of fiber amplifier output power.

Fig. 6.
Fig. 6.

Brillouin scattering spectral width (FWHM) and backward propagating light power as function of amplifier output powers for (a) counter- and (b) co-propagating pump configuration. Scattered plots for experimental and line plots for simulated data.

Fig. 7.
Fig. 7.

(a) Measured and simulated Brillouin scattering spectra at 70 W of amplifier output power at 85°C hot plate temperature. (b) Frequency separation between Brillouin scattering spectral peaks with respect to temperature of heated fiber section.

Fig. 8.
Fig. 8.

(a) Simulated temperature distribution along the amplifier fiber at 70 W of output power and hot plate switched off and at 85°C. (b) Backward propagating light power and amplifier RIN at 5 MHz as function of amplifier output power with hot plate at 85°C and switched off.

Tables (1)

Tables Icon

Table 1. Simulation parameters for rate-equation model.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

d P s d z = Γ s P s ( N 2 σ s e N 1 σ s a ) α s P s P s i g B i P b s i / A eff
± d P p f , b d z = Γ p P p f , b ( N 2 σ p e N 1 σ p a ) α p P p f , b
± d P a s e j f , b d z = Γ s P a s e j f , b ( N 2 σ a s e j e N 1 σ a s e j a ) α s P a s e j f , b Γ s N 2 σ a s e j e P 0 j
d P b s i d z = Γ s P b s i ( N 2 σ b s i e N 1 σ b s i a ) + α s P b s i P s i g B i P b s i / A eff
N 2 = N 0 Γ s σ s a P s λ s + Γ p σ p a P p λ p + Γ s j σ a s e j e P a s e j f , b λ as e j + Γ s i σ b s i a P b s i λ b s i Γ s σ s e P s λ s + Γ p σ p e P p λ p + Γ s j σ a s e j e P a s e j f , b λ a s e j + Γ s i σ b s i e P b s i λ b s i + h c A eff / τ
g B ( v ) = g B o ( Ω B S / 2 ) 2 ( v ( v B + c f Δ T ) ) 2 + ( Ω B S / 2 ) 2

Metrics