Abstract

We present a micropatterning method for the automatic transfer and arbitrary positioning of computer-generated three-dimensional structures within a substrate. The Gerchberg-Saxton algorithm and an electrically addressed spatial light modulator (SLM) are used to create and display phase holograms, respectively. A holographic approach to light manipulation enables arbitrary and efficient parallel photo-patterning. Multiple pyramidal microstructures were created simultaneously in a photosensitive adhesive. A scanning electron microscope was used to confirm successful replication of the desired microscale structures.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. H. Zhou, S. M. Kuebler, K. L. Braun, T. Y. Yu, J. K. Cammack, C. K. Ober, J. W. Perry, and S. R. Marder, “An efficient two-photon-generated photoacid applied to positive-tone 3D microfabrication,” Science 296, 1106–1109 (2002).
    [CrossRef] [PubMed]
  2. S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices - Micromachines can be created with higher resolution using two-photon absorption,” Nature 412, 697698 (2001).
    [CrossRef]
  3. B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Q. Qin, H. Rockel, M. Rumi, X. L. Wu, S. R. Marder, and J.W. Perry, “Twophoton polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398, 5154 (1999).
  4. C. B. Arnold and A. Pique, “Laser Direct-Write Processing,” MRS Bulletin 32, 915 (2007).
  5. H. B. Yin, T. Brown, J. S. Wilkinson, R. W. Eason, and T. Melvin, “Submicron patterning of DNA oligonucleotides on silicon,” Nucleic Acids Research 32,915 (2004).
    [CrossRef]
  6. A. Lachish-Zalait, D. Zbaida, E. Klein, and M. Elbaum, “Direct surface patterning from solutions: Localized microchemistry using a focused laser,” Adv. Funct. Mater. 11, 218223 (2001).
    [CrossRef]
  7. R. T. Hill and J. B. Shear, “Enzyme-nanoparticle functionalization of three-dimensional protein scaffolds,” Anal. Chem. 78, 70227026 (2006).
    [CrossRef]
  8. B. Kaehr, N. Ertas, R. Nielson, R. Allen, R. T. Hill, M. Plenert, and J. B. Shear, “Direct-write fabrication of functional protein matrixes using a low-cost Q-switched laser,” Anal. Chem. 78, 31983202 (2006).
    [CrossRef]
  9. K. Itoga, J. Kobayashi, M. Yamato, A. Kikuchi, and T. Okano, “Maskless liquid-crystal-display projection photolithography for improved design flexibility of cellular micropatterns,” Biomaterials 27, 30053009 (2006).
    [CrossRef]
  10. T. Kondo, S. Juodkazis, V. Mizeikis, H. Misawa, and S. Matsuo, “Holographic lithography of periodic two- and three-dimensional microstructures in photoresist SU-8,” Opt. Express 14, 79437953 (2006).
  11. S. Hasegawa, Y. Hayasaki, and N. Nishida, “Holographic femtosecond laser processing with multiplexed phase Fresnel lenses,” Opt. Lett. 31, 17051707 (2006).
    [CrossRef]
  12. Y. Kuroiwa, N. Takeshima, Y. Narita, S. Tanaka, and K. Hirao, “Arbitrary micropatterning method in femtosecond laser microprocessing using diffractive optical elements,” Opt. Express 12, 19081915 (2004).
    [CrossRef]
  13. N. J. Jenness, K. D. Wulff, M. S. Johannes, D. G. Cole, and R. L. Clark, “Dynamic Maskless Holographic Lithography,” Proceedings of ASME IDETC/CIE 2007 Micro- and Nanosystems (2007).
  14. J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207, 169175 (2002).
    [CrossRef]
  15. J. Leach, K. Wulff, G. Sinclair, P. Jordan, J. Courtial, L. Thomson, G. Gibson, K. Karunwi, J. Cooper, Z. J. Laczik, and M. Padgett, “Interactive approach to optical tweezers control,” Appl. Opt. 45, 897903 (2006).
    [CrossRef]
  16. M. S. Johannes, J. F. Kuniholm, D. G. Cole, and R. L. Clark, “Automated CAD/CAM-based nanolithography using a custom atomic force microscope,” IEEE Transactions on Automation Science and Engineering 3, 236239 (2006).
    [CrossRef]
  17. J. Liesener, M. Reicherter, T. Haist, and H. J. Tiziani, “Multi-functional optical tweezers using computer-generated holograms,” Opt. Commun. 185, 7782 (2000).
    [CrossRef]
  18. R.W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of phase image and diffraction plane pictures,” Optik 35, 237248 (1972).
  19. M. A. Seldowitz, J. P. Allebach, and D. W. Sweeney, “Synthesis of Digital Holograms by Direct Binary Search,” Appl. Opt. 26, 27882798 (1987).
    [CrossRef]
  20. T. Tanaka, H. B. Sun, and S. Kawata, “Rapid sub-diffraction-limit laser micro/nanoprocessing in a threshold material system,” Appl. Phys. Lett. 80, 312314 (2002).
    [CrossRef]
  21. W. H. Teh, U. Durig, G. Salis, R. Harbers, U. Drechsler, R. F. Mahrt, C. G. Smith, and H. J. Guntherodt, “SU-8 for real three-dimensional subdiffraction-limit two-photon microfabrication,” Appl. Phys. Lett. 84, 40954097 (2004).
    [CrossRef]

2007 (1)

C. B. Arnold and A. Pique, “Laser Direct-Write Processing,” MRS Bulletin 32, 915 (2007).

2006 (7)

R. T. Hill and J. B. Shear, “Enzyme-nanoparticle functionalization of three-dimensional protein scaffolds,” Anal. Chem. 78, 70227026 (2006).
[CrossRef]

B. Kaehr, N. Ertas, R. Nielson, R. Allen, R. T. Hill, M. Plenert, and J. B. Shear, “Direct-write fabrication of functional protein matrixes using a low-cost Q-switched laser,” Anal. Chem. 78, 31983202 (2006).
[CrossRef]

K. Itoga, J. Kobayashi, M. Yamato, A. Kikuchi, and T. Okano, “Maskless liquid-crystal-display projection photolithography for improved design flexibility of cellular micropatterns,” Biomaterials 27, 30053009 (2006).
[CrossRef]

T. Kondo, S. Juodkazis, V. Mizeikis, H. Misawa, and S. Matsuo, “Holographic lithography of periodic two- and three-dimensional microstructures in photoresist SU-8,” Opt. Express 14, 79437953 (2006).

S. Hasegawa, Y. Hayasaki, and N. Nishida, “Holographic femtosecond laser processing with multiplexed phase Fresnel lenses,” Opt. Lett. 31, 17051707 (2006).
[CrossRef]

J. Leach, K. Wulff, G. Sinclair, P. Jordan, J. Courtial, L. Thomson, G. Gibson, K. Karunwi, J. Cooper, Z. J. Laczik, and M. Padgett, “Interactive approach to optical tweezers control,” Appl. Opt. 45, 897903 (2006).
[CrossRef]

M. S. Johannes, J. F. Kuniholm, D. G. Cole, and R. L. Clark, “Automated CAD/CAM-based nanolithography using a custom atomic force microscope,” IEEE Transactions on Automation Science and Engineering 3, 236239 (2006).
[CrossRef]

2004 (3)

W. H. Teh, U. Durig, G. Salis, R. Harbers, U. Drechsler, R. F. Mahrt, C. G. Smith, and H. J. Guntherodt, “SU-8 for real three-dimensional subdiffraction-limit two-photon microfabrication,” Appl. Phys. Lett. 84, 40954097 (2004).
[CrossRef]

Y. Kuroiwa, N. Takeshima, Y. Narita, S. Tanaka, and K. Hirao, “Arbitrary micropatterning method in femtosecond laser microprocessing using diffractive optical elements,” Opt. Express 12, 19081915 (2004).
[CrossRef]

H. B. Yin, T. Brown, J. S. Wilkinson, R. W. Eason, and T. Melvin, “Submicron patterning of DNA oligonucleotides on silicon,” Nucleic Acids Research 32,915 (2004).
[CrossRef]

2002 (3)

W. H. Zhou, S. M. Kuebler, K. L. Braun, T. Y. Yu, J. K. Cammack, C. K. Ober, J. W. Perry, and S. R. Marder, “An efficient two-photon-generated photoacid applied to positive-tone 3D microfabrication,” Science 296, 1106–1109 (2002).
[CrossRef] [PubMed]

J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207, 169175 (2002).
[CrossRef]

T. Tanaka, H. B. Sun, and S. Kawata, “Rapid sub-diffraction-limit laser micro/nanoprocessing in a threshold material system,” Appl. Phys. Lett. 80, 312314 (2002).
[CrossRef]

2001 (2)

S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices - Micromachines can be created with higher resolution using two-photon absorption,” Nature 412, 697698 (2001).
[CrossRef]

A. Lachish-Zalait, D. Zbaida, E. Klein, and M. Elbaum, “Direct surface patterning from solutions: Localized microchemistry using a focused laser,” Adv. Funct. Mater. 11, 218223 (2001).
[CrossRef]

2000 (1)

J. Liesener, M. Reicherter, T. Haist, and H. J. Tiziani, “Multi-functional optical tweezers using computer-generated holograms,” Opt. Commun. 185, 7782 (2000).
[CrossRef]

1999 (1)

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Q. Qin, H. Rockel, M. Rumi, X. L. Wu, S. R. Marder, and J.W. Perry, “Twophoton polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398, 5154 (1999).

1987 (1)

M. A. Seldowitz, J. P. Allebach, and D. W. Sweeney, “Synthesis of Digital Holograms by Direct Binary Search,” Appl. Opt. 26, 27882798 (1987).
[CrossRef]

1972 (1)

R.W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of phase image and diffraction plane pictures,” Optik 35, 237248 (1972).

Allebach, J. P.

M. A. Seldowitz, J. P. Allebach, and D. W. Sweeney, “Synthesis of Digital Holograms by Direct Binary Search,” Appl. Opt. 26, 27882798 (1987).
[CrossRef]

Allen, R.

B. Kaehr, N. Ertas, R. Nielson, R. Allen, R. T. Hill, M. Plenert, and J. B. Shear, “Direct-write fabrication of functional protein matrixes using a low-cost Q-switched laser,” Anal. Chem. 78, 31983202 (2006).
[CrossRef]

Ananthavel, S. P.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Q. Qin, H. Rockel, M. Rumi, X. L. Wu, S. R. Marder, and J.W. Perry, “Twophoton polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398, 5154 (1999).

Arnold, C. B.

C. B. Arnold and A. Pique, “Laser Direct-Write Processing,” MRS Bulletin 32, 915 (2007).

Barlow, S.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Q. Qin, H. Rockel, M. Rumi, X. L. Wu, S. R. Marder, and J.W. Perry, “Twophoton polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398, 5154 (1999).

Braun, K. L.

W. H. Zhou, S. M. Kuebler, K. L. Braun, T. Y. Yu, J. K. Cammack, C. K. Ober, J. W. Perry, and S. R. Marder, “An efficient two-photon-generated photoacid applied to positive-tone 3D microfabrication,” Science 296, 1106–1109 (2002).
[CrossRef] [PubMed]

Brown, T.

H. B. Yin, T. Brown, J. S. Wilkinson, R. W. Eason, and T. Melvin, “Submicron patterning of DNA oligonucleotides on silicon,” Nucleic Acids Research 32,915 (2004).
[CrossRef]

Cammack, J. K.

W. H. Zhou, S. M. Kuebler, K. L. Braun, T. Y. Yu, J. K. Cammack, C. K. Ober, J. W. Perry, and S. R. Marder, “An efficient two-photon-generated photoacid applied to positive-tone 3D microfabrication,” Science 296, 1106–1109 (2002).
[CrossRef] [PubMed]

Clark, R. L.

M. S. Johannes, J. F. Kuniholm, D. G. Cole, and R. L. Clark, “Automated CAD/CAM-based nanolithography using a custom atomic force microscope,” IEEE Transactions on Automation Science and Engineering 3, 236239 (2006).
[CrossRef]

N. J. Jenness, K. D. Wulff, M. S. Johannes, D. G. Cole, and R. L. Clark, “Dynamic Maskless Holographic Lithography,” Proceedings of ASME IDETC/CIE 2007 Micro- and Nanosystems (2007).

Cole, D. G.

M. S. Johannes, J. F. Kuniholm, D. G. Cole, and R. L. Clark, “Automated CAD/CAM-based nanolithography using a custom atomic force microscope,” IEEE Transactions on Automation Science and Engineering 3, 236239 (2006).
[CrossRef]

N. J. Jenness, K. D. Wulff, M. S. Johannes, D. G. Cole, and R. L. Clark, “Dynamic Maskless Holographic Lithography,” Proceedings of ASME IDETC/CIE 2007 Micro- and Nanosystems (2007).

Cooper, J.

J. Leach, K. Wulff, G. Sinclair, P. Jordan, J. Courtial, L. Thomson, G. Gibson, K. Karunwi, J. Cooper, Z. J. Laczik, and M. Padgett, “Interactive approach to optical tweezers control,” Appl. Opt. 45, 897903 (2006).
[CrossRef]

Courtial, J.

J. Leach, K. Wulff, G. Sinclair, P. Jordan, J. Courtial, L. Thomson, G. Gibson, K. Karunwi, J. Cooper, Z. J. Laczik, and M. Padgett, “Interactive approach to optical tweezers control,” Appl. Opt. 45, 897903 (2006).
[CrossRef]

Cumpston, B. H.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Q. Qin, H. Rockel, M. Rumi, X. L. Wu, S. R. Marder, and J.W. Perry, “Twophoton polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398, 5154 (1999).

Curtis, J. E.

J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207, 169175 (2002).
[CrossRef]

Drechsler, U.

W. H. Teh, U. Durig, G. Salis, R. Harbers, U. Drechsler, R. F. Mahrt, C. G. Smith, and H. J. Guntherodt, “SU-8 for real three-dimensional subdiffraction-limit two-photon microfabrication,” Appl. Phys. Lett. 84, 40954097 (2004).
[CrossRef]

Durig, U.

W. H. Teh, U. Durig, G. Salis, R. Harbers, U. Drechsler, R. F. Mahrt, C. G. Smith, and H. J. Guntherodt, “SU-8 for real three-dimensional subdiffraction-limit two-photon microfabrication,” Appl. Phys. Lett. 84, 40954097 (2004).
[CrossRef]

Dyer, D. L.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Q. Qin, H. Rockel, M. Rumi, X. L. Wu, S. R. Marder, and J.W. Perry, “Twophoton polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398, 5154 (1999).

Eason, R. W.

H. B. Yin, T. Brown, J. S. Wilkinson, R. W. Eason, and T. Melvin, “Submicron patterning of DNA oligonucleotides on silicon,” Nucleic Acids Research 32,915 (2004).
[CrossRef]

Ehrlich, J. E.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Q. Qin, H. Rockel, M. Rumi, X. L. Wu, S. R. Marder, and J.W. Perry, “Twophoton polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398, 5154 (1999).

Elbaum, M.

A. Lachish-Zalait, D. Zbaida, E. Klein, and M. Elbaum, “Direct surface patterning from solutions: Localized microchemistry using a focused laser,” Adv. Funct. Mater. 11, 218223 (2001).
[CrossRef]

Erskine, L. L.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Q. Qin, H. Rockel, M. Rumi, X. L. Wu, S. R. Marder, and J.W. Perry, “Twophoton polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398, 5154 (1999).

Ertas, N.

B. Kaehr, N. Ertas, R. Nielson, R. Allen, R. T. Hill, M. Plenert, and J. B. Shear, “Direct-write fabrication of functional protein matrixes using a low-cost Q-switched laser,” Anal. Chem. 78, 31983202 (2006).
[CrossRef]

Gerchberg, R.W.

R.W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of phase image and diffraction plane pictures,” Optik 35, 237248 (1972).

Gibson, G.

J. Leach, K. Wulff, G. Sinclair, P. Jordan, J. Courtial, L. Thomson, G. Gibson, K. Karunwi, J. Cooper, Z. J. Laczik, and M. Padgett, “Interactive approach to optical tweezers control,” Appl. Opt. 45, 897903 (2006).
[CrossRef]

Grier, D. G.

J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207, 169175 (2002).
[CrossRef]

Guntherodt, H. J.

W. H. Teh, U. Durig, G. Salis, R. Harbers, U. Drechsler, R. F. Mahrt, C. G. Smith, and H. J. Guntherodt, “SU-8 for real three-dimensional subdiffraction-limit two-photon microfabrication,” Appl. Phys. Lett. 84, 40954097 (2004).
[CrossRef]

Haist, T.

J. Liesener, M. Reicherter, T. Haist, and H. J. Tiziani, “Multi-functional optical tweezers using computer-generated holograms,” Opt. Commun. 185, 7782 (2000).
[CrossRef]

Harbers, R.

W. H. Teh, U. Durig, G. Salis, R. Harbers, U. Drechsler, R. F. Mahrt, C. G. Smith, and H. J. Guntherodt, “SU-8 for real three-dimensional subdiffraction-limit two-photon microfabrication,” Appl. Phys. Lett. 84, 40954097 (2004).
[CrossRef]

Hasegawa, S.

S. Hasegawa, Y. Hayasaki, and N. Nishida, “Holographic femtosecond laser processing with multiplexed phase Fresnel lenses,” Opt. Lett. 31, 17051707 (2006).
[CrossRef]

Hayasaki, Y.

S. Hasegawa, Y. Hayasaki, and N. Nishida, “Holographic femtosecond laser processing with multiplexed phase Fresnel lenses,” Opt. Lett. 31, 17051707 (2006).
[CrossRef]

Heikal, A. A.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Q. Qin, H. Rockel, M. Rumi, X. L. Wu, S. R. Marder, and J.W. Perry, “Twophoton polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398, 5154 (1999).

Hill, R. T.

R. T. Hill and J. B. Shear, “Enzyme-nanoparticle functionalization of three-dimensional protein scaffolds,” Anal. Chem. 78, 70227026 (2006).
[CrossRef]

B. Kaehr, N. Ertas, R. Nielson, R. Allen, R. T. Hill, M. Plenert, and J. B. Shear, “Direct-write fabrication of functional protein matrixes using a low-cost Q-switched laser,” Anal. Chem. 78, 31983202 (2006).
[CrossRef]

Hirao, K.

Y. Kuroiwa, N. Takeshima, Y. Narita, S. Tanaka, and K. Hirao, “Arbitrary micropatterning method in femtosecond laser microprocessing using diffractive optical elements,” Opt. Express 12, 19081915 (2004).
[CrossRef]

Itoga, K.

K. Itoga, J. Kobayashi, M. Yamato, A. Kikuchi, and T. Okano, “Maskless liquid-crystal-display projection photolithography for improved design flexibility of cellular micropatterns,” Biomaterials 27, 30053009 (2006).
[CrossRef]

Jenness, N. J.

N. J. Jenness, K. D. Wulff, M. S. Johannes, D. G. Cole, and R. L. Clark, “Dynamic Maskless Holographic Lithography,” Proceedings of ASME IDETC/CIE 2007 Micro- and Nanosystems (2007).

Johannes, M. S.

M. S. Johannes, J. F. Kuniholm, D. G. Cole, and R. L. Clark, “Automated CAD/CAM-based nanolithography using a custom atomic force microscope,” IEEE Transactions on Automation Science and Engineering 3, 236239 (2006).
[CrossRef]

N. J. Jenness, K. D. Wulff, M. S. Johannes, D. G. Cole, and R. L. Clark, “Dynamic Maskless Holographic Lithography,” Proceedings of ASME IDETC/CIE 2007 Micro- and Nanosystems (2007).

Jordan, P.

J. Leach, K. Wulff, G. Sinclair, P. Jordan, J. Courtial, L. Thomson, G. Gibson, K. Karunwi, J. Cooper, Z. J. Laczik, and M. Padgett, “Interactive approach to optical tweezers control,” Appl. Opt. 45, 897903 (2006).
[CrossRef]

Juodkazis, S.

T. Kondo, S. Juodkazis, V. Mizeikis, H. Misawa, and S. Matsuo, “Holographic lithography of periodic two- and three-dimensional microstructures in photoresist SU-8,” Opt. Express 14, 79437953 (2006).

Kaehr, B.

B. Kaehr, N. Ertas, R. Nielson, R. Allen, R. T. Hill, M. Plenert, and J. B. Shear, “Direct-write fabrication of functional protein matrixes using a low-cost Q-switched laser,” Anal. Chem. 78, 31983202 (2006).
[CrossRef]

Karunwi, K.

J. Leach, K. Wulff, G. Sinclair, P. Jordan, J. Courtial, L. Thomson, G. Gibson, K. Karunwi, J. Cooper, Z. J. Laczik, and M. Padgett, “Interactive approach to optical tweezers control,” Appl. Opt. 45, 897903 (2006).
[CrossRef]

Kawata, S.

T. Tanaka, H. B. Sun, and S. Kawata, “Rapid sub-diffraction-limit laser micro/nanoprocessing in a threshold material system,” Appl. Phys. Lett. 80, 312314 (2002).
[CrossRef]

S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices - Micromachines can be created with higher resolution using two-photon absorption,” Nature 412, 697698 (2001).
[CrossRef]

Kikuchi, A.

K. Itoga, J. Kobayashi, M. Yamato, A. Kikuchi, and T. Okano, “Maskless liquid-crystal-display projection photolithography for improved design flexibility of cellular micropatterns,” Biomaterials 27, 30053009 (2006).
[CrossRef]

Klein, E.

A. Lachish-Zalait, D. Zbaida, E. Klein, and M. Elbaum, “Direct surface patterning from solutions: Localized microchemistry using a focused laser,” Adv. Funct. Mater. 11, 218223 (2001).
[CrossRef]

Kobayashi, J.

K. Itoga, J. Kobayashi, M. Yamato, A. Kikuchi, and T. Okano, “Maskless liquid-crystal-display projection photolithography for improved design flexibility of cellular micropatterns,” Biomaterials 27, 30053009 (2006).
[CrossRef]

Kondo, T.

T. Kondo, S. Juodkazis, V. Mizeikis, H. Misawa, and S. Matsuo, “Holographic lithography of periodic two- and three-dimensional microstructures in photoresist SU-8,” Opt. Express 14, 79437953 (2006).

Koss, B. A.

J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207, 169175 (2002).
[CrossRef]

Kuebler, S. M.

W. H. Zhou, S. M. Kuebler, K. L. Braun, T. Y. Yu, J. K. Cammack, C. K. Ober, J. W. Perry, and S. R. Marder, “An efficient two-photon-generated photoacid applied to positive-tone 3D microfabrication,” Science 296, 1106–1109 (2002).
[CrossRef] [PubMed]

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Q. Qin, H. Rockel, M. Rumi, X. L. Wu, S. R. Marder, and J.W. Perry, “Twophoton polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398, 5154 (1999).

Kuniholm, J. F.

M. S. Johannes, J. F. Kuniholm, D. G. Cole, and R. L. Clark, “Automated CAD/CAM-based nanolithography using a custom atomic force microscope,” IEEE Transactions on Automation Science and Engineering 3, 236239 (2006).
[CrossRef]

Kuroiwa, Y.

Y. Kuroiwa, N. Takeshima, Y. Narita, S. Tanaka, and K. Hirao, “Arbitrary micropatterning method in femtosecond laser microprocessing using diffractive optical elements,” Opt. Express 12, 19081915 (2004).
[CrossRef]

Lachish-Zalait, A.

A. Lachish-Zalait, D. Zbaida, E. Klein, and M. Elbaum, “Direct surface patterning from solutions: Localized microchemistry using a focused laser,” Adv. Funct. Mater. 11, 218223 (2001).
[CrossRef]

Laczik, Z. J.

J. Leach, K. Wulff, G. Sinclair, P. Jordan, J. Courtial, L. Thomson, G. Gibson, K. Karunwi, J. Cooper, Z. J. Laczik, and M. Padgett, “Interactive approach to optical tweezers control,” Appl. Opt. 45, 897903 (2006).
[CrossRef]

Leach, J.

J. Leach, K. Wulff, G. Sinclair, P. Jordan, J. Courtial, L. Thomson, G. Gibson, K. Karunwi, J. Cooper, Z. J. Laczik, and M. Padgett, “Interactive approach to optical tweezers control,” Appl. Opt. 45, 897903 (2006).
[CrossRef]

Lee, I. Y. S.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Q. Qin, H. Rockel, M. Rumi, X. L. Wu, S. R. Marder, and J.W. Perry, “Twophoton polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398, 5154 (1999).

Liesener, J.

J. Liesener, M. Reicherter, T. Haist, and H. J. Tiziani, “Multi-functional optical tweezers using computer-generated holograms,” Opt. Commun. 185, 7782 (2000).
[CrossRef]

Mahrt, R. F.

W. H. Teh, U. Durig, G. Salis, R. Harbers, U. Drechsler, R. F. Mahrt, C. G. Smith, and H. J. Guntherodt, “SU-8 for real three-dimensional subdiffraction-limit two-photon microfabrication,” Appl. Phys. Lett. 84, 40954097 (2004).
[CrossRef]

Marder, S. R.

W. H. Zhou, S. M. Kuebler, K. L. Braun, T. Y. Yu, J. K. Cammack, C. K. Ober, J. W. Perry, and S. R. Marder, “An efficient two-photon-generated photoacid applied to positive-tone 3D microfabrication,” Science 296, 1106–1109 (2002).
[CrossRef] [PubMed]

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Q. Qin, H. Rockel, M. Rumi, X. L. Wu, S. R. Marder, and J.W. Perry, “Twophoton polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398, 5154 (1999).

Matsuo, S.

T. Kondo, S. Juodkazis, V. Mizeikis, H. Misawa, and S. Matsuo, “Holographic lithography of periodic two- and three-dimensional microstructures in photoresist SU-8,” Opt. Express 14, 79437953 (2006).

McCord-Maughon, D.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Q. Qin, H. Rockel, M. Rumi, X. L. Wu, S. R. Marder, and J.W. Perry, “Twophoton polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398, 5154 (1999).

Melvin, T.

H. B. Yin, T. Brown, J. S. Wilkinson, R. W. Eason, and T. Melvin, “Submicron patterning of DNA oligonucleotides on silicon,” Nucleic Acids Research 32,915 (2004).
[CrossRef]

Misawa, H.

T. Kondo, S. Juodkazis, V. Mizeikis, H. Misawa, and S. Matsuo, “Holographic lithography of periodic two- and three-dimensional microstructures in photoresist SU-8,” Opt. Express 14, 79437953 (2006).

Mizeikis, V.

T. Kondo, S. Juodkazis, V. Mizeikis, H. Misawa, and S. Matsuo, “Holographic lithography of periodic two- and three-dimensional microstructures in photoresist SU-8,” Opt. Express 14, 79437953 (2006).

Narita, Y.

Y. Kuroiwa, N. Takeshima, Y. Narita, S. Tanaka, and K. Hirao, “Arbitrary micropatterning method in femtosecond laser microprocessing using diffractive optical elements,” Opt. Express 12, 19081915 (2004).
[CrossRef]

Nielson, R.

B. Kaehr, N. Ertas, R. Nielson, R. Allen, R. T. Hill, M. Plenert, and J. B. Shear, “Direct-write fabrication of functional protein matrixes using a low-cost Q-switched laser,” Anal. Chem. 78, 31983202 (2006).
[CrossRef]

Nishida, N.

S. Hasegawa, Y. Hayasaki, and N. Nishida, “Holographic femtosecond laser processing with multiplexed phase Fresnel lenses,” Opt. Lett. 31, 17051707 (2006).
[CrossRef]

Ober, C. K.

W. H. Zhou, S. M. Kuebler, K. L. Braun, T. Y. Yu, J. K. Cammack, C. K. Ober, J. W. Perry, and S. R. Marder, “An efficient two-photon-generated photoacid applied to positive-tone 3D microfabrication,” Science 296, 1106–1109 (2002).
[CrossRef] [PubMed]

Okano, T.

K. Itoga, J. Kobayashi, M. Yamato, A. Kikuchi, and T. Okano, “Maskless liquid-crystal-display projection photolithography for improved design flexibility of cellular micropatterns,” Biomaterials 27, 30053009 (2006).
[CrossRef]

Padgett, M.

J. Leach, K. Wulff, G. Sinclair, P. Jordan, J. Courtial, L. Thomson, G. Gibson, K. Karunwi, J. Cooper, Z. J. Laczik, and M. Padgett, “Interactive approach to optical tweezers control,” Appl. Opt. 45, 897903 (2006).
[CrossRef]

Perry, J. W.

W. H. Zhou, S. M. Kuebler, K. L. Braun, T. Y. Yu, J. K. Cammack, C. K. Ober, J. W. Perry, and S. R. Marder, “An efficient two-photon-generated photoacid applied to positive-tone 3D microfabrication,” Science 296, 1106–1109 (2002).
[CrossRef] [PubMed]

Perry, J.W.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Q. Qin, H. Rockel, M. Rumi, X. L. Wu, S. R. Marder, and J.W. Perry, “Twophoton polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398, 5154 (1999).

Pique, A.

C. B. Arnold and A. Pique, “Laser Direct-Write Processing,” MRS Bulletin 32, 915 (2007).

Plenert, M.

B. Kaehr, N. Ertas, R. Nielson, R. Allen, R. T. Hill, M. Plenert, and J. B. Shear, “Direct-write fabrication of functional protein matrixes using a low-cost Q-switched laser,” Anal. Chem. 78, 31983202 (2006).
[CrossRef]

Qin, J. Q.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Q. Qin, H. Rockel, M. Rumi, X. L. Wu, S. R. Marder, and J.W. Perry, “Twophoton polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398, 5154 (1999).

Reicherter, M.

J. Liesener, M. Reicherter, T. Haist, and H. J. Tiziani, “Multi-functional optical tweezers using computer-generated holograms,” Opt. Commun. 185, 7782 (2000).
[CrossRef]

Rockel, H.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Q. Qin, H. Rockel, M. Rumi, X. L. Wu, S. R. Marder, and J.W. Perry, “Twophoton polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398, 5154 (1999).

Rumi, M.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Q. Qin, H. Rockel, M. Rumi, X. L. Wu, S. R. Marder, and J.W. Perry, “Twophoton polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398, 5154 (1999).

Salis, G.

W. H. Teh, U. Durig, G. Salis, R. Harbers, U. Drechsler, R. F. Mahrt, C. G. Smith, and H. J. Guntherodt, “SU-8 for real three-dimensional subdiffraction-limit two-photon microfabrication,” Appl. Phys. Lett. 84, 40954097 (2004).
[CrossRef]

Saxton, W. O.

R.W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of phase image and diffraction plane pictures,” Optik 35, 237248 (1972).

Seldowitz, M. A.

M. A. Seldowitz, J. P. Allebach, and D. W. Sweeney, “Synthesis of Digital Holograms by Direct Binary Search,” Appl. Opt. 26, 27882798 (1987).
[CrossRef]

Shear, J. B.

R. T. Hill and J. B. Shear, “Enzyme-nanoparticle functionalization of three-dimensional protein scaffolds,” Anal. Chem. 78, 70227026 (2006).
[CrossRef]

B. Kaehr, N. Ertas, R. Nielson, R. Allen, R. T. Hill, M. Plenert, and J. B. Shear, “Direct-write fabrication of functional protein matrixes using a low-cost Q-switched laser,” Anal. Chem. 78, 31983202 (2006).
[CrossRef]

Sinclair, G.

J. Leach, K. Wulff, G. Sinclair, P. Jordan, J. Courtial, L. Thomson, G. Gibson, K. Karunwi, J. Cooper, Z. J. Laczik, and M. Padgett, “Interactive approach to optical tweezers control,” Appl. Opt. 45, 897903 (2006).
[CrossRef]

Smith, C. G.

W. H. Teh, U. Durig, G. Salis, R. Harbers, U. Drechsler, R. F. Mahrt, C. G. Smith, and H. J. Guntherodt, “SU-8 for real three-dimensional subdiffraction-limit two-photon microfabrication,” Appl. Phys. Lett. 84, 40954097 (2004).
[CrossRef]

Sun, H. B.

T. Tanaka, H. B. Sun, and S. Kawata, “Rapid sub-diffraction-limit laser micro/nanoprocessing in a threshold material system,” Appl. Phys. Lett. 80, 312314 (2002).
[CrossRef]

S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices - Micromachines can be created with higher resolution using two-photon absorption,” Nature 412, 697698 (2001).
[CrossRef]

Sweeney, D. W.

M. A. Seldowitz, J. P. Allebach, and D. W. Sweeney, “Synthesis of Digital Holograms by Direct Binary Search,” Appl. Opt. 26, 27882798 (1987).
[CrossRef]

Takada, K.

S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices - Micromachines can be created with higher resolution using two-photon absorption,” Nature 412, 697698 (2001).
[CrossRef]

Takeshima, N.

Y. Kuroiwa, N. Takeshima, Y. Narita, S. Tanaka, and K. Hirao, “Arbitrary micropatterning method in femtosecond laser microprocessing using diffractive optical elements,” Opt. Express 12, 19081915 (2004).
[CrossRef]

Tanaka, S.

Y. Kuroiwa, N. Takeshima, Y. Narita, S. Tanaka, and K. Hirao, “Arbitrary micropatterning method in femtosecond laser microprocessing using diffractive optical elements,” Opt. Express 12, 19081915 (2004).
[CrossRef]

Tanaka, T.

T. Tanaka, H. B. Sun, and S. Kawata, “Rapid sub-diffraction-limit laser micro/nanoprocessing in a threshold material system,” Appl. Phys. Lett. 80, 312314 (2002).
[CrossRef]

S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices - Micromachines can be created with higher resolution using two-photon absorption,” Nature 412, 697698 (2001).
[CrossRef]

Teh, W. H.

W. H. Teh, U. Durig, G. Salis, R. Harbers, U. Drechsler, R. F. Mahrt, C. G. Smith, and H. J. Guntherodt, “SU-8 for real three-dimensional subdiffraction-limit two-photon microfabrication,” Appl. Phys. Lett. 84, 40954097 (2004).
[CrossRef]

Thomson, L.

J. Leach, K. Wulff, G. Sinclair, P. Jordan, J. Courtial, L. Thomson, G. Gibson, K. Karunwi, J. Cooper, Z. J. Laczik, and M. Padgett, “Interactive approach to optical tweezers control,” Appl. Opt. 45, 897903 (2006).
[CrossRef]

Tiziani, H. J.

J. Liesener, M. Reicherter, T. Haist, and H. J. Tiziani, “Multi-functional optical tweezers using computer-generated holograms,” Opt. Commun. 185, 7782 (2000).
[CrossRef]

Wilkinson, J. S.

H. B. Yin, T. Brown, J. S. Wilkinson, R. W. Eason, and T. Melvin, “Submicron patterning of DNA oligonucleotides on silicon,” Nucleic Acids Research 32,915 (2004).
[CrossRef]

Wu, X. L.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Q. Qin, H. Rockel, M. Rumi, X. L. Wu, S. R. Marder, and J.W. Perry, “Twophoton polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398, 5154 (1999).

Wulff, K.

J. Leach, K. Wulff, G. Sinclair, P. Jordan, J. Courtial, L. Thomson, G. Gibson, K. Karunwi, J. Cooper, Z. J. Laczik, and M. Padgett, “Interactive approach to optical tweezers control,” Appl. Opt. 45, 897903 (2006).
[CrossRef]

Wulff, K. D.

N. J. Jenness, K. D. Wulff, M. S. Johannes, D. G. Cole, and R. L. Clark, “Dynamic Maskless Holographic Lithography,” Proceedings of ASME IDETC/CIE 2007 Micro- and Nanosystems (2007).

Yamato, M.

K. Itoga, J. Kobayashi, M. Yamato, A. Kikuchi, and T. Okano, “Maskless liquid-crystal-display projection photolithography for improved design flexibility of cellular micropatterns,” Biomaterials 27, 30053009 (2006).
[CrossRef]

Yin, H. B.

H. B. Yin, T. Brown, J. S. Wilkinson, R. W. Eason, and T. Melvin, “Submicron patterning of DNA oligonucleotides on silicon,” Nucleic Acids Research 32,915 (2004).
[CrossRef]

Yu, T. Y.

W. H. Zhou, S. M. Kuebler, K. L. Braun, T. Y. Yu, J. K. Cammack, C. K. Ober, J. W. Perry, and S. R. Marder, “An efficient two-photon-generated photoacid applied to positive-tone 3D microfabrication,” Science 296, 1106–1109 (2002).
[CrossRef] [PubMed]

Zbaida, D.

A. Lachish-Zalait, D. Zbaida, E. Klein, and M. Elbaum, “Direct surface patterning from solutions: Localized microchemistry using a focused laser,” Adv. Funct. Mater. 11, 218223 (2001).
[CrossRef]

Zhou, W. H.

W. H. Zhou, S. M. Kuebler, K. L. Braun, T. Y. Yu, J. K. Cammack, C. K. Ober, J. W. Perry, and S. R. Marder, “An efficient two-photon-generated photoacid applied to positive-tone 3D microfabrication,” Science 296, 1106–1109 (2002).
[CrossRef] [PubMed]

Adv. Funct. Mater. (1)

A. Lachish-Zalait, D. Zbaida, E. Klein, and M. Elbaum, “Direct surface patterning from solutions: Localized microchemistry using a focused laser,” Adv. Funct. Mater. 11, 218223 (2001).
[CrossRef]

Anal. Chem. (2)

R. T. Hill and J. B. Shear, “Enzyme-nanoparticle functionalization of three-dimensional protein scaffolds,” Anal. Chem. 78, 70227026 (2006).
[CrossRef]

B. Kaehr, N. Ertas, R. Nielson, R. Allen, R. T. Hill, M. Plenert, and J. B. Shear, “Direct-write fabrication of functional protein matrixes using a low-cost Q-switched laser,” Anal. Chem. 78, 31983202 (2006).
[CrossRef]

Appl. Opt. (2)

J. Leach, K. Wulff, G. Sinclair, P. Jordan, J. Courtial, L. Thomson, G. Gibson, K. Karunwi, J. Cooper, Z. J. Laczik, and M. Padgett, “Interactive approach to optical tweezers control,” Appl. Opt. 45, 897903 (2006).
[CrossRef]

M. A. Seldowitz, J. P. Allebach, and D. W. Sweeney, “Synthesis of Digital Holograms by Direct Binary Search,” Appl. Opt. 26, 27882798 (1987).
[CrossRef]

Appl. Phys. Lett. (2)

T. Tanaka, H. B. Sun, and S. Kawata, “Rapid sub-diffraction-limit laser micro/nanoprocessing in a threshold material system,” Appl. Phys. Lett. 80, 312314 (2002).
[CrossRef]

W. H. Teh, U. Durig, G. Salis, R. Harbers, U. Drechsler, R. F. Mahrt, C. G. Smith, and H. J. Guntherodt, “SU-8 for real three-dimensional subdiffraction-limit two-photon microfabrication,” Appl. Phys. Lett. 84, 40954097 (2004).
[CrossRef]

Biomaterials (1)

K. Itoga, J. Kobayashi, M. Yamato, A. Kikuchi, and T. Okano, “Maskless liquid-crystal-display projection photolithography for improved design flexibility of cellular micropatterns,” Biomaterials 27, 30053009 (2006).
[CrossRef]

IEEE Transactions on Automation Science and Engineering (1)

M. S. Johannes, J. F. Kuniholm, D. G. Cole, and R. L. Clark, “Automated CAD/CAM-based nanolithography using a custom atomic force microscope,” IEEE Transactions on Automation Science and Engineering 3, 236239 (2006).
[CrossRef]

MRS Bulletin (1)

C. B. Arnold and A. Pique, “Laser Direct-Write Processing,” MRS Bulletin 32, 915 (2007).

Nature (2)

S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices - Micromachines can be created with higher resolution using two-photon absorption,” Nature 412, 697698 (2001).
[CrossRef]

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Q. Qin, H. Rockel, M. Rumi, X. L. Wu, S. R. Marder, and J.W. Perry, “Twophoton polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398, 5154 (1999).

Nucleic Acids Research (1)

H. B. Yin, T. Brown, J. S. Wilkinson, R. W. Eason, and T. Melvin, “Submicron patterning of DNA oligonucleotides on silicon,” Nucleic Acids Research 32,915 (2004).
[CrossRef]

Opt. Commun. (2)

J. Liesener, M. Reicherter, T. Haist, and H. J. Tiziani, “Multi-functional optical tweezers using computer-generated holograms,” Opt. Commun. 185, 7782 (2000).
[CrossRef]

J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207, 169175 (2002).
[CrossRef]

Opt. Express (2)

Y. Kuroiwa, N. Takeshima, Y. Narita, S. Tanaka, and K. Hirao, “Arbitrary micropatterning method in femtosecond laser microprocessing using diffractive optical elements,” Opt. Express 12, 19081915 (2004).
[CrossRef]

T. Kondo, S. Juodkazis, V. Mizeikis, H. Misawa, and S. Matsuo, “Holographic lithography of periodic two- and three-dimensional microstructures in photoresist SU-8,” Opt. Express 14, 79437953 (2006).

Opt. Lett. (1)

S. Hasegawa, Y. Hayasaki, and N. Nishida, “Holographic femtosecond laser processing with multiplexed phase Fresnel lenses,” Opt. Lett. 31, 17051707 (2006).
[CrossRef]

Optik (1)

R.W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of phase image and diffraction plane pictures,” Optik 35, 237248 (1972).

Science (1)

W. H. Zhou, S. M. Kuebler, K. L. Braun, T. Y. Yu, J. K. Cammack, C. K. Ober, J. W. Perry, and S. R. Marder, “An efficient two-photon-generated photoacid applied to positive-tone 3D microfabrication,” Science 296, 1106–1109 (2002).
[CrossRef] [PubMed]

Other (1)

N. J. Jenness, K. D. Wulff, M. S. Johannes, D. G. Cole, and R. L. Clark, “Dynamic Maskless Holographic Lithography,” Proceedings of ASME IDETC/CIE 2007 Micro- and Nanosystems (2007).

Supplementary Material (1)

» Media 1: MOV (1794 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Schematic diagram of the holographic system. The SLM plane is imaged onto the pupil plane of the microscope objective using lenses (L) and mirrors (M).

Fig. 2.
Fig. 2.

(a) CAD representation of a square pyramid. (b) MATLAB plot of CAD structure discretized into points by layer. (c) Schematic of the single beam conversion into multiple focal points for parallel processing.

Fig. 3.
Fig. 3.

Phase required for the (a) lateral positioning ϕ grating and (b) axial positioning ϕ lens of the individual points within a 3D structure.

Fig. 4.
Fig. 4.

Images from the CCD camera showing multiple focal points (number of points beneath each image) simultaneously displayed on a glass coverslip placed at the focal plane. Each image is of the entire 56 μm×42 μm microscope objective field of view.

Fig. 5.
Fig. 5.

Optical light microscope video of the fabrication process (Media 1) and images showing the completion of pyramidal layers (a) 2, (b) 4, and (c) 6 during processing.

Fig. 6.
Fig. 6.

SEM images of four simultaneously created square pyramids at angles of (a) 20° and (b) 45° from the surface.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

ϕ grating ( x holo , y holo ) = 2 π ( Δ x x holo + Δ y y holo ) ,
ϕ lens ( x holo , y holo ) = 2 π Δ f λ f 2 ( x holo 2 + y holo 2 ) ,
ϕ total = mod ( ϕ holo + ϕ grating + ϕ lens , 2 π ) .

Metrics